A. Rosenfeld and J. L. Pfaltz, Sequential operations in digital picture processing, Journal of the Association for Computer Machinery, vol.13, issue.4, pp.471-494, 1966.

O. Duda, P. E. Hart, and J. H. Munson, Graphical data processing research study and experimental investigation, 1967.

A. Rosenfeld, Connectivity in Digital Pictures, Journal of the ACM, vol.17, issue.1, pp.146-160, 1970.
DOI : 10.1145/321556.321570

T. Y. Kong, A digital fundamental group, Computers & Graphics, vol.13, issue.2, pp.159-166, 1989.
DOI : 10.1016/0097-8493(89)90058-7

T. Y. Kong and A. Rosenfeld, Digital Topology, Graphics and Image Processing, vol.48, issue.3, pp.357-393, 1989.
DOI : 10.1007/978-1-4615-1529-6_3

E. Khalimsky, R. Kopperman, and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology and its Applications, vol.36, issue.1, pp.1-17, 1990.
DOI : 10.1016/0166-8641(90)90031-V

URL : http://doi.org/10.1016/0166-8641(90)90031-v

V. A. Kovalevsky, Finite topology as applied to image analysis, Computer Vision, Graphics, and Image Processing, vol.46, issue.2, pp.141-161, 1989.
DOI : 10.1016/0734-189X(89)90165-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Bertrand, New Notions for Discrete Topology, Lecture Notes in Computer Science, vol.1568, pp.218-228, 1999.
DOI : 10.1007/3-540-49126-0_17

URL : https://hal.archives-ouvertes.fr/hal-00621992

G. Bertrand and G. Malandain, A new characterization of three-dimensional simple points, Pattern Recognition Letters, vol.15, issue.2, pp.169-175, 1994.
DOI : 10.1016/0167-8655(94)90046-9

URL : https://hal.archives-ouvertes.fr/inria-00615050

G. Bertrand, A Boolean characterization of three-dimensional simple points, Pattern Recognition Letters, vol.17, issue.2, pp.115-124, 1996.
DOI : 10.1016/0167-8655(95)00100-X

URL : https://hal.archives-ouvertes.fr/hal-00621994

S. Fourey and R. Malgouyres, A concise characterization of 3D simple points, Discrete Applied Mathematics, vol.125, issue.1, pp.59-80, 2003.
DOI : 10.1016/S0166-218X(02)00224-X

URL : https://hal.archives-ouvertes.fr/hal-00338928

M. Couprie and G. Bertrand, New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.4, pp.637-648, 2009.
DOI : 10.1109/TPAMI.2008.117

URL : https://hal.archives-ouvertes.fr/hal-00622393

Y. Cointepas, I. Bloch, and L. Garnero, Cellular complexes: a tool for 3d homotopic segmentation in brain images, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), pp.832-836, 1998.
DOI : 10.1109/ICIP.1998.727383

X. Daragon and M. Couprie, Segmentation du néo-cortex cérébral depuis des données IRM dans le cadre de la topologie des ordres, Reconnaissance de Formes et Intelligence Artificielle -RFIA 2002, pp.809-818, 2002.

G. Bertrand and M. Couprie, Two-Dimensional Parallel Thinning Algorithms Based on Critical Kernels, Journal of Mathematical Imaging and Vision, vol.13, issue.2, pp.35-56, 2008.
DOI : 10.1007/s10851-007-0063-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Han, C. Xu, and J. L. Prince, A topology preserving level set method for geometric deformable models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.6, pp.755-768, 2003.

Y. Bai, X. Han, and J. L. Prince, Topology-preserving Geometric Deformable Model on Adaptive Quadtree Grid, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383335

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Mangin, V. Frouin, I. Bloch, J. Régis, and J. , From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations, Journal of Mathematical Imaging and Vision, vol.44, issue.6, pp.297-318, 1995.
DOI : 10.1007/BF01250286

P. Dokládal, C. Lohou, L. Perroton, and G. Bertrand, Liver Blood Vessels Extraction by a 3-D Topological Approach, Lecture Notes in Computer Science, vol.1679, pp.98-105, 1999.
DOI : 10.1007/10704282_11

Z. Aktouf, G. Bertrand, and L. Perroton, A three-dimensional holes closing algorithm, Pattern Recognition Letters, vol.23, issue.5, pp.523-531, 2002.
DOI : 10.1016/S0167-8655(01)00152-0

URL : https://hal.archives-ouvertes.fr/hal-00621973

N. Passat, C. Ronse, J. Baruthio, J. Armspach, M. Bosc et al., Using Multimodal MR Data for Segmentation and Topology Recovery of the Cerebral Superficial Venous Tree, International Symposium on Visual Computing -ISVC 2005, pp.60-67, 2005.
DOI : 10.1007/11595755_8

S. Faisan, N. Passat, V. Noblet, R. Chabrier, and C. Meyer, Topologypreserving warping of binary images according to one-to-one mappings, IEEE Transactions on Image Processing

T. Y. Kong and A. W. Roscoe, A theory of binary digital pictures, Computer Vision, Graphics, and Image Processing, vol.32, issue.2, pp.221-243, 1985.
DOI : 10.1016/S0734-189X(85)80070-0

R. Ayala, E. Domínguez, A. Francés, and A. Quintero, Digital lighting functions, Lecture Notes in Computer Science, vol.1347, pp.139-150, 1997.
DOI : 10.1007/BFb0024836

T. Y. Kong, Topology-preserving deletion of 1's from 2-, 3- and 4-dimensional binary images, Lecture Notes in Computer Science, vol.1347, pp.3-18, 1997.
DOI : 10.1007/BFb0024826

G. Bertrand and M. Couprie, A Model for Digital Topology, Lecture Notes in Computer Science, vol.1568, pp.229-241, 1999.
DOI : 10.1007/3-540-49126-0_18

URL : https://hal.archives-ouvertes.fr/hal-00622003

R. Ayala, E. Domínguez, A. R. Francés, and A. Quintero, Homotopy in Digital Spaces, Lecture Notes in Computer Science, vol.1953, pp.3-14, 2000.
DOI : 10.1007/3-540-44438-6_1

T. S. Blyth, Lattices and Ordered Algebraic Structures, 2005.
DOI : 10.1112/jlms/s1-39.1.427

URL : http://jlms.oxfordjournals.org/cgi/content/short/s1-39/1/427

A. May, A Concise Course in Algebraic Topology, 1999.

A. Hatcher, Algebraic Topology, 2002.

N. Passat and L. Mazo, An introduction to simple sets, Pattern Recognition Letters, vol.30, issue.15, pp.1366-1377, 2009.
DOI : 10.1016/j.patrec.2009.07.008

L. Mazo, N. Passat, M. Couprie, and C. , Ronse, Paths, homotopy and reduction in digital images, 2010.

F. Poupon, J. Mangin, D. Hasboun, C. Poupon, I. E. Magnin et al., Multi-object deformable templates dedicated to the segmentation of brain deep structures, International Conference on Medical Image Computing and Computer Assisted Intervention - MICCAI 1998, pp.1134-1143, 1998.
DOI : 10.1109/34.42836

P. Bazin and D. L. Pham, Topology-Preserving Tissue Classification of Magnetic Resonance Brain Images, IEEE Transactions on Medical Imaging, vol.26, issue.4, pp.487-496, 2007.
DOI : 10.1109/TMI.2007.893283

S. Miri, N. Passat, and J. Armspach, Topology-Preserving Discrete Deformable Model: Application to Multi-segmentation of Brain MRI, International Conference on Image and Signal Processing -ICISP 2008, pp.67-75, 2008.
DOI : 10.1007/978-3-540-69905-7_8

L. J. Latecki, 3D Well-Composed Pictures, Graphical Models and Image Processing, vol.59, issue.3, pp.164-172, 1997.
DOI : 10.1006/gmip.1997.0422

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Ségonne, J. Pons, E. Grimson, and B. , A novel level set framework for the segmentation of medical images under topology control, ICCV Workshop on Computer Vision for Biomedical Image Applications, pp.135-145, 2005.

P. Bazin, L. M. Ellingsen, and D. L. Pham, Digital Homeomorphisms in Deformable Registration, Lecture Notes in Computer Science, vol.4584, pp.211-222, 2007.
DOI : 10.1007/978-3-540-73273-0_18

M. Siqueira, L. J. Latecki, N. Tustison, J. Gallier, and J. Gee, Topological Repairing of 3D Digital Images, Journal of Mathematical Imaging and Vision, vol.17, issue.3, pp.249-274, 2008.
DOI : 10.1007/s10851-007-0054-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Damiand, Topological model for 3D image representation: Definition and incremental extraction algorithm, Computer Vision and Image Understanding, vol.109, issue.3, pp.260-289, 2008.
DOI : 10.1016/j.cviu.2007.09.007

URL : https://hal.archives-ouvertes.fr/hal-00257372

A. Dupas, G. Damiand, and J. Lachaud, Multi-Label Simple Points Definition for 3D??Images Digital Deformable Model, Lecture Notes in Computer Science, vol.50, issue.3, pp.218-229, 2009.
DOI : 10.1023/A:1020874308076

URL : https://hal.archives-ouvertes.fr/hal-00413691