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Abstract In this article, a tractablemodus operandiis pro-
posed to model a (binary) digital image (i.e., an image de-
fined onZn and equipped with a standard pair of adjacen-
cies) as an image defined in the space of cubical complexes
(Fn). In particular, it is shown that all the standard pairs of
adjacencies (namely the (4, 8) and (8, 4)-adjacencies inZ2,
the (6, 18), (18, 6), (6, 26), and (26, 6)-adjacencies inZ3, and
more generally the (2n, 3n − 1) and (3n − 1, 2n)-adjacencies
in Zn) can then be correctly modelled inFn. Moreover, it is
established that the digital fundamental group of a digital
image inZn is isomorphic to the fundamental group of its
corresponding image inFn, thus proving the topological cor-
rectness of the proposed approach. From these results, it be-
comes possible to establish links between topology-oriented
methods developed either in classical digital spaces (Z

n) or
cubical complexes (Fn), and to potentially unify some of
them.

Keywords digital imaging· digital topology· cubical
complexes· homotopy· fundamental group

1 Introduction

The rapid and important rise of digital imaging, and the
associated need of efficient image analysis tools for 2-D,
and later 3-D (and even 4-D) digital images have provided
a strong motivation to research related to the definition of
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sound digital topological models. Indeed, in order to seg-
ment, process, or analyse digital images in various applica-
tion fields, it is often fundamental to be able to preserve, get
back or integrate topological information.

Basically, ann-dimensional (digital) binary image can
reasonably be considered as a subset ofZ

n or, equivalently,
as a function fromZn to the set of values{0, 1}. However, the
actual structures visualised in such images generally corre-
spond to objects of the real world, and are thus continuous
(at least at the macroscopic scale where they are considered).
Consequently, they are objects ofRn, and not ofZn.

In order to deal with this continuous/discrete issue, re-
search efforts have essentially focused (since the first works,
proposed nearly fifty years ago [1,2]) on specific and prag-
matic questions related to topology, namely the definition
of a notion ofadjacencyrelation, and the induced notions
of connectivityandarcs. These notions lead, in particular,
to high-level concepts of topology, such ashomotopy, with
natural applications to “homotopy type-preserving” image
processing.

The first solution proposed to model the topology of a
digital image inZn was to consider that two points (also
called xels) are adjacent if there are neighbours in then-
D cubic grid naturally induced byZn (possibly enriched by
some well chosen sets of “diagonals”). In this framework,
partial solutions have been found to model the above topo-
logical properties, for instance by definingdual adjacencies
for the object (composed of the xels of value 1) and the back-
ground (composed of the xels of value 0) [2], thus enabling
to define, from these adjacency relations, the notions of con-
nectivity [3] and ofdigital fundamental group[4], which
permits to compare objects from a topological point of view.
This historical approach is known asdigital topology[5].

Other kinds of discrete spaces, enabling to model more
explicitly the continuous topological properties of digital
images, have also been proposed. Among these alternative
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approaches of topology modelling, one can citeconnected
ordered topological spaces[6], abstract cell complexes[7]
(which are globally equivalent) ororders[8]. Broadly speak-
ing, they propose to put some “topological glue” between
the xels of digital images in order to better define the topo-
logical links with their continuous analogues.

By comparison to these (more sophisticated) approaches,
digital topology –proposed directly onZn– may appear as
the less satisfactory solution to accurately deal with topolog-
ical properties of binary images. Nevertheless, digital topol-
ogy remains the most commonly used framework for de-
veloping image processing tools dealing with topological
issues. Indeed, since digital topology is directly defined in
Z

n, methods relying on it will also provide final results in
Z

n (namely, the actual support of the processed images),
which generally constitutes a desired property in most ap-
plications. Moreover, a large literature has already been de-
voted to homotopy-type preservation in digital topology, es-
pecially thanks to the concept of simple point [9–12]. In this
context, only very few methods have been based on alterna-
tive models (e.g., for image segmentation based on cubical
complexes [13] or orders [14]; parallel skeletonisation based
on cubical complexes [15]), while digital topology has led to
the design of quite numerous methods, devoted (non exhaus-
tively) to deformable models (see,e.g., [16,17]), segmenta-
tion (see,e.g., [18,19]), image correction (see,e.g., [20,21]),
or image warping (see,e.g., [22]).

Because of this intensive use of digital topology, it may
be important to guarantee that there exists an actual com-
patibility between digital topology and the other proposed
topological approaches (and more generally with the “con-
tinuous” topology). This requires, in particular, to be able to
embed a binary image initially defined inZn into a richer
space (while respecting the chosen adjacencies inZ

n) while
preserving certain topological characteristics of objects (see,
e.g., [23,24]).

The “richer space” that is used here isFn, namely the
space of cubical complexes, which is together a connected
ordered topological space, a cellular space and an order (i.e.,
a poset). Though it is commonly admitted that there exists a
strong link between digital topology and cubical complexes
[25], since complexes are closed objects, the images han-
dled inFn correspond generally to images defined inZn with
a (3n − 1, 2n)-adjacency pair. In [26], a method is proposed
to include and improve digital topology in the framework
of posets, but the case of the (6, 18)- and (18, 6)-adjacency
pairs is not considered. In [24,27,28], the authors give a way
to embed digital pictures in a space of complexes accord-
ing to the kind of connectivity that has been chosen inZn.
However, they do not use an intrinsic topology on complexes
which are just a step betweenZn andRn. This leads them to
define specific notions of connectedness and digital homo-
topy in Fn. Thereby, in this article, we propose a complete

framework to correctly embed a binary digital image in the
topological spaceFn, according to the choice of adjacencies
which has been made inZn.

The sequel of the article is organised as follows. Section
2 recalls background notions and useful notations. Section3
describes the mapping enabling to associate a binary digital
image defined onZn to an equivalent image defined in the
space of cubical complexes (Fn). A detailed study of such
images is then proposed. Section 4, which is devoted to ho-
motopy in binary images, presents the main contribution of
this work. It provides the proof that the connected compo-
nents and the digital fundamental group of the digital images
in Zn are preserved inFn when using the mapping described
in Section 3. Section 5 concludes this article by summaris-
ing the contributions and presenting further works. Auxil-
iary properties (used in the proofs of Sections 3 and 4) are
proposed in Appendix A.

2 Background notions

This section provides the minimal set of background no-
tions required to make this article globally self-contained,
and then more comprehensible for the reader. Some of them
are standard notions of lattice theory (Section 2.1) and can
also be found in [29,30]. The reader interested in topological
notions (Section 2.2) can find complementary information
in any lecture book on general topology [31,32] or on al-
gebraic topology [33–35]. The main cubical complexes no-
tions (Section 2.3) are described,e.g., in [15,36], while a
good introduction to digital topology may be found in [5].

2.1 Posets

Let X be a set. A binary relation onX is apartial order if it is
reflexive, antisymmetric, and transitive. Apartially ordered
set(or poset) is an ordered pair (X,6) where the relation6 is
a partial order onX. We writex < y whenx 6 y andx , y.
The relation> defined onX by x > y if y 6 x is a partial
order onX called thedual order. Thecoveringrelation≺,
associated to6, is defined by:x ≺ y (say “y coversx”) if
x < y and there is nozsuch thatx < z< y. We set:

x↑ = {y ∈ X | x 6 y} ;
x↑+ = {y ∈ x↑ | y↑ = {y}} ;
x↓ = {y ∈ X | y 6 x} ;
x↓⋆ = x↓ \ {x} = {y ∈ X | y < x} ;
x≺ = {y ∈ X | x ≺ y} .

(1)

An elementx ∈ X is minimal if x↓ = {x} andmaximal if
x↑ = {x}. An elementx ∈ X is theminimumof X if x↑ = X
and is themaximumof X if x↓ = X. If the minimum (resp.,
the maximum) exists, then it is unique.
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2.2 Topological spaces

Let X be a set, the elements of which will be calledpoints. A
topologyon X is a collectionU of subsets ofX, calledopen
sets, such that:

(i) ∅,X are open sets;
(ii ) any finite intersection of open sets is an open set;

(iii ) any union of open sets is an open set.

The complement inX of an open set is called aclosed set.
From the above definition, any finite union of closed sets is a
closed set and any intersection of closed sets is a closed set.
A set of open sets is abasisfor a topology if any open set
is a union of open sets of this basis. Aneighbourhoodof a
point x ∈ X is a subset ofX including an open set containing
x.

Let (X,6) be a poset. The setU defined byU = {U ⊆
X | ∀x ∈ U, x↑ ⊆ U} is a topology onX which is called
the Alexandroff topology. In this topology, the setx↑ is the
smallest open set containingx (or the smallest neighbour-
hood ofx, called thestar of x) and the setx↓ is the small-
est closed set containingx (the closureof x). Two points
x, y ∈ X areadjacentif x 6 y or y 6 x. A sequence (zi)r

i=0
(r ≥ 0) of elements ofX is anarc in X (from z0 to zr ) if for
all i ∈ [[1, r]], zi−1 andzi are distinct and adjacent1. A subset
Y of X is connectedif for all x, y ∈ Y, there exists an arc in
Y from x to y2. A connected componentof a subsetY of X
is a maximal (for inclusion) connected subset ofY.

Theclosure Y↓ of a subsetY ⊆ X is the smallest closed
set includingY. The interior Y◦ of a subsetY ⊆ X is the
largest open set included inY (it is also the union of all open
sets included inY). Closure and interior are dual notions
since¬(Y◦) = (¬Y)↓ and¬(Y↓) = (¬Y)◦ where¬Y = X \ Y.
An open setY is aregular open setif Y = (Y↓)

◦
and a closed

set is aregular closed setif Y = (Y◦)↓. The complement of
a regular open set is a regular closed set.

2.3 Cubical complexes

Let Z be the set of integers. LetF1
0 = {{a} | a ∈ Z} and

F
1
1 = {{a, a+ 1} | a ∈ Z}. Let n ≥ 1.

Let f ⊂ Zn. If f is the Cartesian product ofm elements
of F1

1 andn − m elements ofF1
0, we say thatf is a faceor

an m-face(of Zn), m is the dimensionof f , and we write
dim( f ) = m (some faces ofZ2 are depicted in Figure 1). We
denote byFn the set composed of all faces ofZn; this set
is the (n-D) space ofcubical complexes. We denote byFn

k
(0 ≤ k ≤ n) the set composed of allk-faces ofZn. The couple

1 For the sake of readability, a discrete interval will be noted [[a, b]],
while a continuous one will be noted [a, b].

2 In a poset, this definition is equivalent to the classical onefor
which a set is connected if it cannot be split in two open (or closed)
non empty sets.

(Fn,⊆) is a poset. LetF ⊆ Fn be a set of faces3. Let f ∈ F
be a face. The facef is a facetof F if f is maximal inF. In
particular, if x = (xi)n

i=1 ∈ Z
n, the set ˙x =

∏n
i=1{xi , xi + 1} is

a facet ofFn.
Some technical lemmas, essentially devoted to cubical

complexes, and needed in the sequel are provided in Ap-
pendix A.

b b

b b

f

h

g

(a)

g h

f

(b)

Fig. 1 Two representations of a set of facesF = { f , g, h} in Z2 with,
for instance,f = {0} × {1}, g = {0, 1} × {0, 1} andh = {1} × {0, 1}. The
faceg is a facet ofF (and also ofF2).

2.4 Digital topology

Let x = (xi)n
i=1 andy = (yi)n

i=1 be two distinct points inZn

(also calledn-xels, or simplyxels). The pointsx andy are
2n-adjacentif

∑n
i=1 |xi − yi | = 1. They are (3n − 1)-adjacent

if maxn
i=1{|xi − yi |} = 1. Whenn = 3, the pointsx andy are

18-adjacentif they are 26-adjacent and
∑n

i=1 |xi − yi | ≤ 2.
Letα ∈ {2n, 3n− 1} (or possiblyα = 18 if n = 3). Any point
in Zn is α-adjacent toα other points. A sequenceγ = (zi)r

i=0
(r ≥ 0) of points inX ⊆ Zn is a (digital) α-path4 (from z0
to zr ) if for all i ∈ [[1, r]], zi−1 and zi areα-adjacent. The
integerr is thelengthof γ. A subsetX ⊆ Zn is α-connected,
if for all x, y ∈ X, there exists a digitalα-path fromx to y
in X. In order to retrieve some topological features in binary
digital images (such as the notion ofhole), it is necessary to
use pairs of adjacencies, one for theobject Xand one for the
backgroundZn \ X. The suitable pairs are (2n, 3n − 1) and
(3n − 1, 2n) (plus, whenn = 3, (6, 18) and (18, 6)).

3 Connectivity: from Zn to Fn

A (digital) imageλ on Zn is a function fromZn to {0, 1}.
A (complex) imageµ on Fn is a function fromFn to {0, 1}.
The object (resp. thebackground) associated to the image
θ : X → {0, 1} (with X = Zn or Fn) is the setθ−1({1}) (resp.
θ−1({0})).

3 In the literature devoted to cubical complexes, it is generally as-
sumed thatF ⊆ Fn is afinite set of faces. This constraint can however
be relaxed in the context of this work.

4 We keep the usual designation though it would be more coherent
in this work to define such a sequence of points as anα-arc in order to
reserve the wordpathfor the functional point of view.
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If µ is a complex image, then we write
∨

x∈X µ(x) (resp.
∧

x∈X µ(x)) for the maximum (resp. minimum) of the set
{µ(x) | x ∈ X} and we also writeµ(a)∨µ(b) (resp.µ(a)∧µ(b))
for
∨

x∈{a,b} µ(x) (resp.
∧

x∈{a,b} µ(x)).
The poset (Fn,⊆) is equipped with its Alexandroff topol-

ogy.
All along the article, we provide intuitive representations

of (abstract) objects ofFn by using different boxes for faces
of different dimensions. Furthermore, inF2, the faces of the
object are depicted in black while the faces of the back-
ground are in white, or are not shown, and, inF3, we use
different colours for the faces of the object (blue: 3-faces;
green: 2-faces; yellow: 1-faces; red: 0-faces) while the back-
ground is not represented.

3.1 One-to-one correspondence between images onZ
n and

F
n

When two facesg, h ∈ Fn cover a facef ∈ Fn and their
smallest neighbourhoods do not intersect (i.e., g↑ ∩ h↑ = ∅),
we say that their areoppositewith respect to the facef (see
Figure 2). We denote opp(f ) the set of all{g, h} for g op-
posite toh w.r.t. f . Intuitively, the facef is required to “lo-
cally connect” the facesg andh. When f is a facet, we have
opp(f ) = ∅.

(a) (b) (c)

Fig. 2 Two opposite faces inF3 with respect to (a) a 2-face, (b) a 1face,
(c) a 0-face. The dashed boxes in (b) and (c) show other pairs of oppo-
site faces.

Definition 1 (regular image) Let ε : [[1, n]] → {−1, 1} be a
function calledconnectivity function5. A functionµ : Fn →

{0, 1} is anε-regular image(or simply aregular image) if
for all m ∈ [[1, n]] and f ∈ Fn

m−1, we have, recursively

µ( f ) =

{
∧

{a,b}∈opp(f ) µ(a) ∨ µ(b) if ε(m) = 1
∨

{a,b}∈opp(f ) µ(a) ∧ µ(b) if ε(m) = −1

Examples of regular images are depicted in Figure 3.

5 By abuse of notation, we will often write a connectivity function
ε : [[1, n]] → {−1, 1} by exhaustively providing its values,i.e., by de-
noting (ε(i))n

i=1 instead ofε, as done for instance in Figure 4(b,c). We
will also use a dot symbol (.) when anε(i) value does not influence the
behaviour of theε function on a given object, as done for instance in
Figure 5(a). For the sake of simplicity, we will also writeε = 1 (or
ε = −1) whenε is a constant function, as done for instance in Fig-
ure 4(a,d).

(a)

(b)

Fig. 3 Two ε-regular images (a) onF2 with ε(2) = −1, ε(1) = 1, (b) on
F

3 with ε(3) = −1, ε(2) = ε(1) = 1.

For each connectivity functionε : [[1, n]] → {−1, 1}, we
define the functionζε : {0, 1}Z

n
→ {0, 1}F

n
which maps any

digital imageλ to the uniqueε-regular imageζε(λ) such that,
for eacha ∈ Zn, we haveζε(λ)(ȧ) = λ(a). It is obvious that,
for eachε, the functionζε is a bijection between the set of
digital images{0, 1}Z

n
and the subset ofε-regular images

of {0, 1}F
n
. Moreover, thanks to the choice of the connec-

tivity function ε, we can accurately “carve” an image inFn

to model the desired connectivity inZn (see Figure 4). In
particular, we can get the usual pairs of adjacencies6 (see
Figures 4–7 and Table 1). In Section 4, the correspondences
given in Table 1 will be justified by two theorems establish-
ing that, by following these links, we preserve the connected
components and fundamental groups.

When the functionε is constant, Definition 1 can be sim-
plified. Note that the caseε = −1 corresponds to the 2n-
adjacency inZn while the caseε = 1 corresponds to the
(3n − 1)-adjacency inZn.

Proposition 1 Let µ : Fn → {0, 1} be anε-regular image.
Let f be a face ofFn.

6 Note that each one of the 2n connectivity functionsε : [[1, n]] →
{−1, 1}may enable to retrieve a standard adjacency for the object (pos-
sibly redundantly, see Figure 5(c,d)), but does not necessarily induces
a standard pair of adjacencies, as exemplified in Figures 6 and 7.
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(a) ε = −1 (b) ε = (1,−1) (c) ε = (−1, 1) (d) ε = 1

Fig. 4 Imagesζε(λ) : F2 → {0, 1} for some givenλ : Z2 → {0, 1}.

(a) ε = ( . , . ,−1) (b) ε(3) = 1, ε(2) = −1 (c) ε(3) = ε(2) = 1, ε(1) = −1 (d) ε = 1

Fig. 5 Imagesζε(λ) : F3 → {0, 1} for some givenλ : Z3 → {0, 1}. (a) Withε(3) = −1, we obtain the 6-adjacency inZ3. (b) With ε(3) = 1 and
ε(2) = −1, we obtain the 18-adjacency inZ3. (c, d) Withε(3) = ε(2) = 1, we obtain the 26-adjacency inZ3.

(a) ε(3) = ε(2) = −1, ε(1) = 1 (b) ε(3) = ε(2) = ε(1) = −1

Fig. 6 The (subtle) difference between the connectivity functions (1,−1,−1) and (−1,−1,−1).

(a) ε(3) = −1, ε(2) = 1 (b) ε(3) = ε(2) = −1 (c) ε(3) = ε(1) = 1, ε(2) = −1 (d) ε(3) = 1, ε(2) = ε(1) = −1

Fig. 7 (a,b) A torus built with six 3-faces illustrates how the two 6-adjacencies can be obtained. There are two 3-faces of the background which
intersect the six 3-faces of the torus. These two white-faces are 26-adjacent but in (a) they do not intersect in the background (for the torus is a
horn-torus) while, in (b), they do (the torus is a ring-torus). Hence, in (a), we model a (6, 18)-adjacency relation while in (b), we model a (6, 26)-
adjacency relation. (c,d) An object built from three facetswith two connectivity functions which coulda priori be used to model the 18-adjacency
(see Figure 5(b)). In (c) we can see a red 0-face between the three cubes. This is what is expected for the background must have a 6-adjacency. In
(d), there is a hole instead of the red 0-face, which is not correct in 18-adjacency.
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6

Space dimension n = 2 n = 3 n ≥ 4 (actually,n ∈ N∗)
Adjacencies inZn (4, 8) (8, 4) (6, 26) (6, 18) (18, 6) (26, 6) (2n, 3n − 1) (3n − 1, 2n)

Connectivity ε = −1 ε = 1 ε = −1 ε(3) = −1 ε(3) = 1 ε = 1 ε = −1 ε = 1
function ε(2) = 1 ε(2) = −1

ε(1) = −1 ε(1) = 1

Table 1 Correspondence between pairs of adjacencies inZ
n and connectivity functions.

(i) If ∀m> dim( f ), ε(m) = −1, then we have

µ( f ) =
∧

f≺a

µ(a) =
∧

a∈ f ↑+

µ(a)

(ii) If ∀m> dim( f ), ε(m) = 1, then we have

µ( f ) =
∨

f≺a

µ(a) =
∨

a∈ f ↑+

µ(a)

In particular, if ε = −1 (resp.ε = 1) thenµ( f ) =
∧

a∈ f ↑+ µ(a)
(resp.µ( f ) =

∨

a∈ f ↑+ µ(a)) for all f ∈ Fn.

Proof The proof is restricted to part (i), since part (ii ) can be
easily obtained by duality. We build the proof by induction
on k = n − dim( f ) ≥ 1. Whenk = 1, there are two facets
g, h such thatf ↑+ = f ≺ = {g, h} and opp(f ) = {{g, h}}. Thus,
sinceε(n) = −1, we haveµ( f ) =

∨

{a,b}∈opp(f ) µ(a) ∧ µ(b) =
µ(g) ∧ µ(h) =

∧

a∈ f ↑+ µ(a) =
∧

f≺a µ(a). Suppose now that,
for somek ∈ [[1, n− 1]], ∀m≥ n− k, ε(m) = −1 and for each
faceb of dimensionn− k, µ(b) =

∧

b≺a µ(a) =
∧

a∈ f ↑+ µ(a).
Let f be a face of dimensionn−k−1. From Definition 1, we
haveµ( f ) =

∨

{a,b}∈opp(f ) µ(a) ∧ µ(b), and from the induction
hypothesis, it then comes

µ( f ) =
∨

{a,b}∈opp(f )

































∧

c∈a↑+

µ(c)

















∧

















∧

c∈b↑+

µ(c)

































and thus

µ( f ) =
∨

{a,b}∈opp(f )

∧

c∈a↑+∪b↑+

µ(c)

From Lemma 7(ii ) (see Appendix A), we havef ↑+ = a↑+ ∪
b↑+ for all (a, b) ∈ opp(f ). Hence, we obtain :

µ( f ) =
∨

{a,b}∈opp(f )

∧

c∈ f ↑+

µ(c) =
∧

c∈ f ↑+

µ(c)

Using again the induction hypothesis, it finally comes

∧

f≺a

µ(a) =
∧

f≺a

∧

b∈a↑+

µ(b) =
∧

b∈ f ↑+

µ(b) = µ( f )

Hence, the result holds.

3.2 Duality

Let θ : X → {0, 1} with (X = Zn or Fn) be an image. We
define thenegative image¬θ : X → {0, 1} of θ by ¬θ(x) =
¬(θ(x)) = 1− θ(x), for all x ∈ X.

In the following,ε denotes an arbitrary connectivity func-
tion.

Proposition 2 Let µ : Fn → {0, 1} be anε-regular image.
Then¬µ is a (−ε)-regular image.

Proof Let f ∈ Fn
m−1, with 1 ≤ m ≤ n. Let us suppose that

ε(m) = 1. Then, (¬µ)( f ) = ¬(µ( f )) = ¬(
∧

{a,b}∈opp(f ) µ(a) ∨
µ(b)). From De Morgan’s law, we infer:

(¬µ)( f ) =
∨

(a,b)∈opp(f )

¬(µ(a)) ∧ ¬(µ(b))

=
∨

(a,b)∈opp(f )

(¬µ)(a) ∧ (¬µ)(b).

The caseε(m) = −1 is similar. Whence,¬µ is (−ε)-regular.

Let µ : Fn→ {0, 1} be anε-regular image. We define the
image−µ : Fn → {0, 1} by (−µ)( f ) = µ( f ) for all f ∈ Fn

n and
µ is (−ε)-regular, as exemplified in Figure 8.

Proposition 3 Let µ : Fn → {0, 1} be anε-regular image.
Then we have¬(−µ) = −(¬µ).

µ
¬

−−−−−−→ ¬µ

−











y











y

−

−µ
¬

−−−−−−→ −(¬µ)

Proof Let f ∈ Fn
n. We have (¬(−µ))( f ) = ¬((−µ)( f )) =

¬(µ( f )) = (¬µ)( f ) = (−(¬µ))( f ). Furthermore,−µ and¬µ
are (−ε)-regular. So,¬(−µ) and−(¬µ) areε-regular. Thus,
¬(−µ) = −(¬µ).

From the above definitions and propositions, we straightfor-
wardly derive the following result.

Proposition 4 Let λ : Zn → {0, 1} be a digital image. Let
ε : [[1, n]] → {−1, 1} be a connectivity function. Then, we
have¬(ζε(λ)) = ζ−ε(¬λ).

λ
¬

−−−−−−→ ¬λ

ζε











y











y

ζ−ε

ζε(λ)
¬

−−−−−−→ ζ−ε(¬λ)
Propositions 3 and 4 are illustrated in Figures 8 and 9.
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(a) µ (b) −µ

(c) ¬µ (d) −(¬µ) = ¬(−µ)

Fig. 8 (a) A (−1, 1)-regular imageµ : F2 → {0, 1}. (b) The (1,−1)-
regular image−µ. (c) The (1,−1)-regular image¬µ. (d) The (−1, 1)-
regular image−(¬µ) = ¬(−µ).

(a) λ (b) ¬λ (rotated)

(c) ζε(λ) (d) ζ−ε(¬λ) = ¬(ζε(λ))

Fig. 9 (a) A digital imageλ : Z2 → {0, 1}. (b) The negative image
¬λ associated toλ. (c) Theε-regular imageζε(λ) associated toλ with
ε = (1,−1,−1). (d) The (−ε)-regular imageζ−ε(¬λ) associated to¬λ.
Note that (b,d) have been rotated of−π/2 along the (nearly) vertical
axis in order to ease the visualisation of (d).

Remark 1This proposition establishes that, for a given con-
nectivity functionε (and the associated pair of adjacencies
(α, β)), all the properties valid forλ−1({1}) andµ−1({1}) are
also valid forλ−1({0}) and µ−1({0}) for the opposite con-
nectivity function−ε (and the associated pair of adjacen-
cies (β, α)). Broadly speaking, this means that the notions
of object and background can be switched without loss of
generality, provided that the pair of adjacencies (β, α) is also
switched accordingly.

3.3 Image values and connectivity functions

The values of the facets of anε-regular image onFn are di-
rectly provided by its associated digital image onZn. How-

ever, the values of the lower-dimensional faces depend on
the connectivity functionε. In this section, we state some
general properties related to links between these values and
the considered connectivity functions.

The following lemma is a straightforward consequence
of Definition 1.

Lemma 1 Let µ : Fn → {0, 1} be anε-regular image. Let
f ∈ µ−1({1}) be such thatdim( f ) < n. Then, eitherε(dim( f )+
1) = −1 and there exists{a, b} ∈ opp(f ) such thatµ(a) =
µ(b) = 1, or ε(dim( f ) + 1) = 1 and for all {a, b} ∈ opp(f ),
µ(a) = 1 or µ(b) = 1.

By applyingn− dim( f ) times Lemma 1, we deduce the
following proposition.

Proposition 5 Let µ : Fn → {0, 1} be anε-regular image.
Let f ∈ µ−1({1}). Then, for each k∈ [[dim( f ) + 1, n]] there
exists a face g∈ f ↑ ∩ Fn

k such thatµ(g) = 1.

The next proposition –easy to prove by induction– en-
sures that in a region of facets of uniform values, the image
has a constant value in all dimensions.

Proposition 6 Let µ : Fn → {0, 1} be a regular image. Let
x ∈ {0, 1} and f ∈ Fn. If, for each facet g in f↑+, µ(g) = x,
thenµ( f ) = x.

The following proposition establishes a partial converse
of Proposition 1. In the sequel, we writef ↑+1 for the set of
facets in the star off which have value 1:f ↑+1 = {g ∈ Fn

n |

f 6 g andµ(g) = 1}.

Proposition 7 Let µ : Fn → {0, 1} be anε-regular image.
Let f ∈ µ−1({1}). If there exists a unique facet in f↑+1 , then
ε(k) = 1 for all k ∈ [[dim( f ) + 1, n]] .

Proof The proof is made par induction onn − dim( f ). For
dim( f ) = n, the property is obvious. Let us now suppose
that the property is true for any face of dimension greater
or equal to a givenm ∈ [[1, n]]. Let f ∈ Fn

m−1 be such that
f ∈ µ−1({1}) and there exists a unique facetg in f ↑+1 . Let h
be a face inf ≺. If h ∈ f ≺ \ g↓ (and such a face exists), none
of the facets inh↑ are inµ−1({1}). Thus, from Proposition 5,
we derive thath < µ−1({1}) and, by Lemma 1, we know that
not all the facesh in f ≺ can verify h < µ−1({1}). Hence,
there existsh ∈ f ≺ ∩ g↓ such thath ∈ µ−1({1}) and, from
the induction hypothesis, we deduce thatε(k) = 1 for all
k ≥ m+1. Let (a, b) ∈ opp(f ). From Lemma 7(ii ), we derive
that a < g↓ or b < g↓. Therefore,µ(a) = 0 or µ(b) = 0
andµ(a) ∧ µ(b) = 0. Since this last equality is true for each
pair in opp(f ), we can state that

∨

{a,b}∈opp(f ) µ(a)∧ µ(b) = 0.
So,ε(m) cannot be equal to−1. Hence,ε(m) = 1, and then
ε(k) = 1 for all k ≥ m.

Hereafter, we study the value of an intersection of facets.
This is an important issue, which will especially be consid-
ered in Section 4.
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Proposition 8 Let µ : Fn → {0, 1} be anε-regular image.
Let f, g be two distinct facets ofµ−1({1}) with f ∩ g , ∅. If
ε(k) = 1 for all k ∈ [[dim( f ∩ g) + 2, n]] , thenµ( f ∩ g) = 1.
Conversely, ifµ( f ∩ g) = 1 and the only facets in( f∩g)↑+1
are f and g, thenε(k) = 1 for all k ∈ [[dim( f ∩ g) + 2, n]] .

Proof We seth = f ∩ g andd = dim(h) + 1. Sinceµ( f ) =
µ(g) = 1 andµ(a) =

∨

b∈a↑+ µ(b) for each facea such that
dim(a) ∈ [[d, n− 1]] (Proposition 1), all thek-faces included
in f or g, with k ≥ d, are inµ−1({1}). In particular, thanks to
Lemma 6, we deriveh≺ ⊆ µ−1({1}) and, therefore, whatever
is the value ofε(d), h ∈ µ−1({1}). Conversely, any facea ∈
h≺ is either included inf or in g (Lemma 6), but not in both
of them. Since the only facets in (f∩g)↑+1 are f andg, we can
use Proposition 7 to conclude thatε(k) = 1 for all k ≥ d+ 1.

Proposition 9 Let µ : Fn → {0, 1} be anε-regular image.
Let f, g be two distinct facets ofµ−1({1}) with f ∩ g , ∅. If
µ( f ∩ g) = 1, then there exists an arc q= (qi)2r

i=0 (r ≥ 0)
from f to g in( f ∩ g)↑∩µ−1({1}) such that, for all i∈ [[0, r]] ,
q2i ∈ F

n
n and for all i ∈ [[0, r − 1]], q2i+1 = q2i ∩ q2(i+1) ∈ F

n
m

with m∈ [[k, n−1]] where k∈ [[0, n−1]] is the lowest integer
such thatε(i) = 1 for all i ∈ [[k+ 2, n]] .

Proof Let µ be anε-regular image andk ∈ [[0, n− 1]] be an
integer such thatε(i) = 1 for all i ∈ [[k+ 2, n]] andε(k+ 1) =
−1 (see Figure 10 for examples). Letf , g be two facets of
µ−1({1}) such thatf ∩ g , ∅ andµ( f ∩ g) = 1. The proof is
carried out by induction onk−dim( f ∩g). If k ≤ dim( f ∩g),
the property is obvious since we can setq = ( f , f ∩ g, g).
We suppose now that the property is true for any facetsi, j
such that dim(i ∩ j) ≥ k − m for somem ∈ [[0, k − 1]]. Let
f , g be such that dim(f ∩ g) = k − m − 1. There exists a
facea such thatf ∩ g ≺ a andµ(a) = 1 (Lemma 1) anda
is included in f or in g (Lemma 6) but not in both of them.
Since,ε(k+ 1) = −1 andk+ 1 ≥ dim(a)+ 1, we derive from
Proposition 7 that there exists a faceth, h , f andh , g, in
a↑ ∩ µ−1({1}). It is easy to see that asf , g, h are three facets
in Fn such thatf ∩g ⊂ h, then dim(f ∩h) and dim(g∩h) are
strictly greater than dim(f ∩ g) so we can use the induction
hypothesis: there exist two arcs in (f ∩ g)↑ ∩ µ−1({1}), q1

from f to h andq2 from h to g, whose faces of odd rank are
facets ofFn and faces of even ranki are the intersection of
the facets of ranksi−1 andi+1 with a dimension belonging
to [[k, n − 1]]. Therefore, there exists an arc fromf to g in
( f ∩ g)↑ ∩ µ−1({1}) whose faces satisfy all the conditions of
the proposition.

3.4 Computing values directly from facets

The aim of this section is to find the number of facets which
must have the value 1 in the star of a face to ensure that this
face also has value 1. InF2, the answer is straightforward.

(a) ε(3) = −1 (b) k = n− 1 = 2

(c) ε(3) = 1, ε(2) = −1 (d) k = n− 2 = 1

Fig. 10 (a) If ε(3) = −1, the integerk defined in Proposition 9 is equal
to n − 1 = 2. Then the proposition states that, since the intersection
(in red) of the two facets ofµ−1({1}) (in blue) is inµ−1({1}) there must
exist a path composed of facets and of faces of dimension higher than
2 between these two facets, as the one depicted in (b). (c) Ifε(3) =
1, ε(2) = −1, the integerk defined in Proposition 9 is equal ton −
2 = 1. So, there must exist a path composed of facets and of faces of
dimension higher than 1 between these two facets as the one depicted
in (d).

In F3, it requires to carefully study a particular configura-
tion (depicted in Figure 11), however, it can be answered, as
stated hereafter. In higher dimensional spaces, the particu-
lar configurations to study are too numerous to get a useful
result.

Let f ∈ Fn, with n ≥ 3. If dim( f ) = n − 3, the poset
( f ↑,⊆) has a unique minimum, namelyf , and 8 maximal
elements, namely the facets formingf ↑+. From an adjacency
point of view, these facets are geometrically organised as the
8 vertices of a cubical structure. Whenf ↑+1 (i.e., the facets
of f ↑+ whose values are equal to 1) is organised as in the
configuration depicted in Figure 11(a) (up to rotations and
symmetries), we say thatf ↑+1 is a trihedron.

We define Card−(E) = 3 and Card+(E) = 5, if E is a
trihedron, and Card−(E) = Card+(E) = Card(E) otherwise.

For each connectivity functionε, we define recursively
the functionδε by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δε : [[0, n]] → [[1, 2n]]
0 7→ 1

i + 1 7→

{

2δε(i) − 1 if ε(n− i) = 1
2δε(i) if ε(n− i) = −1

It is easy to check that, for allm ∈ [[0, n]], we have

δε(m) = 1+
m
∑

k=1

(1− ε(n− k+ 1))2m−k−1

Proposition 10 Let µ : Fn → {0, 1} be anε-regular image.
Let f be a k-face ofFn (with n− 3 ≤ k ≤ n− 1).
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(a) (b) ε(3) = 1, ε(2) = ε(1) = −1 (c) ε(3) = −1, ε(2) = ε(1) = 1 (d) ε(3) = ε(1) = −1, ε(2) = 1

Fig. 11 (a) Symbolic representation of a trihedron related to a facef ∈ Fn such that dim(f ) = n − 3. Black dots:f ↑+1 ; white dots f ↑+ \ f ↑+1 . The
dash lines represent the existence of a face of dimensionn−1 forming the intersection between two facets off ↑+. (b–d) Examples of trihedra, with
three connectivity functionsε (one of the blue facets is hidden).

dim( f ) = n− 2
ε (. . . , 1, 1) (. . . ,−1, 1) (. . . , 1,−1) (. . . ,−1,−1)

Cε Card(f ↑+1 ) ≥ 1 Card(f ↑+1 ) ≥ 2 Card(f ↑+1 ) ≥ 3 Card(f ↑+1 ) ≥ 4

dim( f ) = n− 3
ε (. . . , 1, 1, 1) (. . . ,−1, 1, 1) (. . . , 1,−1, 1) (. . . ,−1,−1, 1)

Cε Card(f ↑+1 ) ≥ 1 Card(f ↑+1 ) ≥ 2 Card(f ↑+1 ) ≥ 3 Card(f ↑+1 ) ≥ 4
f ↑+1 not a trihedron

ε (. . . , 1, 1,−1) (. . . ,−1, 1,−1) (. . . , 1,−1,−1) (. . . ,−1,−1,−1)
Cε Card(f ↑+1 ) ≥ 5 Card(f ↑+1 ) ≥ 6 Card(f ↑+1 ) ≥ 7 Card(f ↑+1 ) = 8

or f ↑+1 a trihedron

Table 2 Necessary and sufficient conditions to obtainµ( f ) = 1 (see Corollary 1).

(i) If Card−( f ↑+1 ) ≥ δε(n− k), thenµ( f ) = 1.

(ii) If µ( f ) = 1, thenCard+( f ↑+1 ) ≥ δε(n− k).

Proof We setm= n− dim( f ) = n− k (note that 1≤ m≤ 3).
If m = 1, thenδε(n − k) = δε(1) is equal to 1 ifε(n) = 1
and to 2 ifε(n) = −1. Since, in the casem= 1, f ↑+ contains
exactly two faces, which are opposite facets with respect to
f , the statements (i) and (ii ) are obviously true form = 1.
Now let us suppose thatm ∈ [[2, 3]] and that the statements
are true form− 1.
First case:ε(dim( f ) + 1) = −1. If Card−( f ↑+1 ) ≥ δε(m) =
2δε(m − 1), then we deduce from Lemma 8 that there ex-
ist two facesg andh, opposite with respect tof , such that
Card(g↑+1 ) ≥ δε(m− 1) and Card(h↑+1 ) ≥ δε(m− 1). Since
the dimension of the facesg andh is greater than or equal
to n − 2, we get Card(g↑+1 ) = Card−(g↑+1 ) and Card(h↑+1 ) =
Card−(h↑+1 ) so we can use the induction hypothesis to derive
thatµ(g) = µ(h) = 1. Recalling thatε(dim( f ) + 1) = −1,
we haveµ( f ) =

∨

{a,b}∈opp(f ) µ(a) ∧ µ(b) ≥ µ(g) ∧ µ(h) = 1,
and thusµ( f ) = 1. Then (i) holds. Conversely, ifµ( f ) =
1, thanks to Lemma 1 we know that there exists{g, h} ∈
opp(f ) such thatµ(g) = µ(h) = 1. Hence, by the induc-
tion hypothesis, Card+(g↑+1 ) = Card(g↑+1 ) ≥ δε(m− 1) and
Card+(h↑+1 ) = Card(h↑+1 ) ≥ δε(m − 1). Sinceg and h are
opposite with respect tof , we derive from Lemma 7 that
Card(f ↑+1 ) = Card(g↑+1 ) + Card(h↑+1 ). Hence, Card+( f ↑+1 ) ≥

Card(f ↑+1 ) ≥ 2δε(m− 1) = δε(m). Then (ii ) holds.
Second case:ε(dim( f ) + 1) = 1. If Card−( f ↑+1 ) ≥ δε(m) =
2δε(m− 1)− 1, then (from Lemma 7) in each couple of op-
posite faces with respect tof there exists a faceg such that
Card−(g↑+) = Card(g↑+1 ) ≥ δε(m− 1), that is, thanks to the
induction hypothesis, in each couple of opposite faces with
respect tof there exists a face whose value is equal to 1.
Thus,µ( f ) =

∧

{a,b}∈opp(f ) µ(a) ∨ µ(b) ≥
∧

{a,b}∈opp(f ) 1 = 1.
Then (i) holds. Conversely, ifµ( f ) = 1, thanks to Lemma 1
and the induction hypothesis, we know that in each couple
of opposite faces with respect tof there exists a faceg such
that Card+(g↑+) = Card(g↑+1 ) ≥ δε(m− 1). We deduce from
Lemma 9 that Card(f ↑+1 ) ≥ 2δε(m−1)−1= δε(m). Then (ii )
holds.

From Proposition 10 and Definition 1 (needed whenf ↑+1
is a trihedron), we derive the following corollary.

Corollary 1 Letµ : Fn → {0, 1} be anε-regular image. Let
f be a k-face ofFn (with n− 3 ≤ k ≤ n− 1). Thenµ( f ) = 1
iff the set f↑+1 satisfies the condition Cε given in Table 2.

3.5 Regular images and regular open/closed sets

We have defined the object (resp. the background) of a regu-
lar imageµ : Fn → {0, 1} as the setµ−1({1}) (resp.µ−1({0})).
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We show in this section that they are topologically regular,
i.e., they do not have thin parts nor thin holes (by “thin”, we
mean of lower dimension than the surrounding space).

Lemma 2 Let µ : Fn → {0, 1} be anε-regular image. Let
x ∈ {0, 1} Then, we have

((µ−1({x}))
↓
)
◦

⊆ µ−1({x}) ⊆ ((µ−1({x}))
◦
)
↓

Proof The proof is proposed forx = 1. The casex = 0
is obtained by duality (see Remark 1). LetE be a subset
of Fn. The two following chains of implications are easy to
establish:

f ∈ (E↓)
◦
⇒ f ↑ ⊆ E↓ ⇒ f ↑+ ⊆ E↓ ⇒ f ↑+ ⊆ E

∃g ∈ f ↑+, g ∈ E⇒ ∃g > f , g ∈ E◦ ⇒ f ∈ (E◦)↓

Now, we takeE = µ−1({1}). From Proposition 6, we have
f ↑+ ⊆ E ⇒ f ∈ E. From Proposition 5, we also havef ∈
E ⇒ ∃g ∈ f ↑+, g ∈ E. Hence, the assertion holds:E↓

◦
⊆

E ⊆ E◦↓.

Proposition 11 Let µ : Fn → {0, 1} be anε-regular image.
Let x ∈ {0, 1}. Then(µ−1({x}))◦ is a regular open set and
(µ−1({x}))↓ is a regular closed set.

Proof The proof is proposed forx = 1. The casex = 0 is
obtained by duality (see Remark 1). LetE = µ−1({1}). From
Lemma 2, we have (E↓)

◦
⊆ E ⊆ (E◦)↓. Hence, we readily

derive:
E↓
◦↓
⊆ E↓ ⊆ E◦↓

↓
= E◦↓ ⊆ E↓

◦↓

where the last inclusion comes fromE ⊆ E↓. Therefore, we
get the equalityE↓

◦↓
= E↓ which means thatE↓ is a regular

closed set. The proof of the equalityE◦↓
◦
= E◦ is similar.

Corollary 2 Let µ : Fn → {0, 1} be anε-regular image.
If ε = −1, thenµ−1({1}) (resp.µ−1({0})) is a regular open
(resp. closed) set. Ifε = 1, thenµ−1({1}) (resp.µ−1({0})) is a
regular closed (resp. open) set.

Proof The proof is proposed forx = 1. The casex = 0 is ob-
tained by duality (see Remark 1). Ifε = −1, we readily have
g > f ⇒ g↑+ ⊆ f ↑+ ⇒

∧

h∈g↑+ µ(h) ≥
∧

h∈ f ↑+ µ(h) ⇒ µ(g) ≥
µ( f ). Thus,g > f and f ∈ µ−1({1}) imply g ∈ µ−1({1}),
that is µ−1({1}) is an open set. It follows thatµ−1({1}) =
(µ−1({1}))

◦
is a regular open set. Similarly ifε = 1, g 6 f

impliesµ(g) ≥ µ( f ). Hence,µ−1({1}) is a regular closed set.

4 Paths and (digital) fundamental groups

In this section, we study how the functionsζε defined in Sec-
tion 3 behave relatively to the classical notions of path in
Z

n andFn. The main results are Theorems 3 and 4. Theo-
rem 3 states thatζε induces a bijection between the set of
the connected components of the object (resp. background)

λ−1({1}) ⊆ Zn (resp.λ−1({0}) ⊆ Zn) associated to an image
λ : Zn → {0, 1}, and the set of the connected components of
the object (resp. background)µ−1({1}) ⊆ Fn (resp.µ−1({0}) ⊆
F

n) associated to the regular imageµ : Fn → {0, 1}, de-
fined byµ = ζε(λ), the functionε being chosen with respect
to a given pair of adjacencies inZn. Theorem 4 states that
ζε induces an isomorphism between the digital fundamental
group ofλ−1({1}) (resp.λ−1({0})) and the fundamental group
of µ−1({1}) (resp.µ−1({0})).

4.1 Background notions on paths and arcs

We recall the classical definitions of path equivalence, fun-
damental group in a topological space (in particular, in a
poset), and of digital path equivalence and digital fundamen-
tal group inZn.

4.1.1 The fundamental group of topological spaces

Let X be a topological space. A pathp in X is a continuous
functionp : [0, 1]→ X. Two pathsp, q in X areequivalentif
they have the same extremities (i.e., p(0) = q(0) andp(1) =
q(1)) andp can be continuously deformed to fitq, that is if
there exists a continuous maph : [0, 1] × [0, 1] → X such
that, for all t ∈ [0, 1], h(t, 0) = p(t) andh(t, 1) = q(t), and,
for all u ∈ [0, 1], h(0, u) = p(0) = q(0) andh(1, u) = p(1) =
q(1) (the maph is called apath-homotopy). This relation on
paths is actually an equivalence relation. We write [p] for
the equivalence class ofp. If p, q are two paths inX such
that p(1) = q(0) we can define the productp · q by

(p · q)(t) =

{

p(2t) if t ∈ [0, 1
2]

q(2t − 1) if t ∈ [ 1
2 , 1]

This product is well defined on equivalence classes by [p] ·
[q] = [p · q]. Let x be a point ofX. A loopat x is a path inX
which starts and ends atx. The product of two loops atx is a
loop atx and the setπ(X, x) of equivalence classes of loops
at x is a group for this product. It is called thefundamental
groupof X (with basepoint x).

4.1.2 Finite paths in posets

In a posetX, a function f : [0, 1] → X is astep functionif
there exist finitely many intervals (I i)r

i=0 (r ≥ 0) such thatf
is constant on each intervalI i and [0, 1] =

⋃r
i=0 I i . If for all

i ∈ [[1, r]], sup(I i−1) = inf(I i) and f (I i−1) , f (I i), we write
f =

∑r
i=0 xi1I i where{xi} = f (I i). A finite path in X is a

path in X which is a step function. The sequence (I i)r
i=0 is

called theintervals sequenceof p and the sequence(xi)r
i=0

the track of p. A finite path isregular if there is no single-
ton in its intervals sequence. Two comparable paths (for the
componentwise order), finite or not, with same extremities
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are equivalent. In the sequel, we denote by6 the componen-
twise order on paths. The next four results have been proved
in [37].

Proposition 12 The track of a finite path is an arc and any
arc is the track of a regular finite path.

Proposition 13 A step function p=
∑r

i=0 xi1I i is a finite
path in X iff for all i ∈ [[0, r − 1]], xi is adjacent to xi+1

and xi 6 xi+1 ⇔ sup(I i) ∈ I i .

Theproductof two arcs (xi)r
i=0 and (yi)s

i=0 is defined by
(xi)r

i=0.(yi)s
i=0 = (x0, . . . , xr , y1, . . . , ys) provided thatxr = y0.

An arc χ = (xi)r
i=0 (r ≥ 2) is anelementary stretching (in

X) of an arcχ′ if for some j ∈ [[1, r − 1]], χ′ = (xi)r
i=0,i, j

or (x j−1 = x j+1 andχ′ = (xi)r
i=0,i, j−1,i, j). An arcχ is a de-

formationof an arcχ′ if there exists a sequence (χi)s
i=0 of

arcs inX such thatχ0 = χ, χs = χ
′ and for anyi ∈ [[1, s]],

eitherχi is an elementary stretching ofχi−1 or vice versa.
Let x be a point inX. “Being a deformation or equal” is an
equivalence relation in the set of arcs inX from x to x. The
set of equivalence classes, denoted byρ(X, x), is a group for
the arc product.

Theorem 1 Two finite paths are equivalent iff they have the
same track or the track of one of them is a deformation of
the track of the other.

Theorem 2 Let x∈ X. The fundamental groupπ(X, x) of X
with basepoint x is isomorphic to the groupρ(X, x).

4.1.3 The digital fundamental group ofZn

A discrete analogue of the concept of fundamental group
has been proposed in digital topology [4]. Letn ∈ {2, 3} and
X ⊆ Zn. The definition of the product for digital paths is
straightforward but not so is the notion of equivalence be-
tween digital paths or loops. Two paths (ai)r

i=0, (bi)s
i=0 (r, s≥

0) with same extremities aredirectly equivalent (in X)7 if
they differ only in a unit lattice cube ofZn provided that, if
n = 3 and the pair of adjacencies is (6, 26), the cube must
not contain two diametrically opposite points not inX.

Finally, two pathsp0, pt (t ≥ 0) with same extremities
areequivalent (in X)if there is a sequence (pi)t

i=0 of paths
such that, for alli ∈ [[1, t]], pi is directly equivalent topi−1.

7 In [11], we find another (equivalent) form of the previous defi-
nition. Two pathsp, q aredirectly equivalentif there exist four paths
p0, p1, p′1, p2 such thatp = p0.p1.p2, q = p0.p′1.p2, p1 and p′1 have
the same extremities and are both included in a 2× 2 square ifn = 2
or n = 3 and the pair of adjacencies is (6, 26), or in a 2× 2 × 2 cube
otherwise.

4.2 Mapping paths inZn onto arcs inFn

Let χ andχ′ be two arcs inFn. We write8 χ 6 χ′ if there
exist two pathsp 6 p′ in Fn whose tracks areχ andχ′ (all
paths inFn considered in the sequel are regular finite paths).

Definition 2 Let ω be an adjacency relation onZn andγ =
(pi)r

i=0 (r ≥ 0) be anω-path inZn. We define the arcζ(γ)
in Fn by ζ(γ) = (q j)2r

j=0 with q j = ṗ j
2

if j is even andq j =

q j−1 ∩ q j+1 if j is odd, for all j ∈ [[0, 2r]].

It is obvious that the sequence of facesζ(γ) defined above
is actually an arc inFn which is itself the track of a regular
finite path inFn (Proposition 12).

The following proposition states thatζ associates to a
path in the object (resp. in the background), of a digital
imageλ, an arc in the object (resp. in the background) of
the complex image9 ζε(λ) under the condition that the con-
nectivity functionε has been well chosen. The main con-
sequence of this proposition is that the images of the con-
nected components of the digital object (resp. background)
are included in the connected components of the image of
the object (resp. background).

Proposition 14 Let (α, β) be a pair of adjacencies onZn.
Let ε be the connectivity function associated to(α, β) (see
Table 1). Let x∈ {0, 1}. Letω = α if x = 1 andω = β if
x = 0. Letλ : Zn → {0, 1} be an image inZn andµ = ζε(λ)
be the corresponding image inFn. Let γ be anω-path in
λ−1({x}). Then,ζ(γ) is an arc inµ−1({x}).

Proof The proof is proposed for (α, β) = (3n − 1, 2n) and
(n = 3 and (α, β) = (18, 6)). The cases (α, β) = (2n, 3n − 1)
and (n = 3 and (α, β) = (6, 18)) are obtained by duality (see
Remark 1).
Case (α, β) = (3n − 1, 2n). Here,ε(k) = 1 for all k ∈ [[1, n]].
If γ = (pi)r

i=0 (r ≥ 0) is anα-path inλ−1({1}), from Propo-
sition 8, we derive directly thatµ( ˙pi−1 ∩ ṗi) = 1 for all
i ∈ [[1, r]], that isζ(γ) is an arc inµ−1({1}). If γ is aβ-path in
λ−1({0}), then dim( ˙pi−1∩ ṗi) = n− 1 and thusµ( ˙pi−1∩ ṗi) =
µ( ˙pi−1) ∨ µ(ṗi) = 0∨ 0 = 0 for all i ∈ [[1, r]]. So, ζ(γ) is an
arc inµ−1({0}).
Casen = 3 and (α, β) = (18, 6). The connectivity function
ε is such thatε(3) = 1 andε(2) = −1. If γ is an 18-path in
λ−1({1}), then all the faces ofγ have a dimension greater or
equal to 1, thereby we can use the direct part of Proposition 8
to conclude thatζ(γ) is an arc inµ−1({1}). If γ is a 6-path in
λ−1({0}), we use the proof of the case (α, β) = (3n − 1, 2n).

The following proposition is straightforward.

8 The notationχ 6 χ′ does not mean that6 is an order (it is actually
only a pre-order on regular finite paths). For instance, ifa 6 b 6 c
are three distinct faces ofFn, it can readily be proved that (a, c) 6
(a, b, c) 6 (a, c).

9 In this article, the terminology “complex image” denotes a subset
of Fn.
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Proposition 15 Letω be an adjacency relation onZn. The
corresponding functionζ is a homomorphism for the paths
product and the arc product: for allω-pathsγ, γ′ ∈ Zn,
ζ(γ.γ′) = ζ(γ).ζ(γ′).

The injectivity of ζ is obvious since two distinctn-xels
a, b ∈ Zn are associated to distinct facets ˙a, ḃ ∈ Fn. Propo-
sition 16 establishes the surjectivity up to deformations:any
arcχ from ȧ to ḃ in an object (resp. in the background) of the
complex image is the deformation of an arcζ(γ) for some
pathγ from a to b of the object (resp. background) of its
associated digital image (if the complex image is associated
to such a digital image). Lemma 3 is the basic block for the
proof of Proposition 16.

Lemma 3 Let(α, β) be a pair of adjacencies onZn. Letε be
the connectivity function associated to(α, β). Let x∈ {0, 1}.
Letω = α if x = 1 andω = β if x = 0. Letλ : Zn→ {0, 1} be
an image inZn andµ = ζε(λ) be the corresponding image in
F

n. Let p be a path inµ−1({x}) whose track is( f , g, h) with
f ⊃ g ⊂ h. Let a, b ∈ Zn be two xels inλ−1({x}) such that
ȧ ⊃ f and h⊂ ḃ. Then, there exists anω-pathγ in λ−1({x})
from a to b and a path q, q> p, whose track isζ(γ).

Fig. 12 In grey and red: an arc inF3 in a (−1, 1,−1)-regular image. In
this arc, two consecutive grey facets share a 0-face (in red)but their
intersection does not belong to the object.

Proof The proof is proposed forx = 1. The casex = 0 is
obtained by duality (see Remark 1). Ifa = b, we setγ = (a)
andq = ȧ1[0,1] and we are done. Let us now suppose that
a , b. We setg′ = ȧ∩ ḃ. Let p = f 1I + g1J + h1K (where
I , J,K are intervals included in [0, 1]) be a path. Since ˙a ⊃
f ⊃ g ⊂ h ⊂ ḃ, we haveg ⊂ g′. If ε = −1, sinceg ∈
µ−1({1}), from Proposition 1 we derive that all facets ing↑

have value 1 and, therefore, all facets ing′↑ have value 1.
Thus,g′ is in µ−1({1}). If ε = 1, still from Proposition 1, we
derive thatg′ ∈ µ−1({1}) since there exists at least one facet
in µ−1({1}) ∩ g′↑. If n = 3 andε(3) = 1, we derive from
Proposition 8 that if dim(g′) ≥ 1, theng′ ∈ µ−1({1}) and if
dim(g′) = 0, theng′ = g so,g′ ∈ µ−1({1}). In all the previous
cases, we setγ0 = (a, b) andq0 = ȧ1I +g′1J+ ḃ1K . Observe,

before examining the last case, that we cannot claim that
γ0 is anω-path, but just a (3n − 1)-path, since we do not
know if a and b areω-adjacent. Now, let us consider the
casen = 3 andε = (−1, 1,−1) which corresponds to (α, β) =
(6, 18). In this case, if dim(g′) = 1 and dim(g) = 0, it may
happen thatg′ < µ−1({1}) (see Figure 12). Let us suppose
thatg′ < µ−1({1}) (and thus, dim(g′) = 1 and dim(g) = 0).
From Proposition 10 and Table 2, we know that there are at
least 6 facets ing↑+1 and at most 2 facets ing′↑+1 (and actually,
there are two facets ing′↑+1 , ȧ andḃ). It follows that the facet
ċ, whose intersection with ˙a is g, is inµ−1({1}) (see Figure 12
to look at the only possible configuration), and ˙c shares a
2-face with ḃ. We call this 2-faceh′. It is plain thath′ ∈
µ−1({1}). So, we setγ0 = (a, c, b) andq0 = ȧ1I +g1J1+ ċ1J2+

h′1J3 + ḃ1K whereJ1 ∪ J2 ∪ J3 = J, max(J1) = inf(J2), and
sup(J2) = min(J3). As previously observed, it may happen
that, for y = g′ or y = g, dim(y) ≤ n − k wherek = 2
if α = 2n, k = 3 if α = 18. Let us writeḋ for the facets
following y in ζ(γ0) (d = b or d = c). From Proposition 9,
we derive that there exists an arcχ = ζ(γ1) from ȧ to ḋ
in y↑ whereγ1 is anω-path froma to d. By introducing, if
necessary, this pathγ1 betweena andb if γ0 = (a, b), or
betweena and c if γ0 = (a, c, b), we build in λ−1({1}) an
ω-pathγ from a to b. Since thisχ is in y↑, one can readily
build in µ−1({1}) a pathq > q0 whose track isζ(γ). Hence,
the result holds.

Proposition 16 Let (α, β) be a pair of adjacencies onZn.
Let ε be the connectivity function associated to(α, β). Let
x ∈ {0, 1}. Let ω = α if x = 1 andω = β if x = 0. Let
λ : Zn → {0, 1} be an image inZn and µ = ζε(λ) be the
corresponding image inFn. Let a, b ∈ Zn. Let χ be an arc
from the faceṫa to the faceṫb in µ−1({x}). Then, there exists
anω-pathγ from a to b inλ−1({x}) such thatζ(γ) is a defor-
mation inµ−1({x}) of χ in µ−1({x}). Moreover, if p is a path
in µ−1({x}) whose track isχ, there exists a path q inµ−1({x}),
q > p, whose track isζ(γ).

Proof The proof is proposed forx = 1. The casex = 0 is
obtained by duality (see Remark 1). Letχ = (qi)r

i=0 (r ≥ 0)
be an arc from the facet ˙a to the facetḃ in µ−1({1}) and
p =
∑r

i=0 qi1I i be a path whose track isχ (Proposition 12).
We build the proof by induction onr, the size ofχ. If r = 0,
the statement is obvious. Let us now suppose that the prop-
erty is true whenever the size ofχ is strictly less than an
integerr ≥ 2 (r = 1 is impossible). Letj ∈ [[1, r − 1]] be
the lowest integer such thatq j is a local minimum ofχ, i.e.,
such thatq j−1 ⊃ q j ⊂ q j+1 (remember thatq0 = ȧ andqr = ḃ
are facets) and letk ∈ [[ j + 1, r]] be the lowest integer such
thatqk is a local maximum ofχ, i.e. qk−1 ⊂ qk ⊃ qk+1. Let
t be the centre of the intervalIk andϕ : [0, 1] → [0, 1]
be the bijective function which putst on 1

2 and is linear
between 0 andt and betweent and 1. We havep ◦ ϕ−1 =

(
∑k

i=0 qi1(2ϕ)(I ′i )).(
∑r

i=k qi1(2ϕ−1)(I ′′i )) whereI ′i = I i if 0 ≤ i < k,
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I ′k = Ik ∩ [0, t], I ′′k = Ik ∩ [t, 1] andI ′′i = I i if k < i ≤ r. From
Proposition 5, we derive that there exists a xelc ∈ Zn, such
thatc ∈ λ−1({1}) andqk ⊆ ċ (if qk is a facet ofFn, ċ = qk). As
ċ1(2ϕ−1)(I ′′k ) +

∑r
i=k+1 qi1(2ϕ−1)(I ′′i ) is a path from ˙c to ḃ whose

length is strictly lower thanr, by the induction hypothesis,
there exists anω-pathγ(2) from c to b in λ−1({1}) and a path
q(2) from ċ to ḃ such thatζ(γ(2)) is the track ofq(2) and
q(2)
> ċ1(2ϕ−1)(I ′′k ) +

∑r
i=k+1 qi1(2ϕ−1)(I ′′i ) >

∑r
i=k qi1(2ϕ−1)(I ′′i ).

On the other side, from Lemma 3, we can define inλ−1({1})
an ω-path γ(1) from a to c and a path inµ−1({1}), q(1)

>

ȧ1(2ϕ)(I ) + q j1(2ϕ)(I ′j ) + ċ1(2ϕ)(J) >
∑k

i=0 qi1(2ϕ)(I ′i ), whereI =
⋃ j−1

i=0 I ′i andJ =
⋃k

i= j+1 I ′i , whose track isζ(γ(1)). Eventually,
we setγ = γ(1).γ(2) andq = q(1).q(2). As ζ is a morphism
(Proposition 15),ζ(γ) is the track ofq and from Lemma 10,
we haveq > p ◦ ϕ−1, therebyq ◦ ϕ > p. Of course,q ◦ ϕ
has the same track asq, so the result holds: sinceq ◦ ϕ > p,
the trackζ(γ) of q ◦ ϕ is a deformation of the trackχ of p
(Theorem 1).

Theorem 3 Let (α, β) be a pair of adjacencies onZn. Let
ε be the connectivity function associated to(α, β). Let x ∈
{0, 1}. Letλ : Zn → {0, 1} be an image inZn andµ = ζε(λ)
be the corresponding image inFn. Then the function which
associates to the xel a∈ Zn the faceṫa ∈ Fn induces a one-
to-one correspondence between the connected components
of λ−1({x}) and the connected components ofµ−1({x})

Proof The proof is proposed forx = 1. The casex = 0 is
obtained by duality (see Remark 1). Let≡λ (resp.≡µ), be
the equivalence relation defined onλ−1({1}) (resp.µ−1({1})),
by a ≡λ b (resp.a ≡µ b), iff a andb belong to the same
connected component ofλ−1({1}) (resp.µ−1({1})), i.e., there
exists a path froma to b in λ−1({1}) (resp.µ−1({1})). From
Proposition 14, we can define the quotient mapζ̇ from the
set of connected components ofλ−1({1}) to the set of con-
nected components ofµ−1({1}). Let C be a connected com-
ponent ofµ−1({1}) and f be a face inC. From Proposition 5,
we derive thatf is at least included in one facet ˙a ∈ µ−1({1})
so ȧ = ζ(a) ∈ C (for ( f , a) is an arc). Hence,C = ζ̇(Ca)
whereCa is the connected component ofλ−1({1}) including
a and, as we have not made any hypothesis onC, ζ̇ is surjec-
tive. Leta, b ∈ Zn be to xels such that ˙a ≡µ ḃ. Proposition 16
indicates that there exists anω-path froma to b in λ−1({1})
so a ≡λ b. This establishes the injectivity oḟζ, so ζ̇ is a
bijection.

4.3 Fundamental groups

The aim of this section is to compare the digital fundamen-
tal group defined by Kong [4] for subsets ofZn, n ∈ {2, 3},
with the fundamental group of subspaces ofFn. Thanks to
Theorem 2, we can use arcs as well as paths inFn in order
to perform this comparison.

Proposition 17 Let (α, β) be a pair of adjacencies onZn.
Let ε be the connectivity function associated to(α, β). Let
x ∈ {0, 1}. Let ω = α if x = 1 andω = β if x = 0. Let
λ : Zn → {0, 1} be an image inZn and µ = ζε(λ) be the
corresponding image inFn. Let γ, γ′ be two equivalentω-
paths inλ−1({x}). Then,ζ(γ′) is a deformation ofζ(γ) in
µ−1({x}).

Proof The proof is proposed forx = 1. The casex = 0
is obtained by duality (see Remark 1). Sinceζ is a homo-
morphism (Proposition 15) and “being a deformation” is an
equivalence relation, we derive from the definition of digi-
tal homotopy equivalence (see section 4.1.3) that it suffices
to establish the lemma for two digital pathsγ, γ′ having the
sames extremities and included in a 2× 2 square or in a
2× 2× 2 cube. That is, the loopζ(γ.γ′−1) can be deformed
(in µ−1({x})) in a constant arc. So, letγ be a closed path in
λ−1({1}) from a to a (a ∈ Zn) included in a unit square (if
n = 2 or n = 3 andβ = 26), or in a unit cube. If the length
of γ is less than or equal to 2 then the property is obvious.
Now, we assume that the length ofγ is greater than or equal
to 3. We denote bym the face inFn laying at the centre of
the unit square or cubeC includingζ(γ) and we observe that
the arcζ(γ) is included inm↑. Since at least three facets ofC
belongs toµ−1({1}), we derive from Table 2 that, ifα = 3n−1
or (n = 3 andα = 18), thenm ∈ µ−1({1}) and we can eas-
ily build10 a sequence of elementary stretchings from (a) to
ζ(γ)11. Hence, from now, we suppose thatα = 2n. To end the
proof, we check all the loopsγ which can be drawn in a unit
square or a unit cube inZn (up to rotations and symmetries).
We can suppose without loss of generality thatζ(γ) is a sim-
ply closed arc in the sense that each face inζ(γ) is passed
through only once. The reader can check (in Figure 13) that
in each case the arcζ(γ) can be deformed (inµ−1({1})) in a
constant arc by introducingm in ζ(γ).

Lemma 4 Let (α, β) be a pair of adjacencies onZn. Letε be
the connectivity function associated to(α, β). Let x∈ {0, 1}.
Letω = α if x = 1 andω = β if x = 0. Letλ : Zn→ {0, 1} be
an image inZn andµ = ζε(λ) be the corresponding image in
F

n. Let a, b ∈ Zn. Letχ, χ′ be two arcs inµ−1({x}) fromȧ toḃ
(a, b ∈ Zn). If χ′ is an elementary stretching ofχ, then there
exists inλ−1({x}) anω-pathγ from a to b such thatζ(γ) > χ
andζ(γ) > χ′.

Proof There are two –very similar– cases in the definition
of an elementary stretching, so we only provide the proof
for one of them. Letχ = ( fi)r

i=0 (r ≥ 1). Suppose thatχ′ =

10 We could also invoke the existence of a smallest element to derive
the contractibility ofC ∩ λ−1({1}) (see,e.g., Corollary 8 in [37]) and
thus its simple connectivity.

11 If ζ(γ) = ( fi)r
i=0 (r ≥ 2 and f0 = fr = a) we use the sequence of

elementary stretchings (f0) → ( f0,m, fr) → ( f0,m, fr−1, fr) → . . . →
( f0,m, f1, . . . , fr)→ ( f0, f1, . . . , fr).
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e
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Fig. 13 We use the dual order inFn to represent the unit square/cube:
the facets are depicted by points, the (n − 1)-faces by edges and
so on (the facem is then seen as the square{a, b, c, d} or the cube
{a, b, c, d, e, f , g, h}). The arcζ(γ) is drawn like a solid black curve.
Since ζε(λ) is a regular image, whatever the connectivity function
ε, when two 4/6-adjacent vertices (which are actually facets) of the
depicted polyhedron are onζ(γ), the edge between them belongs to
λ−1({1}) and when the four edges of a square are onζ(γ) then the
square between them belongs toλ−1({1}). (a) All the vertices, and thus
m, are inλ−1({1}). (b, c, d) These three figures are only concerned by
(α, β) = (6, 18), i.e., ε = (−1, 1,−1). In each figure, the length ofγ is
greater than or equal to 6, so, from Table 2m ∈ λ−1({1}).

( fi)
i0
i=0.( fi0 , f , fi0+1).( fi)r

i=i0+1 with i0 ∈ [[0, r − 1]]. We can as-
sume without loss of generality thatfi0 ⊂ fi0+1. If f ⊂ fi0+1,
from Proposition 16, we can build anω-pathγ in λ−1({x})
from a to b and two pathsp =

∑r
i=0 fi1I i andq in µ−1({x})

whose tracks areχ andζ(γ) and such thatq > p. We set
y = max(I i0) = inf(I i0+1) (since fi0 ⊂ fi0+1, the intervalI i0 is
closed on the right (Proposition 13)). Letδ > 0 be a real such
thaty−2δ ∈ I i0 andy+2δ ∈ I i0+1 (δ exists sincep is regular).
We setp′ =

∑i0−1
i=0 fi1I i + fi01I + f 1I ′ + fi0+11I ′′ +

∑r
i=i0+2 fi1I i

whereI ′ = [y − δ, y + δ], if f ⊂ fi0 and I ′ = ]y, y + δ] if
fi0 ⊂ f ⊂ fi0+1, I = I i0 \ I ′ andI ′′ = I i0+1 \ I ′. Proposition 13
ensures thatp′ is actually a path and it is plain that the track
of p′ is χ′ andp′ 6 p. We have therebyp′ 6 p 6 q. Hence,
ζ(γ) > χ andζ(γ) > χ′. If fi0+1 ⊂ f , still using Proposi-
tion 16, we start to build anω-pathγ′ in λ−1({x}) from a to
b and two pathsp′ =

∑i0
i=0 fi1I i + f 1I +

∑r
i=i0+1 fi1I i , q′ in

µ−1({x}) whose tracks areχ′ andζ(γ′) and such thatq′ > p′.
We setp =

∑i0
i=0 fi1I i + fi0+11I ′ +

∑r
i=i0+2 fi1I i where I ′ =

I ∪ I i0+1. Thenp is a path whose track isχ andp 6 p′ 6 q′.
So,ζ(γ′) > χ andζ(γ′) > χ′.

Lemma 5 Let(α, β) be a pair of adjacencies onZn. Letε be
the connectivity function associated to(α, β). Let x∈ {0, 1}.
Letω = α if x = 1 andω = β if x = 0. Letλ : Zn→ {0, 1} be
an image inZn andµ = ζε(λ) be the corresponding image
in Fn. Let a, b ∈ Zn. Letχ be an arc from the faceṫa to the
facetḃ in µ−1({x}) andγ, γ′ be twoω-paths from a to b such
thatζ(γ) > χ andζ(γ′) > χ. Thenγ andγ′ are equivalent in
λ−1({x}).

Proof Let p, q, p′, q′ be four paths inµ−1({x}) whose tracks
are respectivelyχ, χ, ζ(γ), ζ(γ′) and such thatp 6 p′ and
q 6 q′. If p , q, since these two regular finite paths have
the same tracks, the intervals of their intervals sequences
are homeomorphic (Proposition 13). Hence, there exists a
homeomorphismϕ, piecewise linear, such thatq = p◦ϕ. We
setp′′ = q′ ◦ϕ−1. As q′ > q, we havep′′ > p. Obviously, the

track of p′′ is ζ(γ′). We setp =
∑r

i=0 fi1I i , p′ =
∑s

i=0 gi1Ji

and p′′ =
∑t

i=0 hi1Ki (r, s, t ≥ 0). We prove the lemma by
induction onr, the size ofχ. Forr = 0, the result is obvious.
Let us now suppose that the property is true whenever the
size ofχ is strictly lower thanr (r ≥ 2 for r cannot be 1).
Let j ∈ [[1, r]] be the lowest integer such thatf j is a local
minimum ofχ, i.e., such thatf j−1 ⊃ f j ⊂ f j+1 (remember
that f0 = ȧ and fr are facets) and letj′ ∈ [[ j + 1, r]] be the
lowest integer such thatf j′ is a local maximum ofχ. As f j′

is a local maximum,I j′ is an open interval of [0, 1] (Propo-
sition 13). If j′ = r, that is f j′ = ḃ, thenζ(γ) andζ(γ′) are
included inf ↑j soγ andγ′ are included in a same 2×2 square
of Zn (if dim( f j) ≥ n− 2) or in the same 2× 2× 2 cube of
Z

n (if dim( f j) = n− 3). Moreover, ifn = 3, (α, β) = (6, 26)
(hence,ε = −1) and dim(f j) = 0, from Proposition 1, we
derive that there is no facet with value 1− x in f ↑j . So, using
one or the other version of the definition of digital equiva-
lence, we can conclude that the arcsγ andγ′ are equivalent.
Otherwise (j′ < r), we setI j′ = ]y, z[ with 0 < y < z < 1.
Let k ∈ [[0, s]] and k′ ∈ [[0, t]] be the even integers defined
by z ∈ Jk ∪ Jk+1 andz ∈ Kk′ ∪ Kk′+1. Sincep 6 p′, p 6 p′′

andgk, hk′ ∈ F
n
n (in particularJk and Kk′ are open on the

left), this definition ofk andk′ ensures thatgk ⊇ f j′ ⊆ hk′

and thereby thatgi ∈ f ↑j for all i ≤ k and hi ∈ f ↑j for
all i ≤ k′. If f j′ ∈ F

n
n, then necessarilyqk = hk′ = f j′

and we setχ′0 = ( f j′ ). Otherwise (dim(f j′ ) < n), we set
χ′0 = (gk, f j′ , hk′). In both cases,χ′0 is an arc inµ−1({x}) thus,
from Proposition 16, we derive that there exists anω-path
γ′0 in λ−1({x}) such thatζ(γ′0) > χ′0. We setζ(γ′0) = (ei)u

i=0
(u ≥ 0) and we havee0 = gk andeu = hk′ . Moreoverχ′0
is an arc in f ↑j′ which is included inf ↑j so ζ(γ′0) is also an

arc in f ↑j . Let γ0, γ1 andγ′1 be theω-paths inλ−1({x}) such

thatζ(γ0) = (gi)k
i=0, ζ(γ1) = (gi)s

i=k andζ(γ′1) = (hi)t
i=k′ . We

setγ′′ = γ0.γ
′
0.γ
′
1. Sinceζ(γ′′) = ζ(γ0).ζ(γ′0).(hk′ , . . . , ht),

it differs fromζ(γ′) = (h0, . . . , hk′).(hk′ , . . . , ht) only in f ↑j .
So, whatever is the adjacency relation, we can conclude as
above that the arcsγ′′ andγ′ are equivalent.
In order to use the induction hypothesis, let us now define
three new paths. (Of course, we still use the rule defined by
Proposition 13 in order to get paths, this will not be indicated
anymore.) Previously to the definition of the three paths, we
need to choose a realm ∈ ]y, z[ ∩ (Jk∪ Jk+1)∩ (Kk′ ∪Kk′+1).
Such a real exists sinceJk ∪ Jk+1 andKk′ ∪ Kk′+1 are open
on the left and containz. The first path is obtained fromp
by removing all faces beforef j′ and replacing them by the
facetgk: p1 = gk1[0,y[ + f ′j 1[y,z[ + p|[z,1] wherep|I means the
restriction of the functionp to the intervalI . Since we re-
move at least two faces (f0 and f j) and add just one, the
length of the track ofp1 is strictly lower thanr. We must
beware that all new paths are regular. This implies to check
the first interval inp[y,1]. This interval is [y, z[ (remember
that ]y, z[ = I j′) and is not a singleton. The second path is
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obtained in a similar way fromp′ by removing all faces be-
fore gk, so its track isζ(γ1): p′1 = gk1[0,m[ + p′[m,1]. The first
interval in p′[m,1] is either associated togk (and then has to be
merged with [0,m[), or is associated togk+1 but in this case,
by the definition ofk, z is also in this interval so the first
interval can never be a singleton. The third pathp′′1 is ob-
tained fromp′′ by removing all faces beforehk′ and putting
in front of hk′ the faces of the arcχ′0 with, for the choice
of the intervals, the constraint thatp′′1 must be equal top′1
and p1 on [0, y[: p′′1 = gk1[0,y[ +

∑u
i=1 ei1K′i

+ p′′[m,1] where
the intervalsK′i are supposed to be well-defined. The track
of p′′1 is ζ(γ′0).ζ(γ′1) = ζ(γ

′
0.γ
′
1). The first interval inp′′[m,1] is

either associated tohk′ = eu (and then is to be merged with
K′u), or is associated tohk′+1 but in this case, as above,z is
also in this interval so the first interval can never be a sin-
gleton. Hence, we have three regular pathsp1, p′1, p

′′
1 equal

to p, p′, p′′ on [m, 1] so we havep′1 > p1 and p′′1 > p1 on
[m, 1]. The three paths are equal (togk) on [0, y[ and, on
[y,m[, p1 = f j′ which is a face included inp′1 = gk and in all
the faces ofχ′0, the track ofp′′1 . Thus,p′1 > p1 andp′′1 > p1

on [0, 1]. We can now apply the induction hypothesis: theω-
pathsγ1 andγ′0.γ

′
1 are equivalent. Furthermore, theω-paths

γ = γ0.γ1 andγ′′ = γ0.γ
′
0.γ
′
1 are equivalent. Since, we have

proved before thatγ′′ andγ′ are equivalent, we can eventu-
ally conclude thatγ andγ′ are equivalent.

Proposition 18 Let (α, β) be a pair of adjacencies onZn.
Let x ∈ {0, 1}. Letω = α if x = 1 andω = β if x = 0. Let
λ : Zn → {0, 1} be an image inZn. Let a, b ∈ Zn. Let γ, γ′

be twoω-paths from a to b inλ−1({x}). If the arcζ(γ′) is a
deformation inµ−1({x}) of the arcζ(γ), thenγ and γ′ are
equivalent inλ−1({x}).

Proof Let γ, γ′ be twoω-paths froma to b in λ−1({x}) such
thatζ(γ′) is a deformation ofζ(γ). By definition, there exist
an integerr ≥ 0 and a sequenceS of arcs inµ−1({x}) (with
µ = ζε(λ) whereε is the connectivity function associated to
(α, β)), S = (χ0 = ζ(γ), . . . , χi , . . . , χr = ζ(γ′)), such that, for
eachi ∈ [[1, r]], eitherχi is an elementary stretching ofχi−1

orχi−1 is an elementary stretching ofχi . From Lemma 4, we
derive that there exists a sequenceSp of ω-paths inλ−1({x}),
Sp = (γ1, . . . , γi , . . . , γr ) such that for alli ∈ [[1, r]], ζ(γi) >
χi−1 andζ(γi) > χi . Then, from Lemma 5, we deduce the
sequence of equivalenceγ ∼ γ1 ∼ . . . ∼ γr ∼ γ

′. So he have
γ ∼ γ′.

Let a ∈ λ−1({x}). LetπD(λ−1({x}), a) be the digital funda-
mental group ofλ−1({x}) with basepointa andρ(µ−1({x}), ȧ)
be the group of arcs inµ−1(x) from ȧ to ȧ, up to deforma-
tions.

From Propositions 14 and 17, we know that the function
ζ̇ defined by
∣

∣

∣

∣

∣

∣

ζ̇ : πD(λ−1(x), a)→ ρ(µ−1(x), ȧ)
[γ] 7→ [ζ(γ)]

where [y] denotes the equivalence class ofy (for the equiva-
lence relation on digital paths ofZn on the left side and for
the deformation on arcs ofFn on the right side), is well-
defined. Proposition 15 then states thatζ̇ is a morphism.
Propositions 16 and 18 give the surjectivity and the injec-
tivity of ζ̇, respectively. We conclude that the two groups
πD(λ−1({x}), a) andρ(µ−1({x}), ȧ) are isomorphic and, since
ρ(µ−1({x}), ȧ) andπ(µ−1({x}), ȧ) are isomorphic (Theorem 2),
the following theorem holds.

Theorem 4 Let (α, β) be a pair of adjacencies onZn. Let
ε be the connectivity function associated to(α, β). Let λ :
Z

n → {0, 1} be an image inZn and µ = ζε(λ) be the cor-
responding image inFn. For any a ∈ λ−1({x}), the digital
fundamental group ofλ−1({x}) with basepoint a is isomor-
phic to the fundamental group of the poset (µ−1({x}),⊆) with
basepoinṫa.

5 Conclusion

In this article, amodus operandihas been proposed to em-
bed digital binary images, equipped with a pair of standard
adjacencies, in the space of cubical complexes. In particular,
it has been proved that it preserves the connected compo-
nents of both object and background and preserves also the
(digital) fundamental groups.

These results, associated to those proposed in [37], jus-
tify the soundness of all contributions previously devoted
to design homotopy type-preserving binary image process-
ing methods, especially concerning the correctness of their
behaviour with respect to the “continuous” topology of the
handled digital objects. They also permit to establish links
between image processing/analysis methods developed ei-
ther in classical digital spaces (Zn) or cubical complexes
(Fn), and to potentially unify some of them.

Processing binary digital images without topology al-
teration has been an active research field for several years.
Nowadays, an increasing interest for the extension of this
field to the case of colour/label images (i.e., not only binary
images, but more generallyp-ary ones) can be observed.
Some applicative methods devoted top-ary images have al-
ready been proposed [38–40]. However, the putative preser-
vation of topological properties by such methods generally
relies onad hochypotheses or incompletely proved theoret-
ical bases.

From a theoretical point of view, the issue of topology
and topology preservation in digitalp-ary images has not
been intensively considered yet [41–46], and the proposed
contributions still do not provide solutions in the most gen-
eral cases inZn andFn. In this context, further works will
now consist in extending the approach proposed in this arti-
cle by defining a mapping enabling to embedp-ary images
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(a) (b) (c)

(d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

Fig. 14 Configurations (up to rotations, symmetries and duality) used in the proof of Lemma 8 (see text). (a–c) 2-D configurations; the full
line indicate the 1-dimensional facet which satisfies the property. (d–m) 3-D configurations; the full lines indicate the 2-dimensional facet which
satisfies the property.

from Zn to Fn in a sound and tractable fashion, in particu-
lar to allow the development of homotopy-type-preserving
image processing procedures.

A Auxiliary properties on complexes and posets

Lemma 6 Let f, g be two facets ofFn. If f ∩g , ∅ then, for all h∈ Fn,
we have f∩ g ≺ h⇒ (h ⊆ f or h ⊆ g).

Proof Set f = Πn
i=1 fi , g = Πn

i=1gi and f ∩ g = Πn
i=1ki with fi , gi ∈ F

1
1

andki ∈ F
1
1 ∪ F

1
0 for all i ∈ [[1, n]]. Let h = Πn

i=1hi , with hi ∈ F
1
1 ∪ F

1
0,

be a face which coversf ∩ g. Then, there existsi0 ∈ [[1, n]] such that
hi0 ∈ F

1
1, ki0 ∈ F

1
0, fi0∩gi0 = ki0 ⊂ hi0 and, for all i , i0, ki = hi = fi∩gi .

But, readily, there exist only two faces inF1
1 which include a given face

of F1
0. Thus,hi0 = fi0 or hi0 = gi0 and, straightforwardly,h ⊆ f or h ⊆ g.

Lemma 7 Let0 ≤ m< n. Let f ∈ Fn
m. Then:

(i) Card(f ↑+) = 2n−m.
(ii) For {g1, g2} ∈ opp(f ). f ↑+ = g↑+1 ⊔g↑+2 (where⊔ denotes the disjoint

union).

Proof (i) We can assume, without loss of generality, thatf =
∏n

i=1 I i

where I i ∈ F
1
1 if i ≤ m and I i ∈ F

1
0 otherwise. Obviously, for eachI i

(m+ 1 ≤ i ≤ n) there are two sets inF1
1 including I i and therefore,

there are 2n−m products
∏m

i=1 I i ×
∏n

i=m+1 Ji whereI i ⊂ Ji ∈ F
1
1 for each

i ∈ [[m+ 1, n]].
(ii ) We apply the first part of the lemma to the three facesf , g1, g2:
there are 2n−m facets in f ↑ and 2n−m−1 facets ing↑1 as ing↑2. Since, by

definition of opp,g↑1 ∩ g↑2 = ∅, we conclude thatf ↑+ = g↑+1 ⊔ g↑+2 .

The following two lemmas use the definitions of Card− and Card+

given in Section 3.4.

Lemma 8 Let f be a k-face inFn (with n − 3 ≤ k ≤ n − 1). Let
r ∈ [[1, 2n−k−1]] . Let E be a set of facets in f↑ such thatCard−(E) ≥ 2r.
Then, there exist two faces g, h ∈ Fn, opposite with respect to f such
thatCard(E ∩ g↑) ≥ r and Card(E ∩ h↑) ≥ r.

Proof We setm = n − dim( f ) = n − k. Thanks to the duality on the
ordering inFn, the statement of this lemma is a consequence of the
following one that we will prove: “iff is a facet ofFm andE is a set of
2r 0-faces inf ↓, not in the configuration depicted in Figure 14(k), then
there exists a facetg of f ↓⋆ which contains exactlyr elements ofE”.
Since the result is obvious ifm= 1 and we have restricted our lemma to
m≤ 3, we can check all configurations, up to rotations, symmetries and
duality (e.g., choosing six points among eight amounts to choose two of
them). These configurations, in 2-D and 3-D, are depicted in Figure 14

and the only one, numbered (k), in which no facet of the boundary
of f ↓ contains half of the points corresponds to the configurationof a
trihedron.

Lemma 9 Let f be a k-face inFn (with n − 3 ≤ k ≤ n − 1). Let
r ∈ [[1, 2n−k−1]] . Let E be a set of facets in f↑. If there exist n− k
faces which cover f and whose stars contain at least r facets of E, then
Card+(E) ≥ 2r − 1.

Proof As in the proof of Lemma 8, thanks to duality, we can replace
the statement of this lemma by the following one that we will prove:
“if c is a facet of inFn (1 ≤ n ≤ 3), E a set of 0-faces inc↓ such that
there existn facets ofc↓⋆ which contain, each, at leastr faces ofE (1 ≤
r ≤ 2n−1), then Card(E) ≥ 2r − 1 or r = 3 andE is in the configuration
depicted in Figure 15(b) (in which case, Card(E) ≥ 2r − 2)”. If r = 1,
the property is obvious, as is the case where two of then facets of
c↓⋆ which containr faces ofE are parallel (since two parallel faces
do not share 0-faces, in this case Card(E) ≥ 2r). Hence, in the sequel
we assume that all thesen facets share a same 0-face. Moreover, it
suffices to study minimal configurations, that is, setsE which satisfy
the hypothesis while none of their proper subsets does. Ifn = 2 and
r = 2, there is only one such minimal configuration (up to rotations
and symmetries), depicted in Figure 15(a). Whenn = 3, let b, f , l be
the three facets ofc↓⋆ that containr faces ofE, t be the 0-face contained
in these three facets, andx, y, zbe the 0-faces contained in exactly two
of these three facets (in Figure 15(b–e),b, f , l are located at the bottom,
front and left positions, respectively). Ifr = 2 the first two 0-faces of
E contained inb cannot be shared withf andl (but can be shared with
either f or l). Thus, there must exist at least a third face ofE in f or
l, implying that Card(E) ≥ 3. If r = 3, the only minimal configuration
with {t, x, y, z} ⊆ E is depicted in Figure 15(b) and the only minimal
configuration, up to rotations, witht ∈ E and Card({x, y, z} ∩ E) = 2
is depicted on Figure 15(c). The case Card({x, y, z} ∩ E) = 1 is not
possible. The only minimal configuration witht < E is depicted on
Figure 15(d). Ifr = 4, the only minimal configuration is depicted on
Figure 15(e). The reader can then easily check from Figure 15(b–e)
that the statement of the lemma is true.

Lemma 10 Let (T,6) be a poset. The path product is compatible with
the order relation: for any a, b, c ∈ T and any paths p6 p′ from a to b
and q6 q′ from b to c, we have p.q 6 p′.q′.

Proof Let t ∈ [0, 1]. If t ≤ 1
2 , then,p.q(t) = p(2t) 6 p′(2t) = p′.q′(t).

If t ≥ 1
2 , thenp.q(t) = q(2t − 1) 6 q′(2t − 1) = p′.q′(t).
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(a)

(b) (c) (d) (e)

Fig. 15 Configurations used in the proof of Lemma 9 (see text). Black
points: faces ofE. Black edges: edges of three facets of the cube that
contain at leastr faces ofE. (a)n = 2 andr = 2. (b-d)n = 3 andr = 3.
(e) n = 3 andr = 4.
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depuis des données IRM dans le cadre de la topologie des ordres,
in: Reconnaissance de Formes et Intelligence Artificielle -RFIA
2002, Vol. 3, 2002, pp. 809–818.

15. G. Bertrand, M. Couprie, Two-dimensional thinning algorithms
based on critical kernels, Journal of Mathematical Imagingand
Vision 31 (1) (2008) 35–56.

16. X. Han, C. Xu, J. L. Prince, A topology preserving level set
method for geometric deformable models, IEEE Transactionson
Pattern Analysis and Machine Intelligence 25 (6) (2003) 755–768.

17. Y. Bai, X. Han, J. L. Prince, Topology-preserving geometric de-
formable model on adaptive quadtree grid, in: Computer Vision
and Pattern Recognition - CVPR 2007, 2007, pp. 1–8.

18. J.-F. Mangin, V. Frouin, I. Bloch, J. Régis, J. López-Krahe, From
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Paris-Est, (Submitted) (2010).
URL http://hal.archives-ouvertes.fr/hal-00512228/
fr/

ha
l-0

05
12

27
0,

 v
er

si
on

 1
 - 

29
 A

ug
 2

01
0



18

38. F. Poupon, J.-F. Mangin, D. Hasboun, C. Poupon, I. E. Magnin,
V. Frouin, Multi-object deformable templates dedicated tothe seg-
mentation of brain deep structures, in: International Conference on
Medical Image Computing and Computer Assisted Intervention -
MICCAI 1998, Vol. 1496 of Lecture Notes in Computer Science,
Springer, 1998, pp. 1134–1143.

39. P.-L. Bazin, D. L. Pham, Topology-preserving tissue classification
of magnetic resonance brain images, IEEE Transactions on Medi-
cal Imaging 26 (4) (2007) 487–496.

40. S. Miri, N. Passat, J.-P. Armspach, Topology-preserving discrete
deformable model: Application to multi-segmentation of brain
MRI, in: International Conference on Image and Signal Process-
ing - ICISP 2008, Vol. 5099 of Lecture Notes in Computer Sci-
ence, Springer, 2008, pp. 67–75.

41. L. J. Latecki, 3D well-composed pictures, Graphical Models and
Image Processing 59 (3) (1997) 164–172.

42. F. Ségonne, J.-P. Pons, E. Grimson, B. Fischl, A novel level set
framework for the segmentation of medical images under topology
control, in: ICCV Workshop on Computer Vision for Biomedical
Image Applications, 2005, pp. 135–145.

43. P.-L. Bazin, L. M. Ellingsen, D. L. Pham, Digital homeomor-
phisms in deformable registration, in: Information Processing in
Medical Imaging - IPMI 2007, Vol. 4584 of Lecture Notes in
Computer Science, Springer, 2007, pp. 211–222.

44. M. Siqueira, L. J. Latecki, N. Tustison, J. Gallier, J. Gee, Topo-
logical repairing of 3D digital images, Journal of Mathematical
Imaging and Vision 30 (3) (2008) 249–274.

45. G. Damiand, Topological model for 3D image representation: Def-
inition and incremental extraction algorithm, Computer Vision
and Image Understanding 109 (3) (2008) 260–289.

46. A. Dupas, G. Damiand, J.-O. Lachaud, Multi-label simplepoints
definition for 3D images digital deformable model, in: Discrete
Geometry for Computer Imagery - DGCI 2009, Vol. 5810 of Lec-
ture Notes in Computer Science, Springer, 2009, pp. 218–229.

ha
l-0

05
12

27
0,

 v
er

si
on

 1
 - 

29
 A

ug
 2

01
0


