D. Attali, J. Boissonnat, and H. Edelsbrunner, Stability and computation of the medial axis ? a state-of-the-art report, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, pp.109-125, 2009.

D. Attali and J. Lachaud, Delaunay conforming iso-surface, skeleton??extraction and noise removal, Computational Geometry, vol.19, issue.2-3, pp.175-189, 2001.
DOI : 10.1016/S0925-7721(01)00019-0

D. Attali and A. Montanvert, Modelling noise for a better simplification of skeletons, In: ICIP, vol.3, pp.13-16, 1996.

D. Attali, G. Sanniti-di-baja, and E. Thiel, Pruning discrete and semicontinuous skeletons, Conference on Image Analysis and Processing, 1995.
DOI : 10.1007/3-540-60298-4_303

X. Bai, L. Latecki, and W. Liu, Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.3, pp.449-462, 2007.
DOI : 10.1109/TPAMI.2007.59

G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters, vol.15, issue.10, pp.1003-1011, 1994.
DOI : 10.1016/0167-8655(94)90032-9

URL : https://hal.archives-ouvertes.fr/hal-00621999

H. Blum, An Associative Machine for Dealing with the Visual Field and Some of Its Biological Implications, Biol. prototypes and synthetic systems, vol.1, pp.244-260, 1961.
DOI : 10.1007/978-1-4684-1716-6_34

H. Blum, A transformation for extracting new descriptors of shape In: Models for the Perception of Speech and Visual Form, pp.362-380, 1967.

G. Borgefors, I. Ragnemalm, and G. S. Di-baja, The euclidean distance transform: finding the local maxima and reconstructing the shape, 7th Scandinavian Conference on Image Analysis, pp.974-981, 1991.

J. Chaussard, M. Couprie, and H. Talbot, A Discrete ??-Medial Axis, Lecture Notes in Computer Science, vol.90, issue.3, pp.421-433, 2009.
DOI : 10.1007/BFb0038202

URL : https://hal.archives-ouvertes.fr/hal-00622407

F. Chazal, D. Cohen-steiner, and A. Lieutier, Normal cone approximation and offset shape isotopy, Computational Geometry, vol.42, issue.6-7, pp.566-581, 2009.
DOI : 10.1016/j.comgeo.2008.12.002

URL : https://hal.archives-ouvertes.fr/inria-00124825

F. Chazal and A. Lieutier, The ?????-medial axis???, Graphical Models, vol.67, issue.4, pp.304-331, 2005.
DOI : 10.1016/j.gmod.2005.01.002

D. Coeurjolly, Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces, 2002.

D. Coeurjolly, d-Dimensional Reverse Euclidean Distance Transformation and Euclidean Medial Axis Extraction in Optimal Time, pp.327-337, 2003.
DOI : 10.1007/978-3-540-39966-7_31

URL : https://hal.archives-ouvertes.fr/hal-00185186

D. Coeurjolly and A. Montanvert, Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.3, pp.437-448, 2007.
DOI : 10.1109/TPAMI.2007.54

URL : https://hal.archives-ouvertes.fr/hal-00148621

M. Couprie and G. Bertrand, New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.4, pp.637-648, 2009.
DOI : 10.1109/TPAMI.2008.117

URL : https://hal.archives-ouvertes.fr/hal-00622393

M. Couprie, D. Coeurjolly, and R. Zrour, Discrete bisector function and Euclidean skeleton in 2D and 3D, Image and Vision Computing, vol.25, issue.10, pp.1543-1556, 2007.
DOI : 10.1016/j.imavis.2006.06.020

URL : https://hal.archives-ouvertes.fr/hal-00180616

E. Davies and A. Plummer, Thinning algorithms: A critique and a new methodology, Pattern Recognition, vol.14, issue.1-6, pp.53-63, 1981.
DOI : 10.1016/0031-3203(81)90045-5

M. Dubuisson and A. Jain, A modified Hausdorff distance for object matching, Proceedings of 12th International Conference on Pattern Recognition, pp.12-566, 1994.
DOI : 10.1109/ICPR.1994.576361

M. Eden, A two-dimensional growth process, Fourth Berkeley Symposium on Mathematical Statistics and Probabilities, vol.4, pp.223-239, 1961.

Y. Ge and J. Fitzpatrick, On the generation of skeletons from discrete euclidean distance maps, IEEE Trans. on PAMI, vol.18, issue.11, pp.1055-1066, 1996.

W. Hesselink and J. Roerdink, Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.12, pp.2204-2217, 2008.
DOI : 10.1109/TPAMI.2008.21

W. Hesselink, M. Visser, and J. Roerdink, Euclidean Skeletons of 3D Data Sets in Linear Time by the Integer Medial Axis Transform, of Computational Imaging and Vision, pp.7-259, 2005.
DOI : 10.1007/1-4020-3443-1_23

R. Kimmel, D. Shaked, N. Kiryati, and A. M. Bruckstein, Skeletonization via Distance Maps and Level Sets, Computer Vision and Image Understanding, vol.62, issue.3, pp.382-391, 1995.
DOI : 10.1006/cviu.1995.1062

T. Y. Kong and A. Rosenfeld, Digital topology: Introduction and survey, Computer Vision, Graphics, and Image Processing, vol.48, issue.3, pp.357-393, 1989.
DOI : 10.1016/0734-189X(89)90147-3

T. Lee and R. Cowan, A stochastic tesselation of digital space, Proceedings of 2nd ISMM. Kluwer, pp.218-224, 1994.

G. Malandain and S. Fernández-vidal, Euclidean skeletons, Image and Vision Computing, vol.16, issue.5, pp.317-327, 1998.
DOI : 10.1016/S0262-8856(97)00074-7

URL : https://hal.archives-ouvertes.fr/inria-00615037

G. Matheron, Examples of topological properties of skeletons, pp.217-238, 1988.

C. Maurer, R. Qi, and V. Raghavan, A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.2, pp.265-270, 2003.
DOI : 10.1109/TPAMI.2003.1177156

R. Ogniewicz and O. Kübler, Hierarchic Voronoi skeletons, Pattern Recognition, vol.28, issue.3, pp.343-359, 1995.
DOI : 10.1016/0031-3203(94)00105-U

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Pudney, Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images, Computer Vision and Image Understanding, vol.72, issue.3, pp.404-413, 1998.
DOI : 10.1006/cviu.1998.0680

E. Rémy and E. Thiel, Exact medial axis with euclidean distance, Image and Vision Computing, vol.23, issue.2, pp.167-175, 2005.
DOI : 10.1016/j.imavis.2004.06.007

M. Samozino, M. Alexa, P. Alliez, and M. Yvinec, Reconstruction with voronoi centered radial basis functions, Symposium on Geometry Processing (SGP'06, pp.51-60, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00116651

J. Serra, Image analysis and mathematical morphology, 1982.

D. Sharvit, J. Chan, H. Tek, and B. Kimia, Symmetry-Based Indexing of Image Databases, Journal of Visual Communication and Image Representation, vol.9, issue.4, pp.366-380, 1998.
DOI : 10.1006/jvci.1998.0396

K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker, The hamiltonjacobi skeleton, International Conference on Computer Vision (ICCV), pp.828-834, 1999.

P. Soille, Morphological image analysis, 1999.

S. Svensson and G. Sanniti-di-baja, Simplifying curve skeletons in volume images, Computer Vision and Image Understanding, vol.90, issue.3, pp.242-257, 2003.
DOI : 10.1016/S1077-3142(03)00061-4

H. Talbot and L. Vincent, Euclidean skeletons and conditional bisectors, SPIE, vol.92, issue.1818, pp.862-876, 1992.

L. Vincent, Efficient computation of various types of skeletons, Medical Imaging V, SPIE, vol.1445, pp.297-311, 1991.

E. Welzl, Smallest enclosing disks (balls and ellipsoids), Computer Science. LNCS, vol.555, pp.359-370, 1991.
DOI : 10.1007/BFb0038202

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=