M. Couprie and G. Bertrand, Topological grayscale watershed transform, SPIE Vision Geometry V Proceedings, pp.136-146, 1997.

J. C. Maxwell, On Hills and Dales, Philosophical Magazine, pp.233-240, 1870.
DOI : 10.1017/CBO9780511710377.018

F. Maisonneuve, Sur le partage des eaux, tech. rep., CMM, Ecole des Mines, 1982.

F. Meyer, Un algorithme optimal de ligne de partage des eaux, Actes du 8` eme Congrès AFCET, pp.847-859, 1991.

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.6, pp.583-598, 1991.
DOI : 10.1109/34.87344

F. Meyer, Topographic distance and watershed lines, Signal Processing, vol.38, issue.1, pp.113-126, 1994.
DOI : 10.1016/0165-1684(94)90060-4

L. Najman and M. Schmitt, Watershed of a continuous function, Signal Processing 38, pp.99-112, 1994.
DOI : 10.1016/0165-1684(94)90059-0

URL : https://hal.archives-ouvertes.fr/hal-00622129

J. Roerdink and A. Meijster, The watershed transform: Definitions, algorithms and parallelization strategies, Fundamenta Informaticae 41, pp.187-228, 2000.

S. Beucher and C. Lantuéjoul, Use of watersheds in contour detection, Proc. Int. Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation, 1979.

S. Beucher and F. Meyer, The morphological approach to segmentation: the watershed transformation, Mathematical Morphology in Image Processing, pp.433-481, 1993.

L. Najman and M. Schmitt, Geodesic saliency of watershed contours and hierarchical segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.12, pp.1163-1173, 1996.
DOI : 10.1109/34.546254

URL : https://hal.archives-ouvertes.fr/hal-00622128

L. Najman and M. Couprie, Watershed Algorithms and Contrast Preservation, Proc. 11th DGCI, pp.2886-62, 2003.
DOI : 10.1007/978-3-540-39966-7_5

URL : https://hal.archives-ouvertes.fr/hal-00622112

G. Bertrand, <title>Some properties of topological grayscale watersheds</title>, Vision Geometry XII, pp.127-137, 2004.
DOI : 10.1117/12.526740

M. Couprie, G. Bertrand, G. Borgefors, I. Nyström, and G. , Tesselations by Connection in Orders, Proc. 9th DGCI, pp.15-26, 1953.
DOI : 10.1007/3-540-44438-6_2

URL : https://hal.archives-ouvertes.fr/hal-00622028

R. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Lectures on Modern Mathematics II, pp.93-128, 1964.

M. Grimaud, A new measure of contrast: Dynamics, Image Algebra and Morphological Processing III, pp.292-305, 1992.

F. Meyer, The Dynamics of Minima and Contours, Computational Imaging and Vision, pp.329-336, 1996.
DOI : 10.1007/978-1-4613-0469-2_38

P. D. Wendt, E. J. Coyle, N. C. Gallagher, and J. , Stack filters, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.34, issue.4, pp.898-911, 1986.
DOI : 10.1109/TASSP.1986.1164871

J. Serra, Image analysis and mathematical morphology, Th. Advances, 1988.

H. Heijmans, Theoretical aspects of gray-level morphology, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.6, pp.568-592, 1991.
DOI : 10.1109/34.87343

A. Rosenfeld, Fuzzy digital topology, Information and Control, vol.40, issue.1, pp.76-87, 1979.
DOI : 10.1016/S0019-9958(79)90353-X

URL : http://doi.org/10.1016/s0019-9958(79)90353-x

A. Rosenfeld, The fuzzy geometry of image subsets, Pattern Recognition Letters, vol.2, issue.5, pp.311-317, 1984.
DOI : 10.1016/0167-8655(84)90018-7

J. K. Udupa and S. Samarsekara, Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation, Graphical Models and Image Processing, vol.58, issue.3, pp.246-261, 1996.
DOI : 10.1006/gmip.1996.0021

T. Kong and A. Rosenfeld, Digital topology: introduction and survey, Comp. Vision, Graphics and Image Proc. 48, pp.357-393, 1989.
DOI : 10.1016/0734-189x(89)90127-8

L. Najman, M. Couprie, and G. Bertrand, Watersheds, mosaics, and the emergence paradigm, Discrete Applied Mathematics, vol.147, issue.2-3
DOI : 10.1016/j.dam.2004.09.017

URL : https://hal.archives-ouvertes.fr/hal-00622113

B. Korte and L. Lovász, Structural properties of greedoids, Combinatorica, vol.28, issue.3-4, pp.359-374, 1983.
DOI : 10.1007/BF02579192

J. Stillwell, Classical topology and combinatorial group theory, 1980.
DOI : 10.1007/978-1-4612-4372-4

G. Bertrand, A New Definition for the Dynamics
DOI : 10.1007/1-4020-3443-1_18

L. Najman and M. Couprie, <title>Quasilinear algorithm for the component tree</title>, Vision Geometry XII, pp.98-107, 2004.
DOI : 10.1117/12.526592

M. Couprie, L. Najman, and G. Bertrand, Quasi-Linear Algorithms for the Topological Watershed, Journal of Mathematical Imaging and Vision, vol.13, issue.6, 2005.
DOI : 10.1007/s10851-005-4892-4

URL : https://hal.archives-ouvertes.fr/hal-00622399