C. Arcelli, L. P. Cordella, and S. Levialdi, Parallel thinning of binary pictures, Electronics Letters, vol.11, issue.7, pp.148-149, 1975.
DOI : 10.1049/el:19750113

T. M. Bernard and A. Manzanera, Improved low complexity fully parallel thinning algorithm, Proceedings 10th International Conference on Image Analysis and Processing, 1999.
DOI : 10.1109/ICIAP.1999.797597

URL : https://hal.archives-ouvertes.fr/hal-01245400

G. Bertrand, On P-simple points Comptes Rendus de l'Académie des Sciences, Série Math., I, issue.321, pp.1077-1084, 1995.

G. Bertrand, Sufficient conditions for 3D parallel thinning algorithms, SPIE Vision Geometry IV, pp.52-60, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00621998

G. Bertrand, On critical kernels, Internal Report. Université de Marne-la-Vallée, IGM2005-05, 2005.
DOI : 10.1016/j.crma.2007.09.001

URL : https://hal.archives-ouvertes.fr/hal-00621989

G. Bertrand and M. Couprie, A New 3D Parallel Thinning Scheme Based on Critical Kernels, Lecture Notes in Computer Science, vol.4245, pp.580-591, 2006.
DOI : 10.1007/11907350_49

URL : https://hal.archives-ouvertes.fr/hal-00622000

J. Burguet and R. Malgouyres, Strong thinning and polyhedric approximation of the surface of a voxel object, Discrete Applied Mathematics, vol.125, issue.1, pp.93-114, 2003.
DOI : 10.1016/S0166-218X(02)00226-3

R. T. Chin, H. K. Wan, D. L. Stover, and R. D. Iverson, A one-pass thinning algorithm and its parallel implementation, Computer Vision, Graphics, and Image Processing, vol.40, issue.1, pp.30-40, 1987.
DOI : 10.1016/0734-189X(87)90054-5

S. S. Choy, C. S. Choy, and W. C. Siu, New Single-Pass Algorithm for Parallel Thinning, Computer Vision and Image Understanding, vol.62, issue.1, pp.69-77, 1995.
DOI : 10.1006/cviu.1995.1042

M. Couprie, Note on fifteen 2D parallel thinning algorithms, Internal Report, pp.2006-2007, 2005.

U. Eckhardt and G. Maderlechner, INVARIANT THINNING, International Journal of Pattern Recognition and Artificial Intelligence, vol.07, issue.05, pp.1115-1144, 1993.
DOI : 10.1142/S021800149300056X

C. Gau and T. Y. Kong, Minimal non-simple sets in 4D binary images, Graphical Models, vol.65, issue.1-3, pp.112-130, 2003.
DOI : 10.1016/S1524-0703(03)00010-9

P. Giblin, Graphs, surfaces and homology, 1981.
DOI : 10.1017/CBO9780511779534

Z. Guo and R. W. Hall, Fast fully parallel thinning algorithms, CVGIP: Image Understanding, vol.55, issue.3, pp.317-328, 1992.
DOI : 10.1016/1049-9660(92)90029-3

R. W. Hall, Fast parallel thinning algorithms: parallel speed and connectivity preservation, Communications of the ACM, vol.32, issue.1, pp.124-131, 1989.
DOI : 10.1145/63238.63248

R. W. Hall, Tests for connectivity preservation for parallel reduction operators, Topology and its Applications, vol.46, issue.3, pp.199-217, 1992.
DOI : 10.1016/0166-8641(92)90015-R

C. M. Holt, A. Stewart, M. Clint, and R. H. Perrott, An improved parallel thinning algorithm, Communications of the ACM, vol.30, issue.2, pp.156-160, 1987.
DOI : 10.1145/12527.12531

B. K. Jang and R. T. Chin, One-pass parallel thinning: analysis, properties, and quantitative evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.11, pp.1129-1140, 1992.
DOI : 10.1109/34.166630

B. K. Jang and R. T. Chin, RECONSTRUCTABLE PARALLEL THINNING, International Journal of Pattern Recognition and Artificial Intelligence, vol.07, issue.05, pp.1145-1181, 1993.
DOI : 10.1142/S0218001493000571

T. Y. Kong, Problem of determining whether a parallel reduction operator for n -dimensional binary images always preserves topology, Vision Geometry II, pp.69-77, 1993.
DOI : 10.1117/12.165013

T. Y. Kong, ON TOPOLOGY PRESERVATION IN 2-D AND 3-D THINNING, International Journal of Pattern Recognition and Artificial Intelligence, vol.09, issue.05, pp.813-844, 1995.
DOI : 10.1142/S0218001495000341

T. Y. Kong, Topology-preserving deletion of 1's from 2-, 3- and 4-dimensional binary images, In Lecture Notes in Computer Science, vol.1347, pp.3-18, 1997.
DOI : 10.1007/BFb0024826

T. Y. Kong, Minimal Non-simple and Minimal Non-cosimple Sets in Binary Images on Cell Complexes, In Lecture Notes in Computer Science, vol.4245, pp.169-188, 2006.
DOI : 10.1007/11907350_15

T. Y. Kong and C. Gau, Minimal non-simple sets in 4-dimensional binary images with (8-80)-adjacency, Procs. Int. Workshop on Combinatorial Image Analysis, pp.318-333, 2004.

T. Y. Kong and A. Rosenfeld, Digital topology: Introduction and survey, Computer Vision, Graphics, and Image Processing, vol.48, issue.3, pp.357-393, 1989.
DOI : 10.1016/0734-189X(89)90147-3

C. Lohou and G. Bertrand, A 3D 12-subiteration thinning algorithm based on P-simple points, Discrete Applied Mathematics, vol.139, issue.1-3, pp.171-195, 2004.
DOI : 10.1016/j.dam.2002.11.002

URL : https://hal.archives-ouvertes.fr/hal-00622096

C. Lohou and G. Bertrand, A 3D 6-subiteration curve thinning algorithm based on P-simple points, Discrete Applied Mathematics, vol.151, issue.1-3, pp.198-228, 2005.
DOI : 10.1016/j.dam.2005.02.030

URL : https://hal.archives-ouvertes.fr/hal-00622095

C. M. Ma, Connectivity preserving transformation of digital images: theory and application, 1994.

C. M. Ma, On topology preservation in 3D thinning, CVGIP: Image Understanding, vol.59, issue.3, pp.328-339, 1994.

A. Manzanera and T. M. Bernard, Metrical properties of a collection of 2D parallel thinning algorithms, Electronic Notes on Discrete Mathematics, Proc. 9th IWCIA, 2003.
DOI : 10.1016/S1571-0653(04)00491-3

URL : https://hal.archives-ouvertes.fr/hal-01222698

T. Pavlidis, A flexible parallel thinning algorithm, Proc. IEEE Comput. Soc. Conf. Pattern Recognition, Image Processing, pp.162-167, 1981.

T. Pavlidis, An asynchronous thinning algorithm, Computer Graphics and Image Processing, vol.20, issue.2, pp.133-157, 1982.
DOI : 10.1016/0146-664X(82)90041-7

C. Ronse, Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images, Discrete Applied Mathematics, vol.21, issue.1, pp.67-79, 1988.
DOI : 10.1016/0166-218X(88)90034-0

A. Rosenfeld, Connectivity in Digital Pictures, Journal of the ACM, vol.17, issue.1, pp.146-160, 1970.
DOI : 10.1145/321556.321570

A. Rosenfeld, A characterization of parallel thinning algorithms, Information and Control, vol.29, issue.3, pp.286-291, 1975.
DOI : 10.1016/S0019-9958(75)90448-9

A. Rosenfeld, Digital Topology, The American Mathematical Monthly, vol.86, issue.8, pp.621-630, 1979.
DOI : 10.2307/2321290

A. Rosenfeld and A. C. Kak, Digital picture processing, 1982.

A. Rosenfeld and J. L. Pfaltz, Sequential operations in digital picture processing, Journal of the Association for Computer Machinery, vol.13, pp.471-494, 1966.

D. Rutovitz, Pattern Recognition, Journal of the Royal Statistical Society. Series A (General), vol.129, issue.4, pp.504-530, 1966.
DOI : 10.2307/2982255

J. Serra, Image analysis and mathematical morphology, 1982.

R. Stefanelli and A. Rosendeld, Some Parallel Thinning Algorithms for Digital Pictures, Journal of the ACM, vol.18, issue.2, pp.255-264, 1971.
DOI : 10.1145/321637.321646

R. Y. Wu and W. H. Tsai, A new one-pass parallel thinning algorithm for binary images, Pattern Recognition Letters, vol.13, issue.10, pp.715-723, 1992.
DOI : 10.1016/0167-8655(92)90101-5

Y. Y. Zhang and P. S. Wang, A modified parallel thinning algorithm, [1988 Proceedings] 9th International Conference on Pattern Recognition, pp.1023-1025, 1988.
DOI : 10.1109/ICPR.1988.28429