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Vector Lifting Schemes for Stereo Image Coding
M. Kaaniche, Student Member IEEE, A. Benazza-Benyahia, Member IEEE, B. Pesquet-Popescu, Senior

Member IEEE, and J.- C. Pesquet, Senior Member IEEE

Abstract— Many research efforts have been devoted to the
improvement of stereo image coding techniques for storage or
transmission. In this paper, we are mainly interested in lossy-
to-lossless coding schemes for stereo images allowing progressive
reconstruction. The most commonly used approaches for stereo
compression are based on disparity compensation techniques. The
basic principle involved in this technique first consists of estimating
the disparity map. Then, one image is considered as a reference
and the other is predicted in order to generate a residual image. In
this work, we propose a novel approach, based on Vector Lifting
Schemes (VLS), which offers the advantage of generating two
compact multiresolution representations of the left and the right
views. We present two versions of this new scheme. A theoretical
analysis of the performance of the considered VLS is also con-
ducted. Experimental results indicate a significant improvement
using the proposed structures compared with conventional methods.

I. INTRODUCTION

The principle of stereoscopic imaging systems consists of

generating two images by recording two slightly different view

angles of the same scene. By presenting the appropriate image

of a stereo pair to the left/right eye, the viewer perceives the

scene in three dimensions (3D). The recent advances in acqui-

sition and display technologies have allowed the widespread

use of stereovision in various application fields such as en-

tertainment, medical surgical environments, tele-presence in

videoconferences [1], computer vision and remote sensing

[2]. For instance, today’s advances in satellite remote sensing

technology provide the capability to collect Stereo Image (SI)

pairs for several applications, such as cartography and urban

planning. Satellite stereo images (such as those generated

by IKONOS and SPOT5 sensors) are especially helpful to

generate a digital elevation model which is a 3D representation

of the topography of a given area [3]. The increasing interest in

SIs has led to the constitution of image databases that require

huge amounts of storage capacity. For example, the SPOT5

sensor covers areas of 60 Km × 60 Km at a resolution of

2.5 m and a single view requires more than 500 Megabytes.

In addition to these stereo sensors, it is worth mentioning the

Multi-angle Imaging SpectroRadiometer (MISR), which uses

nine cameras to generate multiview data sets [4] at a data

rate of 3.3 Mbps. Hence, the use of compression techniques is

mandatory for image storage as well as for image transmission.
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Part of this work has been presented in [21].

To the best of our knowledge, the ongoing activity on stereo-

scopic still image coding is mainly carried out independently

of any standardization activity [5]. Consequently, different

approaches have been reported concerning still image coding.

The most simple ones consists of separately coding each view

by using existing still image coders. However, the resulting

data rates may remain too high for some practical stereoscopic

systems. As the two images have similar content, they are

highly correlated. Therefore, more efficient coding schemes

have been designed to exploit the cross-view redundancies

[6], [7]. This is usually achieved by first estimating the

disparity field between the SI pair [8]. Then, one image is

considered as a reference (say the left one) and the other image

(target) is predicted by disparity-compensating the reference

one. A prediction error image, called residual image, is thus

generated. Finally, the disparity field, the reference image and

the residual one are encoded [7], [9]. This approach is known

as disparity compensation due to its similarity with motion

compensation techniques which are popular for video coding

[10]. The goal of this paper is to design a novel joint coding

approach enabling a gradual and finally exact decoding of the

stereo pairs. Our main contribution is that the proposed coding

scheme does not generate any residual image, but directly

two compact multiresolution representations of the left and

right images by exploiting the cross-view redundancies via the

available disparity field. Furthermore, the proposed scheme is

intrinsically flexible, as it allows the designer to optimize the

number of prediction filter taps as well as the other parameters

of the multiscale operators. In this way, we build a joint coding

scheme which is adapted to the content of the stereo pair.

Another advantage of the proposed method is that it guarantees

a perfect reconstruction of the stereo images.

The remainder of this paper is organized as follows. Sec-

tion II gives an overview of SI coding schemes based on dis-

parity estimation and compensation techniques. In Section III,

we propose a novel coding structure of which two examples

are given. In Section IV, we conduct a theoretical analysis

of the proposed schemes in terms of prediction efficiency.

Section V describes how embedded binary streams can be

produced to encode the resulting multiscale representations.

Finally, in Section VI, experimental results are given and some

conclusions are drawn in Section VII.

II. STEREO IMAGE CODING

Generally, the reported stereo image coding methods rely

on Disparity Estimation techniques (DE) followed by Disparity

Compensation (DC) as discussed below. As mentioned earlier,

DE is a key issue for exploiting the cross-view redundancies.

This problem has been extensively studied in computer vision
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and surveys of the different DE techniques proposed in the

literature can be found in [2], [11], [12]. Two main approaches,

pixel-based or block-based, can be used to estimate the dispar-

ity map. In what follows, we use a fixed size block matching

DE, which consists of first partitioning the right image I(r)

into nonoverlapping blocks of size bx × by . For each block,

the objective is to find the most “similar” block within a

given search area S in the left image I(l). The disparity

vector v = (vx, vy) for a current block in I(r) minimizes

a dissimilarity criterion D:

(vx, vy)(mx,my)
△
=

arg min
(vx,vy)∈S

D(I(r)(mx,my), I(l)(mx + vx,my + vy)) (1)

where (mx, my) are the spatial coordinates associated with

the top leftmost pixel in the block. Very often, the Sum of

Square Differences (SSD) or the Sum of Absolute Differences

(SAD) is the selected criterion. It should be noted that in the

ideal parallel-axis geometry, the displacement between the two

views is restricted to the horizontal direction (vy = 0) and

it takes positive values (vx ≥ 0). However, in practice, the

matching point of any current point of I(r) is not always

rigorously on the epipolar line because of the sensor noise,

the discretization errors and the deviation from the pinhole

camera model. As a consequence, a strip along the epipolar

line is considered and all the points falling within this strip

are considered as potential matching candidates to be paired

with the current point. It is worth mentioning that several

works aimed at improving this block-based DE, e.g. by using

overlapped block DE with adaptive windows [13], [14]. Once

the disparity vectors are generated, a disparity compensation

can be performed: the target image I(r) is predicted from I(l)

along the disparity vectors. Then, the Disparity Compensated

Difference (DCD) I(e) is computed as follows:

I(e)(mx,my)
△
= I(r)(mx,my) − I(l)(mx + vx,my + vy)

(2)

where the dependence on (mx,my) of vx and vy has been

dropped for notation simplicity. Generally, the disparity vec-

tors are losslessly encoded using DPCM followed by arith-

metic encoding, whereas the reference and the residual images

can be coded in different transform domains. Some works ap-

ply a discrete cosine transform [9], [15]. However, more recent

works have preferred the wavelet transform, in order to meet

the scalability requirement. In [16], an efficient exploitation

of the zerotree algorithm [17] is performed to shorten the

embedded bitstreams of the wavelet coefficients of both the

reference image and the DCD. In [18], both the estimation

and the disparity compensation take place in the wavelet

domain, the coding of the wavelet coefficients being performed

through a Subspace Projection Technique (SPT). Furthermore,

we should note also that Annex I of Part II of the JPEG2000

standard is dedicated to multi-component image coding [19].

A decorrelation of the spectral components may be performed

prior to the wavelet transform. In our case, each view of the

stereoscopic image can be seen as a single component. Unlike

the conventional methods, we propose a joint coding scheme

that directly generates a pair of multiresolution representations

of the left and the right images derived from a judicious lifting

decomposition which will be described in the next section.

III. PROPOSED VECTOR LIFTING SCHEMES

A. Motivations

A novel approach that is based on a joint multiscale

decomposition of I(l) and I(r) is developed in this section.

It consists of coding the reference image I(l) in intra mode

(purely spatial), whereas the other image is coded by exploit-

ing cross-image redundancies via the available disparity map.

The decomposition strategy is inspired from Vector Lifting

Schemes (VLS) [20] and it has been briefly presented as a

preliminary work in [21]. The main advantage of the proposed

approach is that it does not explicitly generate a residual

image, but two multiresolution representations of I(l) and I(r).

Two versions of the VLS will be described in the following.

B. VLS decompositions

The wavelet coefficients of an image are usually obtained

by a dyadic filter bank structure [22]. If an exact recon-

struction is required, lifting schemes are often employed,

since they allow to generate integer-valued versions of the

wavelet coefficients whatever the underlying decomposition

operators are [23], [24]. For the sake of simplicity, a separable

decomposition is considered in this paper. Therefore, it is

enough to address the decomposition in one dimension. The

corresponding analysis structure is shown in Fig. 2. More

precisely, at each resolution level j, the even and odd samples

of the approximation (scaling) coefficients I
(l)
j (mx, 2my),

I
(r)
j (mx, 2my), I

(l)
j (mx, 2my + 1) and I

(r)
j (mx, 2my + 1)

of I(l) and I(r) respectively are the input coefficients of the

lifting scheme. Furthermore, we denote by vj = (vx,j , vy,j)
⊤

the available disparity vectors which are obtained by sampling

and dividing by 2j the initial (full resolution) disparity vectors

v = (vx, vy)⊤, since the dimensions of the subbands at the j-

th resolution level correspond to the dimensions of the initial

images divided by 2j :

vj(mx, my) =
1

2j
v(2jmx, 2jmy). (3)

It is important to note that (3) may yield non-integer values of

the disparity vectors. Therefore, if the components of vj are

integer-valued, for any given pixel (mx,my) in the right image

corresponds a pixel in the disparity-compensated left image

I
(l)
j (mx + vx,j(mx,my),my + vy,j(mx,my)). Otherwise, the

corresponding disparity-compensated intensity results from the

usual bilinear interpolation. The objective of the vector lifting

scheme is to simultaneously exploit the dependence existing

between I
(l)
j and I

(r)
j by producing 2 kinds of outputs: the de-

tail coefficients d̃
(l)
j+1, d̃

(r)
j+1 and the approximation ones Ĩ

(l)
j+1,

Ĩ
(r)
j+1 for both images. Similar lifting structures operating along

the image columns allow us to generate the approximation

coefficients I
(l)
j+1 and I

(r)
j+1, as well as the associated detail

coefficients in the horizontal, vertical and diagonal directions



3

at the resolution level (j + 1).1 A wide range of nonlinear

operators can be applied to reduce the intra and inter-image

redundancies. However, for tractability purposes, we will only

use combinations of shift operators, linear filters and rounding

operations. For the reference image I(l), the detail coefficients

can be interpreted as intra-image prediction errors at resolution

(j + 1) and expressed as:

d̃
(l)
j+1(mx,my) = I

(l)
j (mx, 2my + 1) − ⌊(P

(l)
j )⊤I

(l)
j ⌋ (4)

where P
(l)
j =

(
p
(l)
j,k

)

k∈P
(l)
j

is the prediction weighting vector,

I
(l)
j =

(
I
(l)
j (mx, 2my − 2k)

)

k∈P
(l)
j

is the reference vector

containing the even samples used in the prediction step, P
(l)
j

is the support of the predictor of I
(l)
j (mx, 2my + 1) and

⌊.⌋ is the integer-part operator. Then, at the update step, the

approximation coefficients are computed as follows:

Ĩ
(l)
j+1(mx,my) = I

(l)
j (mx, 2my) + ⌊(U

(l)
j )⊤d̃

(l)
j+1⌋ (5)

where U
(l)
j =

(
u

(l)
j,k

)

k∈U
(l)
j

is the update weighting vector,

d̃
(l)
j+1 =

(
d̃
(l)
j+1(mx,my − k)

)

k∈U
(l)
j

is the reference vector

containing the details coefficients used in the update step, and

U
(l)
j is the support of the update operator. The reversibility

of the basic lifting scheme is ensured since the prediction

in (4) only makes use of even indexed samples. The main

difference between a vector lifting scheme and a basic one

is that for the image I(r), the prediction of the odd sample

I
(r)
j (mx, 2my + 1) involves even samples from the same

image and also neighbors of the matching sample taken

from the reference image. For the sake of simplicity, the

notation I
(l)
j (mx + vx,j(mx,my), my + vy,j(mx,my) − k)

which corresponds to the compensated image on the neighbors

of a given matching sample (mx,my), will be replaced by

I
(c)
j (mx,my, k). Thus, the detail signal d̃

(r)
j+1 will be expressed

as:

d̃
(r)
j+1(mx, my) = I

(r)
j (mx, 2my + 1) − ⌊(P

(r)
j )⊤I

(r)
j

+ (P
(r,l)
j )⊤I

(c)
j ⌋ (6)

where P
(r)
j =

(
p
(r)
j,k

)

k∈P
(r)
j

(resp. P
(r,l)
j =

(
p
(r,l)
j,k

)

k∈P
(r,l)
j

) is

the prediction weighting vector of the intra-image (resp. inter-

images), I
(r)
j =

(
I
(r)
j (mx, 2my − 2k)

)

k∈P
(r)
j

is the reference

vector containing the even samples, I
(c)
j =

(
I
(c)
j (mx, 2my +

1, k)
)

k∈P
(r,l)
j

is the vector containing the neighbors of the

matching sample associated with the pixel I
(r)
j (mx, 2my +1)

to be predicted, and P
(r)
j (resp. P

(r,l)
j ) is the spatial support of

the intra-image (resp. inter-images) predictor. The update step

for Ĩ
(r)
j+1 can be performed similarly to (5). The decomposition

is iterated on the columns my of the resulting subbands,

1As we apply a separable decomposition, we denote by Ĩj the approxima-

tion coefficients after the first mono-dimensional processing at the jth level,
and by Ij the final approximation subband.

leading to 2 × 4 sub-images for the left and right images

at each resolution level j and the decomposition is again

repeated on the approximation sub-images over J resolution

levels. It is worth pointing out that the disparity based vector

lifting scheme is perfectly reversible and that it maps integers

to integers. However, an appropriate choice of the involved

prediction and update operators remains necessary in order to

generate compact representations of (I(l), I(r)). To illustrate

the ability of the considered vector lifting structure to produce

a sparse representation, we provide a simple example (denoted

by VLS-I) of the considered lifting structure. The image

I(l) is first decomposed following the well-known integer-to-

integer 5/3 scheme employed for the lossless mode of JPEG

2000 [23]. According to our notations, the spatial supports

for the prediction and update operators are: P
(l)
j = {−1, 0},

U
(l)
j = {0, 1} and their related weights are: p

(l)
j,−1 = p

(l)
j,0 = 1

2 ,

u
(l)
j,0 = u

(l)
j,1 = 1

4 . The hybrid intra-inter prediction step related

to I(r) is then expressed via the following spatial supports:

P
(r)
j = {−1, 0}, P

(r,l)
j = {0}. In other words, the prediction

mask contains the same spatial prediction indices as those used

in the 5/3 scheme and the co-located position in the left image.

As the detail coefficients can be viewed as prediction errors,

the prediction coefficients p
(r)
j,k and p

(r,l)
j,k can be optimized

at each resolution level by solving the well-known Yule-

Walker equations. Concerning the update step, it is possible to

generalize the optimization procedure described in [25], [26]

in order to adapt the underlying operators to the statistical

properties of the input image. A straightforward alternative

solution that we preferred in our experiments consisted of

choosing the same update operator at all resolution levels, the

update employed for I(r) being the same as the two-tap filter

employed for I(l) in Eq (5).

C. An improved VLS

One of the potential drawbacks of the previous VLS-I

structure is that it generates an update leakage effect, in the

sense that the information coming from the left view, which

is used for the prediction of the right one, is also used,

through the update operator, to compute the approximation

coefficients of the right view. An alternative solution is given

by the predict-update-predict (P-U-P) lifting structure shown

in Fig. 3. The improved decomposition is described as follows:

d̃
(r)
j+1(mx,my) = I

(r)
j (mx, 2my + 1) − ⌊(P

(r)
j )⊤I

(r)
j ⌋, (7)

Ĩ
(r)
j+1(mx,my) = I

(r)
j (mx, 2my) + ⌊(U

(r)
j )⊤d̃

(r)
j+1⌋, (8)

ď
(r)
j+1(mx, my) = d̃

(r)
j+1(mx, my) − ⌊q⊤

j Ĩ
(r)
j+1

+ (P
(r,l)
j )⊤I

(c)
j ⌋, (9)

where notations similar to those used in Section III-B

are used and qj = (qj,k)k∈Qj
is the second intra-

image predictor associated to the reference vector Ĩ
(r)
j+1 =(

Ĩ
(r)
j+1(mx,my− k)

)

k∈Qj

. It is worth noting that a prediction

and an update as in (7) and (8) (with the same weights)

are applied to I(l). In addition, at the last resolution level
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j = J , instead of directly coding the approximation I
(r)
J , we

predict it from the approximation subband at the last level of

the disparity-compensated image and only code the residual

subband e
(r)
J given by:

e
(r)
J (mx,my) = I

(r)
J (mx,my) − ⌊(P

(r,l)
J )⊤I

(c)
J ⌋ (10)

where

P
(r,l)
J =

(
p
(r,l)
J,k

)

k∈P
(r,l)
J

and I
(c)
J =

(
I
(c)
J (mx,my, k)

)

k∈P
(r,l)
J

.

Let the coefficients qj,k and p
(r,l)
j,k (resp. p

(r,l)
J,k ) be optimized

so as to minimize the variance of ď
(r)
j+1 (resp. e

(r)
J ) at each

resolution level j < J (resp. at the coarsest resolution level J).

An interesting property of the proposed decomposition is the

following: in the ideal situation corresponding to I(l) = I(r),

the multiresolution representation of I(r) reduces to zero under

some constraints that we are going to define in the following.

Indeed, in the ideal case when I(l) = I(r), the disparity vectors

are zero: (vx, vy) = (0, 0). Therefore, (9) becomes:

ď
(r)
j+1(mx,my) = d̃

(r)
j+1(mx,my) − ⌊q⊤

j Ĩ
(r)
j+1 + (P

(r,l)
j )⊤I

(l)
j ⌋

= I
(r)
j (mx, 2my + 1)

− ⌊
∑

k∈P
(r)
j

p
(r)
j,kI

(r)
j (mx, 2my − 2k)⌋

− ⌊
∑

k∈Qj

qj,k Ĩ
(r)
j+1(mx,my − k)

+
∑

k∈P
(r,l)
j

p
(r,l)
j,k I

(l)
j (mx, 2my + 1 − k)⌋. (11)

It is worth pointing out that the coefficients qj,k and p
(r,l)
j,k

are optimized, at each decomposition level, by solving the

Yule-Walker equations, the rounding operator being omitted.

Thus, the detail coefficients ď
(r)
j+1(mx,my) can be viewed

as the errors involved in the prediction of d̃
(r)
j+1(mx,my)

by the signal t(mx,my) =
∑

k∈Qj
qj,k Ĩ

(r)
j+1(mx,my −

k) +
∑

k∈P
(r,l)
j

p
(r,l)
j,k I

(l)
j (mx, 2my + 1 − k). In this way, we

can ensure that the detail coefficients of the right image

ď
(r)
j+1(mx, my) are zero if the prediction signal t(mx,my) is

a linear combination of (at least) the same samples as those

used by the reference signal d̃
(r)
j+1(mx,my) to be predicted.

This can be guaranteed provided that the support of the hybrid

predictor P
(r,l)
j satisfies the two following conditions:

(i) The first term I
(r)
j (mx, 2my + 1) in the expression

of d̃
(r)
j+1(mx,my) in Eq. (7) can be found in the

expression of the prediction signal t(mx, my) if

0 ∈ P
(r,l)
j .

(ii) The second term in the expression of d̃
(r)
j+1(mx,my)

involves the samples (I
(r)
j (mx, 2my − 2k))

k∈P
(r)
j

.

These samples can be found in the expression of the

prediction signal t(mx,my) if {2k +1, k ∈ P
(r)
j } ⊂

P
(r,l)
j .

When the conditions (i) and (ii) are satisfied and I
(l)
j = I

(r)
j ,

the decomposition of I
(r)
j first provides a detail subband

ď
(r)
j+1(mx, my) which is equal to zero and an approximation

subband Ĩ
(r)
j+1 which is equal to that of I

(l)
j : Ĩ

(r)
j+1(mx,my) =

Ĩ
(l)
j+1(mx,my). Then, while processing the image along the

columns, the decomposition of Ĩ
(r)
j+1 generates in the same way

a detail subband which is equal to zero and an approximation

subband I
(r)
j+1 which is equal to that of Ĩ

(l)
j+1: I

(r)
j+1(mx,my) =

I
(l)
j+1(mx,my). Finally, the decomposition of ď

(r)
j+1 provides

two null detail subbands since ď
(r)
j+1(mx,my) = 0. Conse-

quently, the resulting multiresolution representation of I
(r)
j

based on the new scheme allows us to generate an approx-

imation subband which is identical to that of I
(l)
j and three

detail subbands equal to zero. Since at each resolution level the

approximation subbands of I
(r)
j and I

(l)
j are equal, the residual

sub-image e
(r)
J in (10) becomes null if 0 ∈ P

(r,l)
J . Therefore,

the P-U-P decomposition satisfies the property of cancelling

the values of the wavelet coefficients of the multiresolution

representation of I(r) provided that {0}∪{2k+1, k ∈ P
(r)
j } ⊂

P
(r,l)
j , when j < J , and 0 ∈ P

(r,l)
J . This is a desirable property

of the considered decomposition in order to get a consistent

joint representation of I(l) and I(r). In contrast, this property

does not hold for VLS-I.

Finally, as a supporting example, we design a scheme, which

will be denoted in the following by VLS-II, by adding a

prediction stage to the conventional 5/3 lifting structure. This

amounts to choose P
(r)
j = {−1, 0}, U

(r)
j = {0, 1}, and

p
(r)
j,−1 = p

(r)
j,0 = 1

2 , u
(r)
j,0 = u

(r)
j,1 = 1

4 , while the last

prediction stage is performed by setting Qj = {−1, 0}, and

P
(r,l)
j = {−3, . . . , 3} for j ∈ {0, . . . , J−1} and P

(r,l)
J = {0}.

The coefficients qj,k and p
(r,l)
j,k are determined by solving the

Yule-Walker equations (still omitting the rounding operations)

and imposing again the symmetry properties: qj,−1 = qj,0 and

p
(r,l)
j,k = p

(r,l)
j,−k (which allows us to obtain linear phase filters

often considered as desirable for image coding [27]).

IV. THEORETICAL ANALYSIS

In this section, we perform a theoretical analysis of the

performances of VLS-I and VLS-II in terms of prediction

efficiency, which is directly related to the coding efficiency

[28], [29]. Firstly, we give the explicit expressions of the

optimal prediction coefficients as well as the variance of

detail signals for the two schemes. Then, we confirm that the

prediction error variance of VLS-II is smaller than the one of

VLS-I.

A. Notations

In the following, we will develop our analysis in the case

of 1D signals, since we have considered a separable scheme.

More precisely, let (mx,my) be a given pixel, we consider
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the pair of 1D signals defined for all n ∈ Z by:




i
(r)
j (n) = I

(r)
j (mx, n)

i
(l)
j (n) =

I
(l)
j (mx + vx,j(mx, 2my + 1), n + vy,j(mx, 2my + 1)).

(12)

We assume that, at a given resolution level j, these signals

satisfy the following symmetric linear statistical model:
{

i
(r)
j (n) = αjaj(n) + βjbj(n)

i
(l)
j (n) = βjaj(n) + αjbj(n)

(13)

where (αj , βj) ∈ R
2 such that α2

j + β2
j = 1, and aj and

bj are two stationary random processes which are mutually

independent. For the sake of simplicity, we assume that

they are zero-mean (which is always verified for wavelets

coefficients) and they have the same autocorrelation function

Rj with Rj(0) > 0. Then, it is easy to show that:

E

[
i
(r)
j (n)i

(r)
j (n − k)

]
= E

[
i
(l)
j (n)i

(l)
j (n − k)

]
= Rj(k),

(14)

E

[
i
(r)
j (n)i

(l)
j (n − k)

]
= sjRj(k) (15)

where sj
△
=sin(2θj) and θj

△
=arg(αj + ıβj) (with ı2 = −1).

At this point, it is worth noticing that the spatial similari-

ties between the samples of i
(r)
j (or i

(l)
j ) are related to the

autocorrelation function Rj . The factor θj controls the cross-

redundancies between the samples of i
(r)
j and i

(l)
j .

B. Minimum prediction error variance of VLS-I

By considering the support and the weights of the predic-

tion operator involved in VLS-I (still omitting the rounding

operators), the detail signal d̃
(r)
j+1(n) is expressed as follows:

d̃
(r)
j+1(n) =i

(r)
j (2n + 1) − p

(r)
j,0

(
i
(r)
j (2n) + i

(r)
j (2n + 2)

)

− p
(r,l)
j,0 i

(l)
j (2n + 1).

(16)

Thus, d̃
(r)
j+1(n) can be viewed as the error in the predic-

tion of i
(r)
j (2n + 1) by the multivariate reference signal

ij(n)
△
=

(
i
(r)
j (2n) + i

(r)
j (2n + 2), i

(l)
j (2n + 1)

)⊤

. The predic-

tion weight vector pj = (p
(r)
j,0 , p

(r,l)
j,0 )⊤ satisfies the normal

equations:

E
[
ij(n)ij(n)⊤

]
pj = E

[
i
(r)
j (2n + 1)ij(n)

]
. (17)

Hence, the optimal weights can be deduced as follows:
{

p
(r)
j,0 = γ1,j(θj)Rj(0)Rj(1)(s2

j − 1)

p
(r,l)
j,0 = γ1,j(θj)sj

(
2Rj(1)2 − Rj(0)2 − Rj(0)Rj(2)

)

(18)

where γ1,j(θj)
△
=

(
2s2

jRj(1)2 − Rj(0)2 − Rj(0)Rj(2)
)−1

.

Consequently, the minimum value ε1,j of the prediction error

variance achieved by VLS-I is:

ε1,j(Rj , θj) =E

[
i
(r)
j (2n + 1)2

]
− p⊤

j E

[
i
(r)
j (2n + 1)ij(n)

]

=γ1,j(θj) cos2(2θj)Rj(0)
(
2Rj(1)2 − Rj(0)2

− Rj(0)Rj(2)
)
. (19)

C. Minimum prediction error variance of VLS-II

Considering now VLS-II (still omitting the rounding oper-

ators), the detail signal ď
(r)
j+1(n) is given by:

ď
(r)
j+1(n) = i

(r)
j (2n + 1) −

1

2

(
i
(r)
j (2n) + i

(r)
j (2n + 2)

)

− qj,0

(
ĩ
(r)
j+1(n) + ĩ

(r)
j+1(n + 1)

)
− p

(r,l)
j,0 i

(l)
j (2n + 1)

−

3∑

k=1

p
(r,l)
j,k

(
i
(l)
j (2n + 1 − k) + i

(l)
j (2n + 1 + k)

)

(20)

where, as shown by (8), the signal ĩ
(r)
j+1(n) can be expressed

as:

ĩ
(r)
j+1(n) = i

(r)
j (2n) +

1

4

(
d̃
(r)
j+1(n − 1) + d̃

(r)
j+1(n)

)

=
1

4

(
3i

(r)
j (2n) + i

(r)
j (2n + 1) + i

(r)
j (2n − 1)

)

−
1

8

(
i
(r)
j (2n − 2) + i

(r)
j (2n + 2)

)
. (21)

Therefore, it can be checked that:

ďj+1(n) = rj(n) − qj,0uj(n) − p
(r,l)
j,0 i

(l)
j (2n + 1)

−

3∑

k=1

p
(r,l)
j,k

(
i
(l)
j (2n + 1 − k) + i

(l)
j (2n + 1 + k)

)

(22)

where

rj(n)
△
=i

(r)
j (2n + 1) −

1

2

(
i
(r)
j (2n) + i

(r)
j (2n + 2)

)
, (23)

uj(n)
△
=

1

2
i
(r)
j (2n + 1) +

5

8

(
i
(r)
j (2n) + i

(r)
j (2n + 2)

)

+
1

4

(
i
(r)
j (2n − 1) + i

(r)
j (2n + 3)

)

−
1

8

(
i
(r)
j (2n − 2) + i

(r)
j (2n + 4)

)
. (24)

From (22), ď
(r)
j+1(n) can be viewed as the error in the prediction

of rj(n) by the reference samples grouped into the vector

r̃j(n) given by:

r̃j(n)
△
=

(
uj(n), i

(l)
j (2n + 1), i

(l)
j (2n) + i

(l)
j (2n + 2),

i
(l)
j (2n − 1) + i

(l)
j (2n + 3), i

(l)
j (2n − 2) + i

(l)
j (2n + 4)

)⊤

.

(25)

The vector pj = (qj,0, p
(r,l)
j,0 , p

(r,l)
j,1 , p

(r,l)
j,2 , p

(r,l)
j,3 )⊤ is found

by minimizing the variance of ď
(r)
j+1(n). Consequently, the

following set of normal equations Γjpj = cj must be solved

where Γj = E
[
r̃j(n)r̃j(n)⊤

]
and cj = E [rj(n)r̃j(n)]. Once

the auto-correlation matrix Γj and the cross-correlation vector



6

cj are determined, the optimal weights are obtained as follows:

qj,0 = − 4γ2,j

(
Rj(0) − 4Rj(1) + 4Rj(3) − Rj(4)

)
, (26)

p
(r,l)
j,0 =γ2,jsj

(
40Rj(0) + 48Rj(1) + 31Rj(2)

+ 20Rj(3) − 8Rj(4) − 4Rj(5) + Rj(6)
)
, (27)

p
(r,l)
j,1 = − γ2,jsj

(
33Rj(0) + 76Rj(1) + 31Rj(2)

− 8Rj(3) − Rj(4) − 4Rj(5) + Rj(6)
)
/2, (28)

p
(r,l)
j,2 =γ2,jsj

(
Rj(0) − 4Rj(1) + 4Rj(3) − Rj(4)

)
, (29)

p
(r,l)
j,3 = − γ2,jsj

(
Rj(0) − 4Rj(1) + 4Rj(3) − Rj(4)

)
/2,

(30)

where γ2,j =
(
38Rj(0) + 56Rj(1) + 31Rj(2) + 12Rj(3) −

6Rj(4) − 4Rj(5) + Rj(6)
)−1

. Finally, the minimal value of

the variance ε2,j of the prediction error generated by VLS-II

is:

ε2,j(Rj , θj) = E
[
r2
j (n)

]
− p⊤

j E [rj(n)r̃j(n)]

=
1

2
γ2,j cos2(2θj)

(
113Rj(0)2 − 240Rj(1)2 + 31Rj(2)2

− 16Rj(3)2 − Rj(4)2 − 4Rj(1)Rj(6) + 28Rj(0)Rj(3)

− 16Rj(0)Rj(4) + 131Rj(0)Rj(2) − 4Rj(2)Rj(5)

+ 3Rj(0)Rj(6) − 16Rj(1)Rj(3) + 16Rj(1)Rj(4)

− 68Rj(1)Rj(2) + 16Rj(1)Rj(5) + 12Rj(2)Rj(3)

+ Rj(2)Rj(6) + 8Rj(3)Rj(4) + 24Rj(0)Rj(1)

− 6Rj(2)Rj(4) − 12Rj(0)Rj(5)
)
. (31)

D. Discussion

It should be noticed that the expressions of ε1,j and ε2,j

are not restricted to a particular form of the autocorrelation

function Rj , and so they are valid for any second-order

stationary process. Furthermore, it is interesting to note that,

unlike ε1,j , ε2,j is separable in Rj and θj . In order to

emphasize the advantages of VLS-I and VLS-II, we will

consider a simple multivariate random process model driven

by two autoregressive processes of order 1, aj(n) and bj(n)
in (13). In this particular case, the autocorrelation function is

given by:

∀k ∈ Z, Rj(k) = σ2
j ρ

|k|
j (32)

where ρj ∈ [−1, 1] is the correlation factor. Therefore, the

variances ε1,j and ε2,j of the prediction errors reduce to:

ε1,j(Rj , θj) =σ2
j γ̃1,j(θj) cos2(2θj)(ρ

2
j − 1), (33)

ε2,j(Rj , θj) =
1

2
σ2

j γ̃2,j cos2(2θj)(1 − ρj)(3ρ
4
j − 16ρ3

j

+ 4ρ2
j + 24ρj + 113), (34)

where γ̃1,j(θj) = (2s2
jρ

2
j − ρ2

j − 1)−1 and γ̃2,j = (ρ5
j − 5ρ4

j −
ρ3

j + 13ρ2
j + 18ρj + 38)−1.

Furthermore, we can check that the variance of the intra

prediction error generated by the 5/3 transform as indicated

by (23) is given by:

E

[
rj(n)2

]
=

1

2
(3 − ρj)(1 − ρj). (35)

Fig. 4(a) shows the variations of E

[
rj(n)2

]
, ε1,j and ε2,j

with respect to ρj for a given value of θj . Thus, by taking

into account the spatial redundancies (controlled by ρj), the

variance ε1,j is smaller than E

[
rj(n)2

]
. Lower values of

the prediction error variance ε2,j are further achieved by the

VLS-II transform for any value of ρj . We are also interested

in comparing the variations of these three prediction errors

with respect to θj for a given value of ρj , as depicted by

Fig. 4(b). It can be noted that VLS-II gives also the best

results by exploiting the inter-image redundancies (controlled

by θj). This study has clearly shown the benefit that can be

drawn from the use of VLS-II compared to VLS-I. This is

explained by the proposed P-U-P structure in which the cross-

view redundancies are exploited in the additional prediction

step in order to avoid injecting the information coming from

the reference image in the approximation of the target image.

V. EMBEDDED CODING OF STEREO IMAGES

A. Coding techniques

After applying a VLS to a stereo image pair, the generated

coefficients must be encoded. However, the coding scheme

should enable quality scalability for progressive reconstruction

purposes. This is basically achieved by sending the coefficients

in decreasing order of their importance. In other words, the

most significant ones are first encoded at a reduced accuracy.

So, a first approximation image is produced, which is further

gradually refined by decoding the least significant coefficients.

To this end, several scalable codecs have been developed [17],

[30], [31], [32]. The main advantage of these embedded codecs

is that the encoder can terminate the encoding at any point,

thereby allowing a target bitrate to be exactly met. Similarly,

the decoder can also stop decoding at any point resulting in

the image that would have been produced at the rate corre-

sponding to the truncated bitstream. In our experiments, we

have employed the JPEG2000 codec, which yields excellent

performance in terms of compression efficiency and quality

scalability.

B. Transmission cost of the prediction coefficients

The prediction coefficients involved in the proposed VLS

decompositions have to be transmitted to the decoder in order

to proceed to the inverse transform with perfect reconstruction

of the stereo pairs. The prediction weights correspond to an

amount of op = 3LJ floating point coefficients, where L is

the number of prediction weights in the VLS and J represents

the number of resolution levels (the factor 3 stems from the

fact that one horizontal prediction and two vertical predictions,

one in the low-pass horizontal subband and the other in the

high-pass horizontal subband, are performed). These weights

are stored on 32 bits, inducing a negligible increase of the

overall bitrate. More precisely, for a stereo pair of size Nx ×
Ny , the transmission cost of the prediction coefficients will
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increase the bitrate achieved by VLS-I and VLS-II, by
op

2NxNy

bits per pixel. For example, when Nx = Ny = 512 and J = 2,

the gain will be decreased by 0.0007 bpp (resp. 0.0018 bpp)

in the case of VLS-I (resp. VLS-II) which is a very small

fraction of the whole data bitrate.

VI. EXPERIMENTAL RESULTS

Simulations have been carried out on 6 image pairs of size

512 × 512 which have been extracted from a SPOT5 scene.

The full scene, which corresponds to an urban zone, is shown

in Fig. 1 and the six image pairs are represented in white

squares. We have also used 4 pairs of natural stereo images

(“fruit”, “pentagon”, “shrub” and “birch”) downloaded from
2 and 3. It should be noted that some stereo images have

significant illumination variations between the views. For this

reason, DC is performed by applying to the original SI the

reversible remapping technique based on sorting permutations

introduced in [33]. This preprocessing step is often used to

improve the coding efficiency of pairs of images [34]. The

disparity map is computed using a block-matching technique

with a 8 × 8 block size and a search area that depends on

the acquisition of the stereo pair (+50 pixels in the horizontal

direction and ±2 in the vertical direction for SPOT5 stereo

images, and +30 pixels in the horizontal direction and ±4 in

the vertical direction for natural stereo images). The SSD is

the chosen matching criterion. The resulting disparity vectors

are losslessly encoded using a median prediction and DPCM

with arithmetic encoding. In order to show the benefit of

the joint coding by VLS, we compare VLS-I and VLS-II

decompositions carried out over J = 2 resolution levels with

some representative SI wavelet-based coding methods:

• The first one is the baseline coder which consists of

coding the left image I(l) and the DC-residual I(e) with a

5/3 transform [16]. In the following, this method will be

designated by scheme B.

• The second one is the subspace projection technique in

the wavelet domain (SPT-WT) proposed by Jiang et al.

[18]. This method consists of applying the DE and DC

steps in the wavelet domain. More precisely, the method

starts by applying the 5/3 transform to the original SI pair.

We denote by {a
(r)
J , (d

(r,o)
j )1≤j≤J , o ∈ {1, 2, 3}} (resp.

{a
(l)
J , (d

(l,o)
j )1≤j≤J , o ∈ {1, 2, 3}}) the resulting approxima-

tion and detail subbands for the right (resp. left) image. A

block-based DE is performed between the corresponding sub-

bands (a
(r)
J , a

(l)
J ) and (d

(r,o)
J , d

(r,o)
J ). Then, a DC of each block

of the image subbands is carried out, leading to the predicted

subbands {â
(r)
J , d̂

(r,o)
j , o ∈ {1, 2, 3}}. Finally, the computation

of the DCD is obtained by projecting each block of the approx-

imation subband of the target image a
(r)
j onto the subspace

S = span{â
(r)
J , d̂

(r,o)
J , o ∈ {1, 2, 3}}, yielding the projection

ǎ
(r)
J = α0â

(r)
J +

∑3
o=1 αod̂

(r,o)
J where (α0, α1, α2, α3) are

computed by a least squares approach. In our experiments, and

in order to ensure a lossless reconstruction, we have encoded a

2http://vasc.ri.cmu.edu/idb/html/stereo/index.html
3http://vasc.ri.cmu.edu/idb/html/jisct/

rounded version of â
(r)
j . Consequently, the approximation sub-

band of the residual image is defined by a
(e)
J = a

(r)
J −⌊ǎ

(r)
J ⌋,

whereas the other detail subbands are simply computed as:

d
(e,o)
j = d

(r,o)
j − d̂

(r,o)
j o ∈ {1, 2, 3}.

• We have also tested a version of JPEG2000 (Annex I of Part

II) dedicated to multicomponent images. It consists first of a

decorrelation of the SI pair. Note that this decorrelation step

must use a reversible transform in order to exactly recover the

original SI pair. As a result, a pair (Ĩ , I(e)) is produced by

using a variation of the Haar transform [35]:




I(e)(mx, my) = I(r)(mx, my) − I(l)(mx + vx,my + vy),

Ĩ(mx + vx,my + vy) = ⌊(I(l)(mx + vx,my + vy)
+I(r)(mx, my))/2⌋ if (mx + vx, my + vy) ∈ S,

Ĩ(mx,my) = I(l)(mx,my) if (mx,my) 6∈ S.
(36)

where S is the set of connected pixels in the left image. Then,

the 5/3 transform is separately applied to I(e) and Ĩ . This

method will be designated in the following by scheme C.

The compression measure is given by the final bitrates of the

multiresolution representations. Let us denote by R(v), R(l),

R(r) and R(e), respectively, the bitrate of the disparity vectors

v and of the images I(l), I(r) and I(e). For the methods based

on the coding of the residual image, we have computed the

following average bitrate:

Rav =
R(l) + R(e) + R(v)

2
(37)

while the average bitrate for the proposed decompositions is

given by:

Rav =
R(l) + R(r) + R(v)

2
. (38)

It can be noticed that the average coding cost R(v) of the

losslessly encoded disparity vectors is around 0.07 bpp. Table

I provides the final bitrates obtained in a lossless context by

applying the JPEG2000 codec used only as an entropy codec

on the produced subbands. Our simulations indicate that VLS-

I results in an average gain of about 0.1 bpp over conventional

methods. If we now compare the performance of VLS-II to

those provided by VLS-I, our experiments show that VLS-II

leads to a further improvement of about 0.1 bpp.

We have also tested the performance of our methods when

applied as a lossy codec. In this case, the improved VLS are

also compared in terms of Peak-Signal-to-Noise Ratio (PSNR)

given by:

PSNR = 10 log10

( 2552

(MSE(l) + MSE(r))/2

)
(39)

where MSE(l) and MSE(r) respectively correspond to the

mean squared error of the left and right images reconstructed

at the rates R(l) and R(r). We also used the SSIM quality

metrics, which is based on models of visual perceptions,

to evaluate the reconstruction quality of each compression

method [36]. We are first interested in studying the evolution

of the PSNR versus the bitrates achieved by VLS-I, VLS-II,

the conventional schemes B and C, and the independent SI

coder. In order to decode the SI pair, two alternatives can
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be envisaged. The most basic one consists of firstly decoding

exactly the reference image. Then, the target image is decoded

by using the original left image and the disparity vectors.

However, in order to minimize the latency at the decoder

side and to achieve the transmission of both images for a

given bandwidth, we choose to simultaneously decode the SI

pair. In other words, the decoding of the target image I(r)

at a specified bitrate R(r) is achieved by using the decoded

left image I
(l)

at a bitrate R(l) without waiting for the final

decoding of the reference image.

• More precisely, for the coding scheme B, the reconstructed

target image I
(r)

is obtained by using the reconstructed left

image I
(l)

and the residual image I
(e)

, decoded respectively

at R(l) and R(e):

I
(r)

(mx, my) = I
(e)

(mx,my)+I
(l)

(mx+vx, my+vy). (40)

Then, by comparing the original images I(l) and I(r) with the

reconstructed ones I
(l)

and I
(r)

, we can evaluate the quality

of reconstruction of the SI pair at the average bitrate defined

by (37).

• Concerning the proposed methods, the reference image is de-

coded at different bitrates in the same way as in the previously

mentioned methods. Then, the right image is decoded at some

bitrate R(r) by using the reference image decoded at a bitrate

R(l). Thus, we still evaluate the quality of reconstruction of the

SI pair at the average bitrate given by (38). Figs. 5 and 6 show

the scalability in quality with this reconstruction procedure

by displaying the variations of the PSNR versus the bitrate

for the SIs pair “shrub” and “spot5-6”, using JPEG2000 as

an entropy codec. These plots show that schemes B and C

(based on the coding of the residual image) outperform the

independent decomposition scheme, especially at low bitrates.

VLS-I performs more poorly than these schemes at low

bitrates but beyond some bitrate it is more performant. Finally,

VLS-II outperforms all the schemes and improves the PSNR

by at least 0.4 dB at high bitrate and the difference becomes

much more important at low bitrates. Figs. 7 and 8 display

a zoom applied on the reconstructed target image of the SI

pairs “pentagon” and “spot5-5” for scheme B and VLS-II. We

notice that the coding of the residual image leads to blocking

artifacts at low bitrates. This problem is significantly reduced

by resorting to VLS decompositions. Fig. 9 illustrates the

reconstructed right image of the “shrub” pair at the decoder

side corresponding to a progressive reconstruction. The quality

of these images is compared both in terms of PSNR and SSIM.

The difference in PSNR (resp. SSIM) between VLS-I and

VLS-II ranges from 1.5 dB to 2 dB (resp. 0.05 to 0.1).

Finally, we propose to compare the different schemes in terms

of execution time. Table II presents the encoding and decoding

time of a Matlab implementation of the tested methods, at 0.2

bpp, for two stereo images of size 512 × 512. Simulations

are carried out by using an Intel Core 2 (3 GHz) computer.

We can note that the proposed methods VLS-I and VLS-II

require respectively an additional average time of about 1.1

and 1.3 seconds compared to the residual image coding based

method (scheme B). However, this difference in execution time

is compensated by the good compression performance of the

proposed VLS.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a new technique for lossy-

to-lossless compression of stereo image pairs. In order to take

advantage of the correlations between the two images, we have

proposed two schemes based on the vector lifting concept.

Unlike conventional methods which generate a residual image

to encode the stereo pair, the proposed schemes use a joint

multiscale decomposition directly applied to the left and the

right views. They exploit the intra and inter-image redundan-

cies by using the estimated disparity map between the two

views. Furthermore, the proposed decompositions guarantee

the perfect reconstruction of the original stereo images. It is

worth pointing out that these decompositions are also adapted

to the content of the images. A theoretical analysis in terms of

prediction error variance was conducted in order to show the

benefits of the underlying VLS structure. Experimental results,

carried out on a set of remote sensing and natural stereoscopic

images, have indicated the good performance of the VLS

over the conventional approaches in terms of bitrate and

quality of reconstruction. In future work, we plan to improve

the proposed decomposition by better taking into account

the effect of occlusions. Also, an extension of the proposed

scheme to multiview/video coding is currently envisaged.
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Fig. 1. Original SI pair “spot5”: the left and right images.

TABLE I
PERFORMANCE OF SI WAVELET-BASED LOSSLESS CODECS IN TERMS OF AVERAGE BITRATE (IN BPP) USING JPEG2000.

Image scheme B SPT-WT scheme C VLS-I VLS-II

spot5-1 3.63 3.59 3.58 3.49 3.35

spot5-2 3.85 3.80 3.78 3.67 3.53

spot5-3 4.27 4.21 4.24 4.03 3.93

spot5-4 4.22 4.18 4.21 4.05 3.92

spot5-5 3.91 3.87 3.89 3.80 3.73

spot5-6 3.89 3.84 3.81 3.73 3.63

fruit 4.05 3.99 3.97 3.78 3.72

shrub 3.73 3.69 3.69 3.81 3.63

birch 4.52 4.49 4.47 4.44 4.37

pentagon 5.37 5.32 5.20 5.12 5.04

Average 4.14 4.09 4.08 3.99 3.88
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Fig. 4. Prediction efficiency: E[r2
j (n)] (in green), ε1,j(Rj , θj) (in blue), ε2,j(Rj , θj) (in red).

TABLE II
EXECUTION TIME OF THE PROPOSED METHODS (IN SECONDS).

Image independent scheme scheme B VLS-I VLS-II

encoding decoding encoding decoding encoding decoding encoding decoding

spot5-6 0.57 0.15 0.83 0.49 2.29 1.20 2.44 1.46

fruit 0.55 0.15 0.84 0.50 2.31 1.25 2.58 1.48
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Fig. 5. PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI pair “shrub”.
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Fig. 6. PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI pair “spot5-6”.
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(a): PSNR=25.40 dB, SSIM=0.59

(b): PSNR=26.16 dB, SSIM=0.67

Fig. 7. Reconstructed target image I(r) of the “pentagon” pair at 0.2 bpp: (a) scheme B; (b) VLS-II.
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(a): PSNR=30.03 dB, SSIM=0.80

(b): PSNR=31.48 dB, SSIM=0.83

Fig. 8. Reconstructed target image I(r) of the “spot5-5” pair at 0.13 bpp: (a) scheme B; (b) VLS-II.
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Bitrate=0.15 bpp, PSNR=27.61 dB, SSIM=0.67 Bitrate=0.15 bpp, PSNR=29.04 dB, SSIM=0.76

Bitrate=0.2 bpp, PSNR=29.7 dB, SSIM=0.77 Bitrate=0.2 bpp, PSNR=31.45 dB, SSIM=0.83

Fig. 9. Reconstructed target image I(r) of the “shrub” pair at different bitrates: left column: VLS-I; right column VLS-II.


