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Geometric aspects of the non-extensive statistical
theory

C. Vignat and J.-F. Berchér

*Université Paris-Est, LIGM, Université de Marne la Vallée
TUniversité Paris-Est, LIGM, ESIEE, 5 bd Descartes, 77454da-Vallée Cedex 2, France

Abstract. The family of Tsallis entropies was introduced by Tsallid 888. The Shannon entropy
belongs to this family as the limit casg— 1. The canonical distributions iR" that maximize
this entropy under a covariance constraint are easily ééras Student-tg(< 1) and Student-r
(g> 1) multivariate distributions. A nice geometrical resuibat these Student-r distributions is that
they are marginal of uniform distributions on a sphere ajéardimensiord with the relationship
p=n+2+ ﬁ. As q — 1, we recover the famous Poincaré’s observation accordinghich

a Gaussian vector can be viewed as the projection of a veoifarmly distributed on the infinite
dimensional sphere. A related property in the aasel is also available. Often associated to Rényi-
Tsallis entropies is the notion of escort distributions. pkevide here a geometric interpretation of
these distributions. Another result concerns a univeysiés in physics, the harmonic oscillator: in
the usual quantum context, the waveform ofheth state of the harmonic oscillator is a Gaussian
waveform multiplied by the degreeHermite polynomial. We show, starting from recent resujts b
Carinena et al., that the quantum harmonic oscillator onespwith constant curvature is described
by maximal Tsallis entropy waveforms multiplied by the exted Hermite polynomials derived
from this measure. This gives a neat interpretation of thre@densive parametegrin terms of the
curvature of the space the oscillator evolves ong as 1, the curvature of the space goes to 0 and
we recover the classical harmonic oscillatoiif

Keywords. nonextensive theory, Tsallis entropy, Rényi entropy
PACS: 02.50.Cw

THE FAMILY OF EXTENDED ENTROPIES

The family of Tsallis entropies [1] of a density probability is defined by

S0 = [, fo B a2t

where the real positive numbaiis called the nonextensivity parameter. By I'Hospital’s
rule we recover the Shannon entropy

lim X:—/flof
qﬂl%() oo X g fx

which is thus a limit case. The family of Rényi entropies [2]

1
Hq(X) = ——lo f
a(X) 1-q g an X
is another set of generalized entropies which containgxdgaiShannon entropy as the
limit caseq = 1. The Rényi and Tsallis have the same extremal distributisinge we



will focus on these maximal entropy distributions, we witihsider indifferently any of
these two families.

In a classical scheme, we study a complex system whose plibpaensity may
evolve according to a complicated law - a differential etprafor example. We wish
to obtain the equilibrium density, that describes the sysaéter relaxation. A general
principle states that for many such systems, the Shannaopgnof the system is
increasing

dH (t)
dt

Since moreover the system is often subject to a constrammtexfample a fixed value of
its energy - its equilibrium probability density can be obéal as the one that maximizes
the Shannon entropy under this energy constraint.

For some systems, this H theorem does not hold, but it may bersithat aHq
theorem holds [5]: under the same energy constraint, txéstse value of the parameter
g such that

> 0.

dHg(t)
dt

so that the equilibrium probability density is now the maMimRényi - or equivalently
Tsallis - entropy under the same constraint, hence ourastén the characterization of
these distributions.

Let us begin with the explicit expression of the maximum Ré&mgropy distributions
under a covariance constraint. We remark first that we maynassll variables centered
since, with an infinite support, the entropy in invariant oy ahift of the variable.

>0,

Theorem 1 The maximum Rényi entropy distributions under the covagaonstraint
EXX =K
where K is an rnx n positive definite matrix are:

« if g > 1, the n—variate Student r-distributions

1- Xz X))ol Xe{zeR"XZIXx<1
fxmz{gw i xefzemprisy

1
-1

(1)

p
with Aq = #, p= +n andX = pK.
Aq (p n)| Z|2
- if 75 < < 1, the n—variate Student t-distributions

frq (X) = Aq (14 XIAIX)F 1 x € BT 0

with Aq = (é)n/\)p m= 2z —nandA = (m-2)K.

For obvious reasons, these distributions will be cadje@Gaussian distributions, remark-
ing that agy — 1, they converge to the classical Gaussian distribution.



A GEOMETRIC CHARACTERIZATION OF THE MAXIMUM
ENTROPY DENSITIES

thecaseq>1

A noticeable property of the above distributions is thattban be simply obtained
from a universal one, namely the uniform distribution on spdere, after some sim-
ple geometric transformation. We first recall that a rand@teterUp is uniformly dis-
tributed on the sphere), 1 in RP if it writes

Np

Up =
Y

whereNp is any orthogonally invariant random vector. For examplgcan be chosen
Gaussian with identity covariance matrix. We have the foiig

Theorem 2 If U is uniformly distributed on the spher#,_1 in RP then any marginal
vector Xe R" of Uy with n < p has a g-Gaussian distribution (1) with =1 and q> 1
provided that

_ X
p—n_ﬁ.

thecaseq< 1

An extension of the preceding result can be given in the gasé as follows.

Theorem 3 If the vector X= OM belongs to the unit ball B then the point M can be
considered as the orthogonal projection opd the point Pc %, 1 (see Figure 1). The
intersection of the line OM with the hyperplangH = {Z € R*|Z,, = 1} defines

a unique point N such that the vector=Y[ONg, .. .,Ol\lk]t follows a Tsallis distribution

with nonextensivity parameter=g ”;nz

[hiss

24

FIGURE 1. the gnomonic projection

We note that the geometric operation that associates the fgloto the pointN is
called a gnomonic projection.




thelimit g — 1 case

It is a well-known result that the maximum Shannon entropyariate distribution
under covariance constraint is the Gaussian distribution

1 XTK-1x
a1 o7
j2mK |2 2

This limit is obviously recovered in the expressions (1) 48 However, we may
wonder how the geometric approach explicited above extémdisis limit case. The
answer is given by Poincaré’s observation.

Theorem 4 (Poincaré’s observation) If Jis a random vector uniformly distributed
on the sphere”;,_1 and if X, with n < p is any vector of | then, as p— +, the
distribution of X, (with fixed n) converges to the Gaussianvariate distribution with
identity covariance matrix.

Our geometric characterization can thus be rephrasedlas/flunder unit covariance
constraint, the maximum Shannon entropy distributionstlaeemarginals of the uni-
form distribution on an infinite dimensional sphere, white maximum Rényi entropy
distributions are the marginals of the uniform distribataf a finite dimensional sphere.

THE ESCORT DISTRIBUTION

In non-extensive statistics, the escort distribution
fa
— m

plays an important role. But its probabilistic meaning ieafoverlooked; we give here
an interpretation of this distribution following a resulf Kullback [4, p.40]. Suppose
that we have two models for some observed data normalizeddoge, say-1,+1];
the first model is that they follow a distributian and the second is that they follow the
most natural one, i.e. the uniform distributioron the interva[—1, +1]. In the absence
of other informations, let us decide that the best chdicéor the data is a trade-off
between these two distributions. To measure this tradeaaffneed a divergence, like
the Kullback-Leibler divergence, so that a reasonable waydte our problem is to look
for the distributionf, such that

fq

f.=arg rrg}inD (g||f) such thatD (g||f) =aD(g||U) (3)

which expresses the fact thiatshould be as close as possiblé tahile remaining close
toU in a positive ratioa as well. The solution of the problem (3) is given by the escort
distribution

where the nonextensivity parameigris related to the ratiax and to the Lagrange
parameter of the problem byg = H1)\+7_Aom Two special cases are (@ = 0 which



obviously impliesg = 1 andf, = f, and (ii) a = + for whichqg= 0 andf, =U. This
result shows that the best trade-off (in the sense definecejbetween a densitlywith
support—1,+1] and its uniform counterpart is exactly the escort distidut

GENERALIZED ENTROPIESAND THE QUANTUM HARMONIC
OSCILLATOR

The quantum harmonic oscillator in the plane is the solubidhe Schrédinger equation
associated with a quadratic potential

H L»Um,n = Em,n‘,Um,n

and with Hamiltonian ,
h 1 202
H=———A+-mow? (% +Y).

With energy unithw and length uni 0w’ the solutions are

2oy?
Ymn (X%, Y) =Hm(X)Hn(y) €™ > y Empn=m+n+1

and the associated probability density is

2

fmn (X, Y) = H2 () € ¥ HZ (y) &7

We remark that the ground state follows the bivariate Gansgistribution and that
the other states are described by the Hermite polynomidigshnare orthogonal with
respect to the Gaussian measure. These polynomials anebéelsby their Rodrigues
formula
nxe dV e

dxn

In a recent paper [3], Carifiena et al. extend these resulteetacase where the
oscillator evolves in a 3-dimensional space of constantature k: the plane when
k = 0, the sphere#> whenk > 0 and the hyperbolic plane when< 0. Their results
are as follows:

Hn (X> = (_1)

Theorem 5 The harmonic oscillator on a space of constant negative afure
—N(N>0)is
X

2
Vith

1
N—-m—3

UNnzy) =bn " 2(y)bh(2);2=

with



and N (x) are orthogonal polynomials given by the Rodrigues formula

2\ N+3 n 2\ -N-3
N (y) — (_1)" X da X
5 (X) = (—1) (1+N) vy (1+N) .

The harmonic oscillator on a space of constant positiveawnev > 0 is

v+nt3 X

W (ZY)=cem T 2(Y)el(2);Z= ——

e (X) = (1-X2) 7 %Y (X)
and%, (X) are the Gegenbauer orthogonal polynomials given by the igads formula

(2T (V)T (0+20) () yodov @ g yomevd

nt T (v)I(2n+2v) dXxn
From this result, we observe that the ground states in batigative and positive curva-
ture - cases are exactty- Gaussian distributions as defined by (1) and (2) respeytivel
As a conclusion, the Tsallis entropy extends naturally tie of the Shannon entropy
for the harmonic oscillator to the case where the underlgpace has constant curva-
ture; moreover, the nonextensivity parametean be related explicitely to the curvature
in such a way that ag — 1, the curvature equals 0; for more details, see [6].

with

_1
2

(gnv (X) =

CONCLUSION

We have shown that a geometric approach can be adopted feraaime aspects of the
nonextensive statistical theory: (i) the maximum entropsfributions can be obtained
in certain cases as geometric projections of the uniforrtridigion on the sphere (ii)

the escort distribution can be considered as a geometde-w# in the Kullback Leibler

divergence sense and (iii) the extension of the quantum ¢waimoscillator to constant
curvature spaces involves naturally the nonextensivepyntMore results of this kind
are under investigation by the authors in order to enhaneeutiderstanding of the
nonextensive theory.
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