Hybrid regularization for data restoration in the presence of Poisson noise

Abstract : During the last five years, several convex optimization algorithms have been proposed for solving inverse problems. Most of the time, they allow us to minimize a criterion composed of two terms one of which permits to "stabilize" the solution. Different choices are possible for the so-called regularization term, which plays a prominent role for solving ill-posed problems. While a total variation regularization introduces staircase effects, a wavelet regularization may bring other kinds of visual artefacts. A compromise can be envisaged combining these regularization functions. In the context of Poisson data, we propose in this paper an algorithm to achieve the minimization of the associated (possibly constrained) convex optimization problem.
Type de document :
Communication dans un congrès
17th European Signal Processing Conference (EUSIPCO'09), Aug 2009, France. 10pp., 2009
Liste complète des métadonnées


https://hal-upec-upem.archives-ouvertes.fr/hal-00621941
Contributeur : Caroline Chaux <>
Soumis le : dimanche 11 septembre 2011 - 16:18:21
Dernière modification le : mercredi 3 juillet 2013 - 20:54:41
Document(s) archivé(s) le : lundi 12 décembre 2011 - 02:20:53

Fichier

hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00621941, version 1

Citation

Nelly Pustelnik, Caroline Chaux, Jean-Christophe Pesquet. Hybrid regularization for data restoration in the presence of Poisson noise. 17th European Signal Processing Conference (EUSIPCO'09), Aug 2009, France. 10pp., 2009. <hal-00621941>

Partager

Métriques

Consultations de
la notice

263

Téléchargements du document

73