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Université Paris-Est/ESIEE,
77454 Marne la Vallée Cedex 2, France
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Abstract. Distributions derived from the maximization of Rényi-Tsallis entropy
are often called Tsallis’ distributions. We first indicate that these distributions can
arise as mixtures, and can be interpreted as the solution of a standard maximum
entropy problem with fluctuating constraints. Considering that Tsallis’ distribu-
tions appear for systems with displaced or fluctuating equilibriums, we show that
they can be derived in a standard maximum entropy setting, taking into account a
constraint that displace the standard equilibrium and introduce a balance between
several distributions. In this setting, the Rényi entropy arises as the underlying
entropy.

Another interest of Tsallis distributions, in many physical systems, is that they
can exhibit heavy-tails and model power-law phenomena. We note that Tsallis’ dis-
tributions are similar to Generalized Pareto distributions, which are widely used
for modeling the tail of distributions, and appear as the limit distribution of ex-
cesses over a threshold. This suggests that they can arise in many contexts if the
system at hand or the measurement device introduces some threshold. We draw a
possible asymptotic connection with the solution of maximum entropy. This view
gives a possible interpretation for the ubiquity of Tsallis’ (GPD) distributions in
applications and an argument in support to the use of Rényi-Tsallis entropies.

Keywords. Rényi entropy, Tsallis entropy, Displaced equilibriums, Generalized
Pareto Distributions.

1 Introduction

The Tsallis (1988) entropy was introduced in statistical physics, originally
for the description of multifractals systems. It is defined by

Sα(fX) =
1

1 − α

(
∫

fX (x)
α

dx − 1

)

(1)

where α is a real parameter and fX an univariate distribution. Tsallis entropy
is simply related to the Rényi (1961) entropy introduced on firm axiomatics
grounds. In the two cases, the Shannon entropy S1(fX)=−

∫

fX(x)log fX(x)dx
is obtained in the limit case α = 1.
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It is also convenient here to introduce the Kullback-Leibler and Rényi
divergences from a density p to q:

I(p||q) =

∫

p(x) log
p(x)

q(x)
dx and Iα(p||q) =

1

α − 1

∫

p(x)αq(x)1−αdx. (2)

The definition of I(p||q) requires that p is absolutely continuous with re-
spect to q. It is understood, as usual, that 0 log 0 = 0 log 0/0 = 0 and that
a log(a/0) = +∞ if a > 0.

Since the introduction of Tsallis entropy in statistical physics, a consid-
erable amount of work has been devoted to the study of these alternative
entropies and to the associated thermostatistics, called nonextensive ther-
mostatistics. Indeed, it is known that for some complex systems, the cele-
brated Gibbs-Boltzmann formalism seems insufficient for a good description.
Applications include fully developed turbulence, Levy anomalous diffusion,
statistics of cosmic rays, econometry, and many others.

For this kind of problems, the formalism of nonextensive statistical me-
chanics (which recovers the classical one as a special limit case) leads to Tsal-
lis’ distributions. In a wide variety of fields, experiments, numerical results
and analytical derivations fairly agree with the formalism and the descrip-
tion by a Tsallis distribution; see for instance Tsallis (2002) and references
therein.

These distributions are of very high interest in many physical systems,
since they can exhibit heavy-tails, and model power-law phenomena (i.e. with
density fX(x) ∝ x−a, a > 0). Indeed, power-laws are especially interesting
since they appear widely in physics, biology, economy, and many other fields,
see the review in Newman (2005).

In physical systems, the equilibrium Boltzmann-Gibbs distribution can
be derived, à la Jaynes (1957), as a maximum entropy distribution, or as a
minimum Kullback-Leibler divergence distribution, for a system submitted
to a mean constraint (the value of the internal energy for instance). This
derives from Sanov theorem whose essence is that, for a parent distribution
q, then in the set of empirical probability distributions compatible with a
given constraint, the one that becomes overwhelmingly preponderant, i.e.
that has the greatest probability, is the nearest to q in the Kullback-Leibler
sense.

Therefore, distributions derived using a maximum Tsallis entropy will
not coincide with those derived for the classical maximum entropy approach
and the maximum Tsallis entropy distribution, in the words of Grendar and
Grendar (2004), will be asymptotically improbable. In view of the success of
nonextensive statistics and of the successful identification of Tsallis’ distribu-
tions in physical problems, there should exist some probabilistic setting that
provides a justification for the maximization of Tsallis entropy. Some such
possible rationales are described in this communication.

The Tsallis’ distributions are obtained as the result of the maximization
of Tsallis entropy (1) subject to a mean constraint and normalization. Two
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kind of constraints have been considered: the standard mean E[X ] = m,
and a generalized α-expectation Eα[X ] = m, which is taken with respect to
the ‘zooming distribution’ p(x)α/

∫

p(x)αdx. These two constraints lead to a
solution with the general form

fX(x) =
1

σ

(

1 +
γ

σ
x
)

−
1

γ
−1

for xF > x ≥ 0, (3)

where σ and γ are respectively the scale and shape parameters; for γ < 0,
the density has a finite support, with xF = −σ/γ if γ < 0 and an infinite
support otherwise. In the first case, the exponent is 1/(α − 1) and σ = 1/β,
and in the second case, the exponent is 1/(1 − α) and σ = 1/β(2 − α). For
γ = 0 (α = 1), the solution reduces to fX(x) = 1/σ exp(−x/σ) for γ = 0.

2 Tsallis distributions as a mixture

Tsallis’ distributions, have been found physically relevant for partially equi-
librated systems, characterized by fluctuations of an intensive parameter,
namely temperature fluctuations. They are obtained if the inverse of tempera-
ture, proportional to the parameter β of a Boltzmann distribution β exp(−βx),
fluctuates according to a gamma distribution. This technique was later gener-
alized as ‘Superstatistics’ by Beck and Cohen (2003) for more general distri-
butions fβ(β). In fact, this approach is the well-known technique of mixing,
which is a standard technique for the derivation of distributions.

It is also possible (see Bercher (2008)), to relate this result to a (stan-
dard) maximum entropy approach, but with fluctuating constraints. Indeed,
the canonical distribution maximizes the Shannon-Boltzmann entropy S =
−

∫

fE(x) log fE(x)dΓ subject to normalization and to the observation con-
straint Ē =

∫

xfE(x)dΓ . The solution is fE(x|Ē) = e−βx−log Z(β), where
Z(β) =

∫

e−βEdΓ is the partition function. The entropy S(Ē) and the po-
tential Φ(β) = log Z(β) are conjugated functionals while Ē and β are conju-

gated variables. This gives the standard relation Ē = − d log Z(β)
dβ

. Hence, it
appears that variations of the thermodynamic β implies variations of its dual
variable Ē and reciprocally. Thus, if the mean energy varies according to a
distribution fĒ(Ē), then this also gives a distribution fβ(β) for β, and the
global distribution becomes

P (E) =

∫ +∞

0

fE(E|Ē)fĒ(Ē)dĒ = P (E) =

∫ +∞

0

fE(E|β)fβ(β)dβ. (4)

This is similar to the ‘Superstatistics’, but with the recognition of the
link between the intensive parameter β and the observable Ē, so that a
model of fluctuations can be naturally introduced for Ē. For instance an
inverse-gamma model for Ē leads to Tsallis distributions1. Then, this dis-
tribution, which arises as the solution of a standard maximum entropy with

1 A gamma model leads to the so-called K-distributions that also have interest in
physical applications.
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(inverse-gamma) fluctuating constraints, can in turn be viewed as the maxi-
mum Rényi-Tsallis entropy solution.

3 Amended MaxEnt

A key for the apparition of Levy distributions and a probabilistic justifica-
tion might be that it seems to appear in the case of modified, perturbated, or
displaced classical Boltzmann-Gibbs equilibrium. This means that the orig-
inal MaxEnt formulation “find the closest distribution to a reference under
a mean constraint” may be amended by introducing a new constraint that
displaces the equilibrium, as discussed in Bercher (2006). The partial or dis-
placed equilibrium may be imagined as an equilibrium characterized by two
references, say r and q. Instead of selecting the nearest distribution to a
reference under a mean constraint, we may look for a distribution p∗ simul-
taneously close to two distinct references: such a distribution will be localized
somewhere ‘between’ the two references r and q. For instance, we may con-
sider a global system composed of two subsystems characterized by two prior
reference distributions. The global equilibrium is attained for some interme-
diate distribution, and the observable may be, depending on the viewpoint
or on the experiment, either the mean under the distribution of the global
system or under the distribution of one subsystem. This can model a frag-
mentation process: a system Σ(A, B) fragments into A, with distribution r,
and B with distribution q, and the whole system is viewed with distribution
p∗ that is some intermediate between r and q. This can also model a phase
transition: a system leaves a state q toward r and presents an intermediate
distribution p∗. This intermediate distribution shall minimize its divergence
to its “parent” distribution q(x), but also be ‘not too far’ from its attractor
r(x). This can be stated as I(p||q)−I(p||r) ≤ θ, or equivalently as I(p||r) ≤ θ′.
Remark that the first constraint can be interpreted as a constraint on the
mean log-likelihood. The problem can be written as follows:







minp I(p||q)
s.t. I(p||q) − I(p||r) ≤ θ

or I(p||r) ≤ θ′
(5)

The optimum distribution solution of these two equivalent problems is

p∗(x) =
r(x)αq(x)1−α

∫

r(x)αq(x)1−αdx
, (6)

The solution of the minimization problem satisfies a Pythagorean equality:
I(p||q) = I(p||p∗) + I(p∗||q) for any distribution p such that θ = I(p||q) −
I(p||r). It is interesting to note that the solution (6) is nothing but the escort

or zooming distribution of nonextensive thermostatistics. With the expression
of the solution p∗(x), we obtain that

I(p∗||q) = αθ − log(

∫

R(x)αq(x)1−αdx) = αθ − (α − 1)Iα(r||q), (7)
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where we have recognized the Rényi divergence.
Suppose now that the original problem is completed by an additional con-

straint. For instance, one classically has to account for an observable. The
observable values are as usual the statistical mean under some distributions.
Depending on the viewpoint, the observable may be a mean under distribu-
tion r, the distribution of an isolated subsystem, or under p∗, the equilibrium
distribution between r and q. Hence, the problem will be completed by an
additional constraint, and we need to adjust the distribution r by further
minimizing the Kullback-Leibler information divergence I(p∗||q), but with
respect to r and subject to the mean constraint. This finally amounts to
the minimization of the Rényi divergence in (7), Iα(r||q) subject to the cho-
sen mean constraint. Of course, the problem is similar to the maximization
of Rényi-Tsallis entropy and leads to the Tsallis distribution (3), but with
respect to the measure q(x).

4 Tsallis distribution as the distribution of excesses

A remarkable feature of the maximum Tsallis entropy construction is its
ability to exhibit heavy tailed distributions. Tsallis distributions have the
form (3) of a Generalized Pareto Distribution (GPD). The interesting point
is that the GPD is employed outside the statistical physics field for modeling
heavy tailed distributions. Examples of applications are numerous, ranging
from reliability theory, traffic in networks, hydrology, climatology, geophysics,
materials science, radar imaging or actuarial sciences.

These uses are related to the POT (Peaks over Threshold) method; see
Leadbetter (1991). The underlying rationale is the Balkema-de Haan-Pickands
theorem (see Pickands (1975)), which asserts that the distribution of excesses
over a (high) threshold often follows approximately a GPD.

Indeed, there are many situations in which the system at hand, the mea-
surement process or device only give access to values of a variate X greater
than a parameter u. Hence, the recorded values are the excesses of X over
the threshold u, that is values of the conditional random variable Xu

Xu = (X − u)1X>u.

The Pickands’ theorem indicates, roughly speaking, that if F is in the domain
of attraction of an extreme distribution, for instance the Fréchet distribution
or Gumbel distribution, the distribution function of excesses FXu

converges
(in the infinite norm sense) to a limit distribution which is nothing else but
a GPD.

To the accumulation of random variables in the classical Central Limit
Theorem corresponds here an increase in the threshold u. Furthermore, the
GPD verifies a remarkable stability property with respect to thresholding, in
the sense that the distribution of excesses of a GPD remains a GPD, with
the same shape (exponent) parameter γ but a different scale parameter.
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It is possible to draw another connection between the distribution of ex-
cesses and the maximum of Tsallis entropy. In Bercher and Vignat (2008), we
indicate that the 1-norm, first moment and Rényi-Tsallis entropy of a suit-
ably normalized version of the excess variable (in the Fréchet and Gumbel
domain) converge asymptotically to constant values. Then, with an appro-
priate choice of α, this shows that the distribution of excesses is necessarily,
asymptotically, the GPD solution of Tsallis’ α-entropy maximization).

We have presented here several possible rationales for the apparition of
Tsallis distributions and of the underlying Rényi-Tsallis entropy. A common
feature is that the distribution or entropy appears in what sounds as excep-
tional situations: modified, perturbated or fluctuating equilibriums, or excess
over a threshold. However, we believe that there is not probably a single
reason that explains the success of Rényi-Tsallis entropy and distribution,
and that the multiplicity of possible rationales is itself an explanation of this
success.
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