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Abstract

We show that Tsallis’ distributions can be derived from ttendard (Shannon) maximum entropy setting, by incorpagedi con-
straint on the divergence between the distribution andrematistribution imagined as its tail. In this setting, wedfam underlying
entropy which is the Rényi entropy. Furthermore, escottidistions and generalized means appear as a direct coerseg|of the
construction. Finally, the “maximum entropy tail distrttan” is identified as a Generalized Pareto Distribution.
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1. Introduction

The maximizers of a special entropy, the Tsallis entrdfdy \yith suitable constraints, are often called Tsallis dis-
tributions. It is worth mentioning that the maximizationafy monotoneous transform of Tsallis entropy, with the
same constraints, leads to the same maximizers. This isrticygar the case of Rényi entropy. In applied fields,
Tsallis distributions ¢-distributions) have encountered a large success becéuleioremarkable agreement with
experimental data, see for instan@e3] and references therein. These distributions are of veglg mterest in many
physical systems, since they can exhibit heavy-tails, andahpower-law phenomena. Indeed, power-laws are espe-
cially interesting since they appear widely in physics|diy, economy, and many other field8.[Tsallis distributions
are similar to Generalized Pareto Distributions, whiclo &lave an high interest in other fields, namely reliabilitg-th
ory [5], climatology [6], radar imaging T] or actuarial sciences8]. Hence, a remarkable feature of the maximum
Tsallis entropy construction is its ability to exhibit hgawailed distributions. Furthermore, the essence of Pidkan
extreme values theorerf][is that the distribution of excesses over a threshold caese under wide conditions, to
a g-exponential 10]. Following the idea that an interest of Tsallis distrilauis is in facta tale of tails in the words

of [11], we suggest that this kind of distributions can also be iolethfrom the familar (Shannon) maximum entropy
setting, by the introduction of an appropriate constraimthis setting, we show that Rényi entropy appears natyrall
and also obtain a natural interpretation of nonextensigereslistributions, ‘generalized means’ and entropic inde
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2. Maximum entropy with ‘tail’ constraint

Jaynes’ maximum entropy principlé?,13] suggests that the least biased probability distributiwat describes a
partially-known system is the probability distributionttvimaximum entropy compatible with all the available prior
information. The Kullback-Leibler information divergem® (P||Q) measures the divergence of a distributirio
another distributiorn).

2.1. Problem setting

We call ‘tail distribution’ the probability density funah (pdf) of the excesses,, of a variateX over a threshold. It

is not only the tail part of the distribution, but is shiftegltotoward the origin, and, as a pdf, is normalized to 1. Let now
P and(@ be two probability density functions. As a guideline, we fusgful to imaging” as the tail distribution of):

in such a case, these distributions are closely relatedid@ars to account more generally for an existing relatigmsh
between two distributions. Therefore, we propose to panameghe relation between a candidate distribution and its
‘parent’ by the valu@ of the Kullback-Leibler divergence between theb(.P||Q) = 0. This define a set of possible
distributions, and the solution is selected in this setpetiog to the maximum entropy principle, as the distribatio
P with maximum entropy. This writes as follows:

maxp H(P) = — [ P(x)log P(z)dx

stDP||Q [ P(x)log 58 dx = 6.

The definition ofD(P||Q) requires thaf is absolutely continuous with respectd It is understood, as usual, that
0log0 = 0log0/a = 0log0/0 = 0 and thatz log(a/0) = 400 if a > 0.

An alternative formulation, which leads to the same sohyticould be to look for the distribution with minimum
divergence tdy, in the set of all distributions with a given entropy:

1)

minp D(P||Q)
st H(P)=29"

)

It is clear that the optimum distribution arising from thiopedure will not be the ‘exact’ tail distribution, sinceeth
distribution of the excesses,, = X — u|X > u, which readqu = X —wuif X > u (conditioned variable), has
the pdfP,(z) = Q(z + u)/Q(u), for > 0, and whereQ (u f+°° Q(z)dx is the so-called survival function. It

is rather the maximum entropy varlant, when the “tall dimtlon" Pis constrained to be at given divergerice® the
parent distributiorf). In fact, we do not need to rely on tails in this constructiout, we simply introduce a constraint
on the Kullback-Leibler divergence to a ‘parent’ distrilout in order to account for a general relationship between
these distributions.

2.2. The maximum entropy solution and first consequences

The solution of () is easily derived using standard maximum entropy reselts,[L4]. In this case, we obtain

1 Alog P(x)

Q(=) (3)

with A the Lagrange parameter associated to the consttdiRt|Q)) = 0, andZ()\) the partition function. It can also
be reduced to

P(r) = ———=Q(x)* T (4)

with .
log Z(\) = (1 — \) log/ Q(z) ™7 da. (5)
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As usual in the maximum entropy setting, the constraint artltfpn function are linked by

leg Z()\) d Alog P(z)
—_— Q (=) =
N d)\l /e dr = 0. (6)
Let us now denote \
¢=31"7 )
Then, it clearly appears on the one hand that the ‘maximunopytail’ (4), which can be rewritten as
Q@)
P 8
@ = T ®)
is theescort distributiorof nonextensive thermostatistics. On the other hand, tpéatition function §) becomes
log 2(0) = 1 log [ Qa)"ds (©)
—q

where the right-hand side has exactly the form of R@myi entropyof distribution@. It shall be mentioned that the
Rényi entropy has no definite concavity fpr> 1 and is not Lesche stabléf,16]. Its use in statistical physics has
been discussed, e.dlq. In our context, it appears as a by-product of our originalglem () which involves the
maximization of the standard Boltzmann-Shannon entropy.

For the optimum distribution, we can also observe that theimam (Shannon) entropy reduces to

H(P)= —/P(m)log P(z)dx (10)
= — . X (0] @ — 10, X
- /P( ) (Mow g ~ 0w 20 d (11)
=) / P(z)log ggg dx + log Z(\) (12)
= —\0 +log Z(\) (13)

where the last relation is obtained using the definitiofi of (1).
Therefore, we obtain that the maximum entropy probléjrhas for optimum value the Rényi entro®) (vith index
¢, minus a linear function of the constraint.

2.3. Solution with an additional observation constraint

Suppose now that the original problem is completed by antiaddi constraint. Indeed, the definition of equilibrium
distributions usually need to take into account obsermatonstraints. For instance, one often has to account for an
observable defined as a mean value under distributiofhis is very classical in maximum entropy approaches. The
constraint writes

m=Ep[X]. (14)
SinceP is the escort distributior8] of @, this mean constraint is also tgeneralized meaconstraint of nonextensive
thermostatistics:
m= [ zP(x /mQ x)ddz. (15)
/ - Tguya | 2@

When P is thought as the ‘tail'm is the well-knownrmean reS|duaI lifetimén reliability theory), orexpected future
lifetime (in survival analysis).

Because of the additional constraint, determination of tteximum entropy tail’ distribution? amounts to further
maximize the entropy inl(3) subject to that constraint. Using)( we obtain

maxg 14— long Y4dax

(16)
s.t. Ep [X] =m

)
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which leads to )

Q) oc (1 = B(1 = g)(z —m))™< an
for the value of the parametér such thatEp [X] = m, with P given by @). As far as the latter is concerned, its
expression is simply

q

P(z) oc (1= B(1 = q)(x —m))™7. (18)
This relation can also be rearranged as
P(e) o< (14 Blg — D)@ —m)) 77", (19)

which is exactly in the form of the Generalized Pareto Distiion [18], with shape factofq — 1) and scale factor
(. Using (7), the exponent in1(9) reduces to- )\, so that the distribution asymptotically behaves as a pdavemwith
exponent-\.

Observe that witl® = 0 in (1), we readily have”® = @ andq = 1, andP in (19) reduces to the classical Boltzmann-
Gibbs canonical distribution.

As a final comment, let us note that the maximum entropy tatrithution isstablewith respect to thresholding, in
the sense that the result remains in the same family, witlopictindexq but a different scale parameter.dfis the
threshold, then the pdf of excesses owewith P the parent distribution, is

P,(z) x Ple+u) x (1+8(g—1)(x+u— m))_q+1_1 x (14+6'(qg—1)(z— m))_“+1_1 , (20)
where the last term, with’ = /(1 + Su), is obtained by factoringl + Su). This highlights the particular status of
the ‘maximum entropy tail distribution’ as a tail distrilo.

3. Conclusion

In this Letter, we followed two ideas. First, that an impottéeature of Tsallis’ distributions is their ability to mebd
the tail of distributions, particularly of those with heawajls. The second idea is that these distributions shoueap

in a standard maximum entropy setting. This led us to th@dhiction of a constraint on the divergence between
two distributions, one of them being imagined as the tairiigtion. This constraint accounts for an existing gehera
relationship between two distributions.

We showed that within this construction, the escort distidns and generalized means of nonextensive statistics
appear very naturally. We also obtained that the originatimam (Shannon) entropy reduces to a maximum Rényi
entropy; or equivalently to the maximization of Tsallis raply. As far as the entropic indexis concerned, it is
simply associated to the value of the divergence betweenliigbution @ and its escort distributiod. Finally,

the ‘maximum entropy tail’ distributions, in the sense a@apin this Letter, are found to be Generalized Pareto
Distributions, which have proved very useful for modelirgptay-tailed distributions in many applied problems. We
believe that this construction can be useful to workersénfigsd.
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