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ABSTRACT

We consider the problem of deconvolving an image with a
priori information on its representation in a frame. Our vari-
ational approach consists of minimizing the sum of a resid-
ual energy and a separable term penalizing each frame coeffi-
cient individually. This penalization term may model various
properties, in particular sparsity. A general iterative method
is proposed and its convergence is established. The novelty
of this work is to extend existing methods on two distinct
fronts. First, a broad class of convex functions are allowed
in the penalization term which, in turn, yields a new class of
soft thresholding schemes. Second, while existing results are
restricted to orthonormal bases, our algorithmic framework
is applicable to much more general overcomplete representa-
tions. Numerical simulations are provided.

1. INTRODUCTION

We consider the problem of recovering an image X in a real
Hilbert space 3¢ from the observation of an image

z=T%+w, (1)

where T': 3¢ — 3 is a convolution operator and where w €
7 stands for an additive noise perturbation.

A central concept in image processing is that of a linear
representation with respect to a sequence of images (ex)ren
in .5#°. Under suitable assumplions, any image x € ¢ can
be expanded as x = ¥y Eer and, thereby, represented by
a sequence (& )rew in R, Various operations (coding, com-
pression, transmission, storage, denoising, etc) on x can then
be conveniently performed on the sequence of coefficients
(& )ken- In early work, the family (e, )ren was an orthonor-
mal basis, as in standard wavelet representations | 15]. More
recently, attention has shifted towards more general, over-
complete representations. A convenient tool that captures
such representations is the notion of a frame. Recall that a
sequence of vectors (e )rew in H is a frame if there exists
two constants 1 and v in |0, +oo| such that

(Vx e ) ,u|x|252 (x e)?<v|x> 2)
keN

The associated frame operator is the injective bounded linear
operator

L: A — C(N): x> (X e))een, 3)
the adjoint of which is the surjective bounded linear operator

L fZ(N) — 0 (Epen — Z Eey. 4)

keM

Gabor frames [10, 18] have been used for many years and
new [rames have been constructed recently, e.g., [ 13]. When
i = vin (2), the frame is tight. A simple example of a tight
frame is the union of m orthonormal bases, in which case p =
v = m. PFor instance, in ## = L?(R?), a dual-tree wavelet
decomposition is the union of two orthonormal wavelet bases
[5]. Curvelets |3] constitute an example of a tight frame of
L2(IR?). Another common example of a frame is a Riesz
basis of .7#°. This corresponds to the case when L is bijective.
Then there exists a (unique) biorthogonal basis (€ )zem such
that, for every x € 5 and a = (& )gen € £2(N),

S =1(x &) (%)

Examples of Riesz bases of L?(R?) include biorthogonal
bases of compactly supported dyadic wavelets having certain
symmetry properties [6]. When L~' = L*, an orthonormal
basis is obtained and (€ )xen = (€x )ken.

The objective of the present paper is to propose a vari-
ational framework to recover an original image X given the
observation model (1) and some a priori information about
the coefficients (£, )zen of X in a frame (e )z, With frame
operator L. We seek an image x = Y,y &rer, where a =
(Ex)ken € £2(N) minimizes the sum of the residual energy
| Tx—z|2/2=|TL*a—z|?/2 and a separable term of the
form ¥pep ¢ (&x). where (@ )ren are convex functions from
R to ]—oo, 40| modeling various a priori properties of the

x=La & (VkeN)

ideal coefficients (& )xen. More formally, our problem can
be stated as follows.

Problem 1 Let:
o T': 3 — 5 be a nonzero bounded linear operator;
® 7€
o (e )xew be a frame of F with frame operator L;

o (O )ren be lower semicontinuous convex functions from
IR to | oo, +oo| such that

(VKEN) >0 and ¢(0)=0.  (6)

Set R =TL*. The objective is to

1
minimize ~|Ra—z| 2+ Y oc(&). (D
a=(E)xcnER(N) 2 k(EN )

When (e;)ien 1S an orthonormal basis and ¢ = @/ - |7
with p € [1,2] and @, > O, Problem 1 has been treated in
[11] and then revisited in a more general algorithmic frame-
work in [9, Section 5.4]. Our analysis will further extend
this setting, allowing for more flexible functions such as
=7  Ptaw -, where oy >0, 5, >0, op + 7 >0,



and p; = 1. These results are new, even in the context of
orthonormal bases.

In Section 2 we provide a brief account of the theory of
proximity operators, which play a central role in our analysis.
In Section 3, we study the class of proximity operators which
are soft thresholders, an essential feature in applications with
sparsity constraints. Our algorithm is presented in Section 4,
along with convergence results. We conclude the paper in
Section 5 with numerical simulations.

2. PROXIMITY OPERATORS

Throughout, the underlying image space is a real Hilbert
space . with scalar product (- | -), norm | - |, and distance
d. 'The indicator function of a nonempty set C C 3¢ is

0, il xeC;
Ic.x|—>{+m1 ifxgéC (8)
and its distance function is d¢: x +— inf|C —x|. I'o(5#%)
is the class of all convex lower semicontinuous functions
from # 10 |—oo, oo that are not identically 0. Now let
fep(A) and y € |0,+oe|. Then, for every x € ¢, the
function y s f(y) + | x — y| 2/2 achieves its minimum at a
unique point denoted by prox . x. The operator

proxf:ji”—>,9’%c’,”:Jr|—>argminf(y)—l—l|x—y|2 9)
yeH 2

is called the proximity operator of f. The reader is referred
to [9] for details on these operators.

Example 2 |9] Let C C 3% be a nonempty closed convex set
and let Pc be the projector onto C. Then prox,. = Fc and

proxd%ﬂ == (Id +Pc)/2.

A property of proximity operators which is central in the
convergence analysis of iterative methods |7], is that they are
(firmly) nonexpansive.

Proposition 3 Let f € I'o(5), x € 5, andy € 3¢ . Then

| prox ;x — prox,y| 24| (x— prox;x) — (y— prox,y)| -
<|x—y/% (0

Hence, | prox,x —prox,y| < |x—y|.

The following example will be a key tool in the present
paper.

Example 4 [9] Let (ey)ren be an orthonormal basis of
let (¢)ren be functions in I'g(R) such that (6) holds and
let f: H# — ]—oo,+o0]: x = Yoenu({x er)). Then f €
Iu(:%d) and

(Vxe ) proxx= Y (proxy (x e))eq. (1)
kel

Example 4 underlines the importance of proximily oper-
ators on the Huclidean real line R. Here are a few examples
that will be used subsequently.

Example 5 [4] Let p € [1,+-oo], let @ € |0, +o00], let

¢:R—| ""’1""“’]17]“’“373!)‘ (12)
and let & € . Then prox, & is given by
sign(§) max{/§| - @.0}, ifp=1,
A
E+ 555 ((1-8)" - (m+8)'7),

where 1= \/E X6 T, ifp=
9w’ sign(&) 16 & g &
<§'If = H'W , IfP—Es
§/(1+20), ifp=2;
sign(g) VLE 1208 —1 ifp=3

n+&\'"? (n-&\"”

( 8o ) _( 8w ) k
where 1 = \/E2+1/(2Tw), ifp=4.

3. PROXIMAL SOFT THRESHOLDING

In many applications, the frame (ex )zen 15 chosen so that the
representation ¥ = Y-y ';g:kek of the original image is sparse
in the sense that “most” of the terms in (&, )zcy are zero.
Intuitively, sparsity can be imposed on a sequence (& Jren €
¢%(N) by setting to zero each coefficient & such that &/ <
@y, for some threshold @y, € |0, +oo|.

Definition 6 A continuous function p: R — R is a soft
thresholder at level ® € ]0,+o0| if (VE € R) p(§) =0 &
| <.

Since we are interested in iterative methods, we cannot
use arbitrary soft thresholder and need lo restrict ourselves to
nonexpansive operators. Many of the soft thresholders em-
ployed in denoising, e.g., [2, 16, 17, 19], do not satisly this
property. However, by Proposition 3, soft thresholders which
are proximity operators are nonexpansive. For example, for
p =1, Example 5 shows that the standard soft thresholding
operation (see Fig. 1) [14] results from the proximity opera-
LoT prox,. . For this reason, this particular soft thresholder
has been used in iterative methods, e.g., [9, 11, 12]. We now
characterize all proximal soft thresholders.

Proposition 7 [8] Take ¢ € I'o(R) such that ¢(0) = 0. Then
proxy is a soft thresholder at level @ € 10, 00| if and only if

 weTo(R),
where { y is differentiable at 0,

L y(0)=0.

Next, we characterize odd proximal soft thresholders and
provide a decomposition rule (see Fig. 1 for illustrations).

o=v+o -, (13)

Proposition 8 8] Let ¢ € I'g(R). Then prox is an odd soft
thresholder at level @ € |0, +-c0| if and only if (13) holds with
Y even. In this case, we have prox = prox,, 0 prox .
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Figure 1: Graph of the proximal thresholder prox,, where ¢
is as in (13) with @ = 1. The dashed line represents the usual
soft thresholder obtained with ¥ = 0. From top to bottom:
@y=005 4O y=09 @ y=d,,/2%@

. ey, if &£ <13
"”“gH{g ~1/3, if & >1.

4. DECONVOLUTION OVER A FRAME

Let us first address the case when (e )i is an orthonormal
basis in Problem 1.

Problem 9 In Problem 1, suppose that (ey)ien = (bi)rem is
an orthonormal basis, so that (7) reduces to

m]ilel‘l;’lglﬂe %] Tx—¢ 2-1—&%%(“ by)). (14)

Proposition 10 [9]

e Problem 9 possesses at least one solution if there exists
p € ]0.+oo| and a function ¢: |0,4oe0| — [0, +oo| such
that ¢(0) =0, lim;_ 1 c(t) = +oo and, for every (& )ken
in P2(N) such that Yyen &% > p,

Y oG >cl Y & 2). (15)

kel ( kelN

e Problem 9 possesses at most one solution if the functions
(¢ ke are strictly convex or if T' is injective.
e Problem 9 possesses exactly one solution if
(Ix €0, +oo|)(Vx € ) | Tx| = K| x].
e Let Y €]0,+4c0|. Then x € 3 solves Problem 9 if and
only if, for every k ¢ N,
(x by) = proxy, (x+yI"(z—Tx) by).

Theorem 11 [9] Suppose that Problem 9 has at least one
solution. Let (Vi)nenw be a sequence in 0, +4-oo| such that
0 < infpen Tn < SUPen Yo < 2/| T| 2 and let (An)ncn be a se-
quence in |0, 1] such that infueng An > 0. For every n € N, let
(Gt i )ken be a square-summable sequence and suppose that

ZRE-N v Ek(—'N an?k:z < oo, Fix xg € S and set

(Vne N) Xnpl = Xp+ lln( E (ﬂ?"jk + an_.k)bk —In)1 (16)
keN

where T = Proxye (Xn+%(1*(z—Txa)) by).  Then

(xn)nen converges weakly to a solution to Problem 9.

In (16), o stands for some lolerance in the computa-
tion of prox,, o {(xa + ”’(T*.(Z_ T'xy)) | be). In certain cases,
weak convergence can be improved to strong convergence.
Thus, the following theorem extends results of [9, 11].

Theorem 12 [8] Suppose that, for every k € N,

=7 Ptoy -, an

where T, € (0,40, @ € [0,4|, pg € ]1,4c],
and py < 2 if oy = 0. In addition, suppose that
inf{f. keN, @, =0} >0, inf{ey keN a#0} >0,
and inf{p; keN, @,=0} > 1. Then Problem 9 has
at least one solution and the convergence is strong in
Theorem I1.

We now turn to the general setting of Problem 1. First,
let us observe that (7) can be rewritlen as

1
minimize | Ra—z|? (la b 18
e 5| Ra—z| +%¢x(<ﬁ ), (18)



where (by)e is the canonical basis of £2(N). This formula-
tion now appears as a special case of Problem 9 in the Hilbert
space £*(N). Thus, we derive at once from Theorems 11
and 12 the following result.

Proposition 13 |9] Suppose that Problem 1 has at least one
solution. Let (Yu)nen be a sequence in |0,+co| such that
0 < infrem Jn < SUPpen o < 2/| K| 2 and let (An)new be a se-
quence in |0, 1] such that inf,cy Ay > 0. For everyn € N, let
(O k)kert be a square-summable sequence and suppose that

Yoen VXken Ongl? < +oo. Fixag € P2(N) and set
(V1€ N) i1 = an+ A (Tap+ Oy —@n)s (19)
where
Tn g = PTOXy g, (an+ (R (z— Ran)) br).  (20)

Then (an)ncn converges weakly to a solution to Problem 1;
the convergence is strong if the conditions of Theorem 12
hold.

5. NUMERICAL EXAMPLES

Frame-based deconvolution. Our goal is 1o Testore the
256 » 256 satellite SPOTS image X shown in Fig. 2 (top)
using Proposition 13. The degraded image z displayed in
Fig. 2 (center) is the result of the convolution of X with a
7 x 7 uniform blur and addition of a zero-mean white Gaus-
sian noise w. The convolution operator I’ satisfies | 1| =1,
the blurred image-lo-noise ratio is 30.28 dB, and the relative
error is 11.05 dB (the decibel value of the relative error be-
tween an image y and X is 20log,, (| x| /| ¥y — x| )).

In this restoration example, we use a 2D dual-tree M-band
decomposition [5] using the 4-band filter bank of |1, Ta-
ble V1| vver 2 resolution levels. 'This frame decomposition
leads to | R| 2 — 7 |4] and we take %, = 0.995. In addition,
we use ¢y = oy « Pk, where p; € {1,4/3,3/2.2} (see Exam-
ple 5 for the explicit expression of the proximily operaltors).
For each subband, the parameters (@y, p;) are chosen adap-
tively.

The restored image shown in Fig. 2 (bottom) has a rel-
ative error of 15.14 dB. This leads to a significant improve-
ment not only in terms of relative error (+-0.40 dB) but also
in visual terms in comparison with deconvolution results ob-
tained with an orthonormal 4-band wavelet basis. Indeed,
directions are better preserved and we observe less artifacts.

Deconvolution using proximal soft thresholders. In this
second experiment, we employ proximity operators derived
from Proposition 8 to restore a 512 x 512 SPOTS satellite
image. The original image is represented in Fig. 3 (top) and
the degraded image z is shown in Fig. 3 (center). Here, T
models convolution with a 3 x 3 uniform blur, | 7| = 1, and
w is a zero-mean white Gaussian noise. The blurred image-
to-noise ratio is 13.25 dB and the relative erroris 12.85 dB.
We consider a decomposition onto a two-dimensional sepa-
rable orthonormal wavelet basis using the same filter bank as
in the previous simulation. In accordance with Theorem 11,
we take 1, = 1.99 and ¢ = 7. - %+ @y -|. For the approx-
imation coefficients, we set @, = 0 and an optimized value
of (T, pi) is chosen with py € {4/3,3/2,2} whereas, for de-
tail coefficients, @, = @ > 0 and (7, py) is subband-adapted
with p, € {4/3,3/2,2,3,4}.

Figure 2: Original image (top), degraded image (center), and
restored image (bottom).






