I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, The dual-tree complex wavelet transform, IEEE Signal Processing Magazine, vol.22, issue.6, pp.123-151, 2005.
DOI : 10.1109/MSP.2005.1550194

L. Pennec and S. Mallat, Sparse geometric image representations with bandelets, IEEE Transactions on Image Processing, vol.14, issue.4, pp.423-438, 2005.
DOI : 10.1109/TIP.2005.843753

E. J. Candès and D. L. Donoho, Curves and Surfaces, chapter Curvelets -a surprisingly effective nonadaptive representation for objects with edges, pp.105-120, 1999.

M. N. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Transactions on Image Processing, vol.14, issue.12, pp.2091-2106, 2005.
DOI : 10.1109/TIP.2005.859376

N. G. Kingsbury, The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters, Proc. IEEE Digital Signal Processing Workshop, 1998.

I. W. Selesnick, Hilbert transform pairs of wavelet bases, IEEE Signal Processing Letters, vol.8, issue.6, pp.170-173, 2001.
DOI : 10.1109/97.923042

R. Yu and H. Ozkaramanli, Hilbert transform pairs of biorthogonal wavelet bases, IEEE Transactions on Signal Processing, vol.54, issue.6, pp.2119-2125, 2006.
DOI : 10.1109/TSP.2006.874293

C. Chaux, L. Duval, and J. Pesquet, Image analysis using a dual-tree M-band wavelet transform, IEEE Transactions on Image Processing, vol.15, issue.8, pp.2397-2412, 2006.
DOI : 10.1109/TIP.2006.875178

URL : https://hal.archives-ouvertes.fr/hal-01330599

L. S. Endur and I. W. Selesnick, Bivariate shrinkage with local variance estimation, IEEE Signal Processing Letters, vol.9, issue.12, pp.438-441, 2002.
DOI : 10.1109/LSP.2002.806054