On the analysis of locative prepositional phrases: the classifier/proper noun pairing
Mathieu Constant

To cite this version:
Mathieu Constant. On the analysis of locative prepositional phrases: the classifier/proper noun pairing. Third International Conference on Advances in Natural Language Processing (PorTAL 2002), 2002, Faro, Portugal, France. pp.33-42. hal-00621446

HAL Id: hal-00621446
https://hal-upec-upem.archives-ouvertes.fr/hal-00621446
Submitted on 10 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the Analysis of Locative Phrases with Graphs and Lexicon-Grammar: the Classifier/Proper Noun Pairing

Mathieu Constant

1 University of Marne-la-Vallée, 5 bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France
mconstant@univ-mlv.fr

Abstract. This paper analyses French locative prepositional phrases containing a location proper name \(Npr \) (e.g. Méditerranée) and its associated classifier \(Nc \) (e.g. mer). The \((Nc, Npr) \) pairs are formally described with the aid of elementary sentences. We study their syntactic properties within adverbial support verb constructions and encode them in a Lexicon-Grammar Matrix. From this matrix, we build grammars in the form of graphs and evaluate their application to a journalistic corpus.

1 Introduction

The analysis of adverbials is an important issue in Natural Language Processing (NLP) due to the fact that adverbials can be inserted anywhere in sentences and thus make sentence analysis more difficult. The adverbials we are concerned with are of the form \(\text{Prep}\ N P \) (cf. Table 1), and more precisely with French locative \(\text{PPs} \) containing a location proper name \(Npr \) (e.g. Paris) and its associated classifier \(Nc \) (e.g. ville), where intuitively \(Npr \) names a place which belongs to a category \(Nc \). Our study is domain-independent but is limited to \(\text{PPs} \) of the internal form:

\[
\text{Loc} \ (\text{Det} + E) \ Nc \ [\text{de} (\text{Det} + E) + E] \ Npr \ (- \text{Loc} X')
\]

\(-:\ \text{dans la (ville de Paris+ mer Méditerranée)}
\)

They can be part of constructions of the form \(N0 \ Vsup \ Loc \ N1 \), e.g.

\(L\text{'annonce de sa promotion a eu lieu dans le village de Nay} \)

Where \(Vsup =: \text{avoir lieu (to take place)} \), \(Npr =: \text{Nay} \) and \(Nc =: \text{village} \).

Our objective is to complete the lists of frozen and semi-frozen adverbials accumulated in the framework of the lexicon-grammar theory [7,9]. Those adverbials are encoded in electronic compound dictionaries (used in the linguistic platform INTEX [16,17]) and in Lexicon-Grammar Matrices (LGMs). Some complex adverbials (e.g. time adverbials [1,11]) have been described with Finite State Transducers (FSTs): they can be seen as an extension of electronic dictionaries [10].
These linguistic resources should be of great use in concrete applications such as information retrieval [4], phrase translation [5] and phrase segmentation for summarization [2,18].

In this paper, we not only automatically relate an Npr to its appropriate classifier (or semantic class) as many studies have already made [3,14,19], but we also provide, for each classifier Nc of a given list, a limited distribution of locative prepositions Loc that enter in the adverbial elementary sentence N0 Vsup Loc X. This provides a solid basis for disambiguating PPs, e.g. distinguishing between arguments of predicates and adverbials. In the example below, as à la ville de Paris cannot be an adverbial (cf. section 3), it is necessarily an argument of the predicate subvention that enters in the elementary structure N0 donner Det subvention à N1.

Le gouvernement a donné une subvention à la dernière minute à la ville de Paris
(At the last minute, the government gave a subvention to the city of Paris)

First, we shall briefly study the construction N0 Vsup Loc X from a linguistic point of view. Then, on the basis of this study, we shall describe how to build locative grammars with LGMs and graphs. Finally, we apply these grammars to journalistic corpora and evaluate the results.

Table 1. Notations

<table>
<thead>
<tr>
<th>S</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Noun Phrase</td>
</tr>
<tr>
<td>PP</td>
<td>Prepositional Phrase</td>
</tr>
<tr>
<td>Vsup</td>
<td>Support verb</td>
</tr>
<tr>
<td>N_i</td>
<td>i-th nominal argument of a predicate (where i is an integer)</td>
</tr>
<tr>
<td>Prep</td>
<td>Preposition</td>
</tr>
<tr>
<td>Loc</td>
<td>Locative Preposition</td>
</tr>
<tr>
<td>Det, Det1</td>
<td>Determiners</td>
</tr>
<tr>
<td>E</td>
<td>Empty element</td>
</tr>
<tr>
<td>UN</td>
<td>The singular indefinite determiners un or une (a or an)</td>
</tr>
<tr>
<td>LE</td>
<td>le, la (the)</td>
</tr>
<tr>
<td>POSS</td>
<td>Possessive determiner</td>
</tr>
</tbody>
</table>

2 A Brief Linguistic Study

This linguistic study is limited to a few properties to clarify the paper. Nc and Npr can be related to each other in the sentence:

(1) (E + Det) Npr être (UN + des) Nc
 − Paris est une ville (Paris is a city)
 La Méditerranée est une mer

Det is a definite determiner whose form only depends on Npr [12]. It is strictly limited to the set {le, la, les}. The sentence (1) can be reduced into three nominal
constructions:

\[\text{Det1 } \text{Nh Nhpr} := \text{la mer Méditerranée (the Mediterranean sea)}\]
\[\text{Det1 Nh de Nhpr} := \text{la ville de Paris (the city of Paris)}\]
\[\text{Det1 Nh de Det Nhpr} := \text{les îles des Canaries (the Canaries Islands)}\]

2.1 Syntactic properties of (Nh, Nhpr) pairs in noun phrases

\text{Det1} is LE or POSS. Note that \textquote{un} is strictly forbidden when the NP does not contain a modifier located at the end of it:

\textit{Une ville de Paris, embellie pour les fêtes}

\textit{Det1} can also be in the plural for some \((Nh, Nhpr)\) like \textit{(île, Canaries)} because \textit{Canaries} are islands \([6]\). \textit{Det1} is also in the plural when several \textit{Nhpr} with the same \textit{Nh} are coordinated such as:

\textit{Les villes de Paris et (de + E) Lyon = la ville de Paris et la ville de Lyon}

A given pair \((Nh, Nhpr)\) does not always enter into all the constructions. Acceptability essentially depends on \textit{Nhpr}:

\textit{L’île (de + E) Malte}
\textit{L’île (*E+ de la + *de) Martinique}
\textit{Les îles (E + de les + *de) Canaries}

Modifiers can also be inserted between the constituents. The markers \textit{M1, M2} and \textit{M3} show where modifiers can be placed into the NPs:

\textit{Det M1 Nh M2 de (E + Det) Nhpr M3}
\textit{Det M1 Nh Nhpr M3}

Moreover, some \((Nh, Nhpr)\) only occur in the nominal forms; that is, they do not occur in the elementary sentence (1). They can be seen as compounds. Modifiers marked \textit{M2} are forbidden in this case:

\textit{*Le Nord est une mer}
\textit{La mer (E + ?dechainede) du Nord me fascine (where du = de le)}

2.2 Syntactic properties of \((Nh, Nhpr)\) pairs in the construction \textit{N0 Vsup Loc N1}

Now, we examine the form \textit{N0 Vsup Loc X’}. We study the distribution of its constituents. Let \textit{Vsup} be être (to be). Let \textit{Loc} be dans, à, en and \textit{E}, very frequent locative prepositions in French. Our study is then reduced to:
(2) N0 être (dans + à + en + E) (Det l+E) Nc de (Det+ E) Npr
(3) N0 être (dans + à + en + E) (Det l+E) Nc Npr

The sequence Loc (Det l+E) is limited to the set \{dans Det l, à det l, en, E\}, but each Nc has its own properties. Precise information on pairs cannot be encoded without at least an exhaustive study of all classifiers Nc, as illustrated in the following examples:

Max est (*E + *en + dans la + *à la) ville de Paris
Max est (*E + en + dans la + *à la) mer (Méditerranée + du Nord)
Max est (E + *en + dans la + ?à la) rue (de la Paix + Censier)
Max est (E + *en +* dans le + à le) métro République

We notice that preposition distribution is different for constructions (2) and (3):

Max est (*E + en + dans la + *à la) région Île-de-France
Max est (*E + *en + dans la + *à la) région de l’Île-de-France

The constructions with the prepositions E and en do not accept modifiers M1 (2.1):

*Belle rue de Rivoli, les passants se marchent les uns sur les autres.
*En magnifique mer Méditerranée, la marée est peu marquée

We notice that the adjective plein can be inserted in these cases, but it is part of the compound preposition en plein:

Max est égaré en pleine mer Méditerranée

3 Construction of Locative Grammars

3.1 NNPR Matrix Description

It has been shown in Section 2 that syntactic properties of NPs essentially depend on Npr (2.1) and on Nc for the prepositional distribution (2.2). A systematic study of Npr is necessary to encode the NPs precisely, which is time consuming due to number of Npr. In this section, our objective is to encode the syntactic properties of the form N0 Vsup Loc X, which essentially depend on the classifiers (but not only [6]). To this end, we established a list of about one hundred Ns. We encoded the properties of each element of the list into a Lexicon-Grammar Matrix (LGM) as in [8]. Each column corresponds to one property; that is, for example, to one PP form. Each row contains one lexical entry (one Nc in our case). At the intersection of a row and a column, a plus sign indicates that the corresponding Nc enters into the corresponding property, a
minus sign, that it does not; and finally, a string indicates lexical information. Lexicon entries are displayed in rows and syntactic properties in columns. We show a sample of the LGM in Table 2.

Table 2. Lexicon-Grammar Matrix PNNpr where P1 =: en Nc Npr; P2 =: en Nc de (E+Det) Npr; P3 =: dans LE Nc Npr; P4 =: dans LE Nc de (E+Det) Npr; P5 =: à LE Nc Npr; P6 =: à LE Nc de (E+Det) Npr; P7 =: Nc Npr; P8 =: Nc de (E+Det) Npr

<table>
<thead>
<tr>
<th>N N plural</th>
<th>Loc N1 P1</th>
<th>Loc N1 P2</th>
<th>Loc N1 P3</th>
<th>Loc N1 P4</th>
<th>Loc N1 P5</th>
<th>Loc N1 P6</th>
<th>Loc N1 P7</th>
<th>Loc N1 P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>fleuve</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gare</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cave</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ghetto</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>glacier</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Golfe</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lie</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.2 Reference Grammars

LGM is a simple and clear representation. Nevertheless, it cannot be directly applied to texts. By transforming the LGM into Finite State Graphs (FSG), the linguistic information encoded in the LGM can be applied. In this sub-section, we describe the process of transforming an LGM into an FSG. A simple way of doing this is to build a reference graph [13, 15]. From this graph that represents the set of all possible forms, a graph will be created for each lexical entry. A transition @i (where i is an integer) is seen as a variable that refers to the i-th column (or property) of the matrix. For each lexical entry (or each row), a new graph is automatically constructed from the reference graph by:

- removing the transition @i when the intersection of the i-th column and the current row is `-`
- replacing @i by `<E>` (the empty element) when `*+`
- replacing @i by the content of the intersection of the i-th column and the current row, by default

The reference graph shown in Graph 1 (Fig. 1) represents a grammar that describes the forms Loc N1 (presented above). Grey boxes represents sub-graphs. The graph LE describes the set {le, la, l'}; Det, the set {le, la, les, l'}; POSS, the possessive determiners like mon, ma, ton, ta, etc.; Npr describes the proper noun by the means of the tag <PRE> that stands for a word beginning with an uppercase letter. It recognises simple forms like Parts and complex ones like Pyrénées-Atlantiques and La Havane. `<@1.N:p>` stands for the plural form of the classifier symbolised by @1 (first column of the matrix): Nc for noun and p for plural. From Graph 1 (Fig. 1), we obtain Graph 2 (Fig. 2) for the lexical entry mer. All forbidden paths are automatically removed.
according to the LGM codification.

Fig. 1, Reference graph

Fig. 2, Grammar for the lexical entry mer

4 Application of Locative Grammars: some Experiments

4.1 Description of the Experiment
We apply locative grammars to a corpus. Our corpus consists of one year of the electronic version of the French newspaper Le Monde (year 1993). It comprises about ten million words. It is of great interest because of the quality of the writing and the large variety of themes that are treated. We undertook three experiments. The first one consists in applying a basic grammar that describes the forms Loc X without modifiers and with a small set of simple prepositions (Section 3). In the second experiment, we enlarge the set of prepositions with around three hundred compound locative prepositions. We manually included those prepositions into a graph (called Loc), after extracting them from the lists provided in [9] (e.g. aux alentours de, en amont de). We assume that these new prepositions have the same behaviour as the preposition dans. That means that if a construction allows the preposition dans, all the compounds are allowed. Finally, we add modifiers in our grammar by inserting a graph Modif at positions M1 and M2 as described in Section 2. Modif represents a general modifier of the form (<ADV>+<E>) <A>, where <ADV> stands for an adverb and <A> for an adjective.

4.2 Results of Experiments

The number of occurrences automatically found in our corpus for experiments 1, 2 and 3 are respectively 1,977, 2,026 and 2,190. We first observe that the PP's described are very rare: maximum 2,190 utterances in a 10-million word text. The classifier nouns occur 35,000 times on their own; that means that 6% of them are part of PP's recognized. Furthermore, we observe that 90% of the forms are base forms; that is, without modifiers and with a simple preposition (dans, à, en or E). Thus, the description of the modifiers and the compound locative prepositions is useful for only 10% of the forms. We provide below a selection of the concordances obtained:

- [S] Un peu plus tard, arrêt à la gare Saint-Lazare, que la patrouille parcourt en tè

 aires se compliquent aussi dans le déja difficile département des Alpes-Maritimes.

- [S] Saddam, situé à une quarantaine de kilomètres à le nord de la ville de Mossoul

 enseigne des Bonnes Choses, rue Falquiere, où le cassoulet mijotait de éternité. [S]

- [S] tre et bancaire à le Trésor, rue de Bercy à Paris, qui vont avoir a émettre environ

 ordement de marchandises dans le port de Rotterdam, le plus important du monde,

 détruite par la guerre. [S] "Dans le village de Jocouy, qui se relève peu a peu

 Yaoundé, ont été recueillis dans la province anglophone du Nord-Ouest (S)

 oirs ont été tués par balles dans le ghoto noir de Tokoza, à l’est de Johannesburg

 a foule de un policier noir, dans la cité de Évaton, la veille du Jour de l’an. [S] L

 00 soldats français déployés dans la région de Hoddour. [S] M. Mellick a fait cette

 piègée, mercredi 10 février, en plein centre du port pétriller de Barrancabermeja.

- [A] son "bouchon " de la rue Vavon ; " Là cult un cassoulet de Castènauardy. [S]

- [B] eu plus tard dans une rue de Napouze, en Cisjordanie occupée. [S] Ancien co

- [C] usée de la SEITA, 12, rue Surcouf, 75007 Paris ; [S] tél. [S] : 45-66-60-17. [S]

- [D] mois après la mise en route de Gabrovo, la catastrophe annoncée ne a pas e

- [E] -vous, c’était le 3 avril, dans le quartier sud de Manchester, à St Peter’s Squar
4.3 Problems encountered

In this section, we briefly list some issues and ways to resolve them. The main problem encountered is noise: 434 utterances out of 2190 should not be recognized (i.e. around 20% of noise), which is not negligible. There are several reasons for this. The first is the use of the empty preposition and the ambiguity of the empty element. Many Loc X' where Nc accepts this preposition belong to a larger NP, as in [A] (in the concordances of 4.2). The application of a grammar representing an NP described in 2.1 with the longest match rule removes a large part of the noise. Therefore, [A] is now recognised as a NP (la rue Vavin). Using this method, we remove 382 utterances. Thus, we significantly reduce noise to 50 utterances i.e. about 2.3%. Errors like [B] should be removable through the application of a grammar of a general NP. Although [C] is well parsed, it could be part of a longer unit, a mail address (12, rue Sercour, 75007 Paris). Note that this case appears 712 times in our corpus (28% of the total occurrences). Another problem comes from the use of modifiers in our grammars: and in [E] (Manchester is not a quartier). The presence of superlatives creates noise such as in [G]: a way of removing it is to construct special superlative grammars. The generality of Npr is another issue. For example, a sequence like la ville de Pagnol (that is translated by Pagnol's city) is recognised: Pagnol is the name of a personality and not the name of a city. This problem can be solved by the use of dictionaries of proper nouns. In [G], the classifier route is part of the French compound compagnon de route (fellow traveller). The application of compound dictionaries should remove the wrong parsing.

5 Conclusion and Perspectives

This paper briefly studies the behaviour of the pair (Nc, Npr) within NPs and PP. From the theory, we encode general syntactic rules into an LGM and then in the form of graphs. We then apply some of these grammars to a journalistic corpus. This method appears to be of great interest for Natural Language Processing even if, at first, it creates considerable noise (4.3). Furthermore, the linguistic study produces precise syntactic information on the sequences of the form Loc X'. It is also a source of semantic information, by associating an Nc to an unknown Npr. Moreover, we project to build dictionaries of locative Npr containing syntactic information or to complete existing ones.
6 References

