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Abstract

We present the state of the art in the field of generating series for
formal languages. The emphasis is on regular languages and rational
series. The paper covers aspects including regular trees and the Kraft-
McMillan inequality as well as necklaces and zeta functions.
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1 Introduction

Generating series, also called generating functions play an important role in
combinatorial mathematics. Many enumeration problems can be solved by
transferring the basic operations on sets into algebraic operations on formal
series leading to a solution of an enumeration problem. The famous paper
by Doubilet, Rota and Stanley 'The idea of generating function’ [41], places
the subject in a general mathematical frame allowing to present in a unified
way the diverse sorts of generating functions from the ordinary ones to the
exponential or even Dirichlet ones.

Their place within the field of combinatorics on words is particular. Tt
was indeed M. P. Schiitzenberger’s point of view that sets of words can be
considered as series in several non-commutative variables. The generating
series of the set appears then as a the image of the non-commutative series
through an homomorphism. This gives rise to a rich domain in which an
interplay between classical commutative algebra and combinatorics on words
is present.

In these lectures, I will survey on several aspects of these generating
functions on words. The emphasis is on the most elementary case corre-
sponding to sets of words which can be defined using a finite automaton,
usually called regular. The corresponding series are actually rational. Two
special cases will be considered in turn. The first one is the case of sets of
wodrs corresponding to leaves in a tree and usually called prefix codes. A
recent result due to Frédérique Bassino, Marie-Pierre Béal and myself [10] is
presented. It completely characterizes the generating series of regular prefix
codes. The second one is the case of sets of words considered up to a cyclic
permutation, often called necklaces. The corresponding generating series
are the zeta functions of symbolic dynamics.

A word on the terminology used here. We constantly use the term regular
where a richer terminology is often used. In particular, what we call here a
regular sequence is, in Eilenberg’s terminology, an N-rational sequence (see
[22], [42] or [18]).



2 Regular sequences and automata

We consider the set A* of all words on a given alphabet A. A subset of A*
is often called a formal language. For sets X,Y C A*, we denote

X+Y=XUY,
XY ={zy|lzeX,yeY}
X" ={z1z9- 2y | z; € X,n >0}

We say that the pair (X,Y") is unambiguous if for each z € XY there is at
most one pair (z,y) € X x Y such that z = zy.

We say that a set of nonempty words X is a code if for each x € X*
there is at most one sequence (z1,z9,...,z,) with z; € X such that z =
T1T2 -+ T, (one also says that X is uniquely decipherable). A particular
case of a code is a prefiz code. It is a set of words X such that no element
of X is a prefix of another one. It is easy to see that such a set is either
reduced to the empty word or does not contain the empty word and is then
a code.

The length distribution of a set of words X is the sequence ux = (un)n>0
with

un = Card(X N A").

We denote by ux the formal series
n>0

which is the ordinary generating series of the sequence ux.

For example, the length distribution of X = A* is u(z) = 12 where
k = Card(A).

The entropy of a formal language X is

h(X) =log(1/p),

where p is the radius of convergence of the series ux(z). It is well defined
provided X is infinite and thus p is finite. If the alphabet A has k elements,
we have h(X) <logk.

The following result relates the basic operations on sets with operations
on series.

PROPOSITION 1 The following properties hold for any subsets X,Y of A*.
(i) If XNY =0, then uxyy = ux + uy.



(i1) If the pair (X,Y) is unambiguous, then uxy = uxuy.
(115) If X is a code, then ux- = 1/(1 —ux).

Proof. The first two formulae are clear. If X is a code, every word in X*
has a unique decomposition as a product of words in X. This implies that
ux» = (ux)"

and thus,
ux< =1l4+ux +---F+uxn+---=1/(1 —uyx).
O

EXAMPLE 1 The set X = {b,ab} is a prefix code. The series ux~ is
1
UX*(Z) = 71 —z—z2.

Let (Fy,)n>0 be the sequence of Fibonacci numbers defined by Fy =0, F =
1, and Fyi9 = Fpy1 + Fy. It follows from the recurrence relation that

- Z
1—2z—22 "
n>0

Consequently, ux=«(z) = >, <o Fat12". It can also be proved by a combina-
torial argument that the number of words of length n in X* is Fj, ;1.

There are several variants of the generating series considered above. One

may first define
u
n>0
where k = Card(A). The coefficients of 2™ in px(z) is the probability for
a word of length n to be in the set X. The relation between ux and px is
simple since px(z) = ux(z/k). Another variant of the generating series is
the exponential generating series of the sequence (uy,)n>o defined as

e(z) = Z %zn
n>0

We will also use the zeta function of a sequence (uy)n>1 defined as

— Un n
((z)—expz i
n>1



2.1 Regular sequences

We consider sequences of natural integers s = (s, )n>0. We shall not distin-
guish between such a sequence and the formal series s(z) =) <, 5n2".

We usually denote a vector indexed by elements of a set @, also called a
Q-vector, with boldface symbols. For v = (v4)4cq we say that v is nonneg-
ative, denoted v > 0, (resp. positive, denoted v > 0) if v, > 0 (resp. v, > 0)
for all ¢ € ). The same conventions are used for matrices. A nonnegative
Q@ x Q-matrix M is said to be irreducible if, for all indices p, g, there is an
integer m such that (M™),, > 0. The matrix is primitive if there is an
integer m such that M™ > 0.

The adjacency matriz of a graph G = (Q, F) is the @ x Q-matrix M
such that for each p,q € Q, the integer M, , is the number of edges from
p to q. The adjacency matrix of a graph G is irreducible iff the graph is
strongly connected. It is primitive if, moreover, the g.c.d of lengths of cycles
in G is 1.

Let G be a finite graph and let I, T' be two sets of vertices. For each
n > 0, let s, be the number of distinct paths of length n from a vertex of T
to a vertex of T'. The sequence s = (s, )n>0 is called the sequence recognized
by (G,I,T) or also by G if I and T are already specified. When I = {i}
and T = {t}, we simply denote (G,i,t) instead of (G, {i}, {t}).

A sequence s = (s, )n>0 of nonnegative integers is said to be regular if it
is recognized by such a triple (G,I,T), where G is finite. We say that the
triple (G, I,T) is a representation of the sequence s. The vertices of I are
called initial and those of T terminal. Two representations are said to be
equivalent if they recognize the same sequence.

A representation (G, I,T) is said to be trim if every vertex of G is on
some path from I to T'. It is clear that any representation is equivalent to
a trim one.

A well known result in theory of finite automata allows one to use a
particular representation of any regular sequence s such that so = 0. One
can always choose in this case a representation (G,i,t) of s with a unique
initial vertex 4, a unique final vertex ¢ # ¢ such that no edge is entering
vertex ¢ and no edge is going out of vertex £. Such a representation is called
a normalized representation (see for example [37] page 14).

Let (G,i,t) be a trim normalized representation. If we merge the initial
vertex 4 and the final vertex ¢ in a single vertex still denoted by %, we obtain
a new graph denoted by G, which is strongly connected. The triple (G, 1, 1)
is called the closure of (G,1,t).

Let s be a regular sequence such that sg = 0. The star s* of the sequence



s is defined by
1

s%(z) = ———.
(2) 1 —s(2)

PROPOSITION 2 If (G,i,t) is a normalized representation of s, its closure
(G,i,1) recognizes the sequence s*.

Proof. The sequence s is the length distribution of the paths of first returns
to vertex i in G, that is of finite paths going from i to i without going
through vertex 7. The length distribution of the set of all returns to ¢ is thus
L+s(2)+8%(2) +...=1/(1 —s(z). O

An equivalent definition of regular sequences uses vectors instead of sets
I,F. Let i be a Q-row vector of nonnegative integers and let t be a Q-
column vector of nonnegative integers. We say that (G,i,t) recognizes the
sequence s = (S, )n>0 if for each integer n > 0

Sy, = iM™t,

where M is the adjacency matrix of G. The proof that both definitions are
equivalent follows from the fact that the family of regular sequences is closed
under addition (see [22]). A triple (G, i,t) recognizing a sequence s is also
called a representation of s and two representations are called equivalent if
they recognize the same sequence.

A sequence s = (sp),>0 of nonnegative integers is rational if it satisfies
a recurrence relation with integral coefficients. Equivalently, s is rational
if there exist two polynomials p(2), ¢(z) with integral coefficients and with
¢(0) =1 such that

Figure 1: The Fibonacci graph.

For example, the sequence s defined by s(z) = T is the sequence of
Fibonacci numbers also defined by sg = 0,51 =1 and sp4+1 = Sy + Sp—1- 1t

is recognized by the graph of Figure 1 with I = {1} and T' = {2}.



Any regular sequence is rational. The converse is however not true (see
Section 3.6).

A theorem of Soittola [42], also found independently in [27] characterizes
those rational sequences which are regular. We say that a rational sequence
has a dominating root, either if it is a polynomial or if it has a real positive
pole which is strictly smaller than the modulus of any other one. A sequence
r is a merge of the sequences r; if there is an integer p such that

p—1
r(z) = Zz’ri(zp).
i=0

THEOREM 1 (SOITTOLA) A sequence of nonnegative integers r = (rp)n>0 s
reqular if and only if it is a merge of rational sequences having a dominating
root.

This result shows that it is decidable if a rational series is regular (see
[42]). In the positive case, there is an algorithm computing a representation
of the sequence.

2.2 Finite automata

We present here a brief introduction to the concepts used in automata theory.
For a general reference, see [38] or [22].

An automaton over the alphabet A is composed of a set @ of states, a
set £ C QQ x A x Q of edges or transitions and two sets I,T C @ of initial
and terminal states.

A path in the automaton A is a sequence

(pla a17p2)7 (p27 a27p3)7 sy (pTLa anaanrl)

of consecutive edges. Its label is the word z = aqjas---a,. A path is suc-
cessful if it starts in an initial state and ends in a terminal state. The set
recognized by the automaton is the set of labels of its successful paths.

An automaton is deterministic if, for each state p and each letter a, there
is at most one edge which starts at p and is labeled by a. The term right
resolving is also used.

ExXAMPLE 2 Let A be the automaton given in Figure 2 with 1 as unique
initial and terminal state. It recognizes the set X* where X is the prefix
code X = {b, ab}.
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Figure 2: Golden mean automaton.

A set of words X over A is regular if it can be recognized by a finite
automaton.

It is a classical result that a set of words is regular iff it can be obtained
by a finite number of operations union, product and star, starting form the
finite sets.

The following result is also classical (see [22] for example).

PROPOSITION 3 FEwery reqular set can be recognized by a finite deterministic
automaton having a unique initial state.

The following theorem is of fundamental importance. It belongs to the
early folklore of automata theory.

THEOREM 2 The length distributions of reqular sets are the reqular sequences.

Proof. Let X be a regular set. By Proposition 3, it can be recognized by a
deterministic automaton 4. Since A is deterministic, there is at most one
path with given label, origin and end. Thus the number of paths of length n
from the initial state to a terminal state is equal to the number u,, of words
of X of length n.

Conversely, let v be a regular sequence enumerating the paths in a graph
G from I to T. We consider the graph G as an automaton with all edges
with distinct labels. Let X be the set of labels of paths from I to T'. The
sequence u is the length distribution of the set X. OJ

ExAMPLE 3 If X = a*b, then

2.3 Beyond regular sequences

There are several natural classes of series beyond the rational ones. The
algebraic series are those satisfying an algebraic equation. More generally,



the hypergeometric series are those such that the quotient of two successive
terms is given by a rational fraction (see [26]).

The class of algebraic series is linked with the class of context-free sets
(see [23]). A typical example of a context-free set is the set of words on
the binary alphabet {a,b} having as many a’s as b’s. We compute below its
length distribution which is an algebraic series.

EXAMPLE 4 The set of words on A = {a,b} having an equal number of
occurrences of a and b is a submonoid of A* generated by a prefix code D.
Since any word of D* of length 2n is obtained by choosing n positions among

2n, we have
2n
UD*(Z): g (n>z2n-

n>0

By a simple application of the binomial formula, we obtain
up-(2) = (1 — 42%)73.
This follows indeed, using the simple identity
() =)
n (=4)n\n )
We have up(z) =1 — 1/up-(z) and thus

up(z) =1 —V1—422

Thus up(z) is an algebraic series, solution of the equation

f2—2f+422=0.

3 Enumeration on regular trees

We now turn to the study of generating sequences linked with trees. Actu-
ally, we do not enumerate trees but objects within a tree like the nodes or
the leaves at each level. This is actually equivalent to the enumeration of
particular sets of words, namely prefix-closed sets and prefix codes, as we
shall see below (Section 4).



3.1 Graphs and trees

In this paper, we use directed multigraphs i.e. graphs with possibly several
edges with the same origin and the same end. We simply call them graphs
in all what follows. We denote G = (Q, F) a graph with Q as set of vertices
and F as set of edges. We also say that G is a graph on the set Q.

A tree T on a set of nodes N with a root r € N is a function T :
N — {r} — N which associates to each node distinct from the root its
father T'(n), in such a way that, for each node n, there is a nonnegative
integer h such that T"(n) = r. The integer h is the height of the node n.

A tree is k-ary if each node has at most k children. A node without
children is called a leaf. A node which is not a leaf is called internal. A node
n is a descendant of a node m if m = T"(n) for some h > 0. A k-ary tree is
complete if all internal nodes have exactly k£ children and have at least one
descendant which is a leaf.

For each node n of a tree T', the subtree rooted at m, denoted T, is the
tree obtained by restricting the set of nodes to the descendants of n.

Two trees S, T are isomorphic, denoted S = T, if there is a map which
transforms S into T by permuting the children of each node. Equivalently,
S = T if there is a bijective map f : N — M from the set of nodes of S
onto the set of nodes of T such that f oS =T o f. Such a map f is called
an isomorphism.

If T is a tree with N as set of nodes, the quotient graph of T is the graph
G = (Q, E) where @ and FE are defined as follows. The set @ is the quotient
of N by the equivalence n = m if T,, = T,,,. Let m denote the class of a
node m. The number of edges from m to 7 is the number of children of m
equivalent to n.

Conversely, the set of paths in a graph with given origin is a tree. Indeed,
let G = (Q, F) be a graph. Let r € @ be a particular vertex and let N be
the set of paths in G starting at . The tree T having N as set of nodes and
such that T(pg, p1,-.- ,0n) = (PoyP1,--- ,Pn—1) is called the covering tree of
G starting at r.

Both constructions are mutually inverse in the sense that any tree T is
isomorphic to the covering tree of its quotient graph starting at the image
of the root.

PROPOSITION 4 Let T be a tree with root r. Let G be its quotient graph and
let © be the vertex of G which is the class of the root of T. For each vertex
q of G and for each n > 0, the number of paths of length n from i to q is
equal to the number of nodes of T at height n in the class of q.

10



A tree is said to be regular if it admits only a finite number of non-
isomorphic subtrees, i.e. if its quotient graph is finite.

Figure 3: A regular tree.

Figure 4: And its quotient graph.

For example, the infinite tree represented on Figure 3 is a regular tree.
Its quotient graph is represented on Figure 4.
3.2 Regular sequences and trees

If T is a tree, its generating sequence of leaves is the sequence of numbers
s = (Sn)n207 where s, is the number of leaves at height n. We also simply
say that s is the generating sequence of T.

The following result is a direct consequence of the definitions.

THEOREM 3 The generating sequence of a reqular tree is a reqular sequence.

Proof. Let T be a regular tree and let G be its quotient graph. Since T
is regular, G is finite. The leaves of T" form an equivalence class t. By

11



Proposition 4, the generating sequence of T is recognized by (G,1,t) where
1 is the class of the root of T'. OJ

We say that a sequence s = (s,),>1 satisfies the Kraft inequality for the

integer k if
ank*” <1,
n>0

i.e. using the formal series s(z) =), <, sn2", if
s(1/k) < 1.

We say that s satisfies the strict Kraft inequality for & if s(1/k) < 1.
The following result is well-known (see [4] page 35 for example).

THEOREM 4 A sequence s is the generating sequence of a k-ary tree iff it
satisfies the Kraft inequality for the integer k.

Let us consider the Kraft’s equality case. If s(1/k) = 1, then any tree T
having s as generating sequence is complete. The converse property is not
true in general (see [22] p. 231). However, it is a classical result that when
T is a complete regular tree, its generating sequence satisfies s(1/k) = 1 (see
Proposition 8).

For the sake of a complete description of the construction described
above in the proof of Theorem 4, we have to specify the choice made at each
step among the leaves at height n. A possible policy is to choose to give as
many children as possible to the nodes which are not leaves and of maximal
height.

If we start with a finite sequence s satisfying Kraft’s inequality, the above
method builds a finite tree with generating sequence equal to s. It is not
true that this incremental method gives a regular tree when we start with a
regular sequence, as shown in the following example.

Let s(z) = 22/(1 — 22?). Since 5(1/2) = 1/2, we may apply the Kraft
construction to build a binary tree with length distribution s. The result is
the tree T'(X) where X is the set of prefixes of the set

Y = ] 010{0,1}".
n>0

which is not regular.

If s is a regular sequence such that so = 0, there exists a regular tree T
having s as generating sequence. Indeed, let (G,i,t) be a normalized repre-
sentation of s. The generating sequence of the covering tree of G starting

12



at 7 is s. If s satisfies moreover the Kraft inequality for an integer k, it is
however not true that the regular covering tree obtained is k-ary, as shown
in the following example.

Let s be the regular sequence recognized by the graph of Figure 5 on
the left with i = 1 and t = 4. We have s(z) = 32%2/(1 — 22). Furthermore
5(1/2) =1 and thus s satisfies Kraft’s equality for £ = 2. However there are
four edges going out of vertex 2 and its regular covering tree starting at 1 is
4-ary. A solution for this example is given by the graph of Figure 5 on the
right. It recognizes s and its covering tree starting at 1 is the regular binary
tree of Figure 3.

Figure 5: Graphs recognizing s(z) = 322/(1 — 2?).

The aim of Section 3.5 is to build from a regular sequence s that satisfies
the Kraft inequality for an integer k a tree with generating sequence s which
is both regular and k-ary.

3.3 Approximate eigenvector

Let M be the adjacency matrix of a graph G. By the Perron-Frobenius
theorem (see [25], for a general presentation and [30], [28] or [11] for the
link with graphs and regular sequences), the nonnegative matrix M has a
nonnegative real eigenvalue of maximal modulus denoted by A, also called
the spectral radius of the matrix.

When G is strongly connected, the matrix is irreducible and the Perron-
Frobenius theorem asserts that the dimension of the eigenspace of the matrix
M corresponding to X is equal to one, and that there is a positive eigenvector
associated to .

Let k be an integer. A k-approzimate eigenvector of a nonnegative matrix
M is, by definition, an integral vector v > 0 such that

Mv < kv.
One has the following result (see [30] p. 152).

13



PROPOSITION 5 An irreducible nonnegative matriz M with spectral radius
A admits a positive k-approzimate eigenvector iff k > .

For a proof, see [30] p. 152. When M is the adjacency matrix of a graph
G, we also say that v is a k-approximate eigenvector of G. The computation
of an approximate eigenvector can be obtained by the use of Franaszek’s
algorithm (see for example [30]). It can be shown that there exists a k-
approximate eigenvector with elements bounded above by k" where n is
the dimension of M [5]. Thus the size of the coefficients of a k-approximate
eigenvector is bounded above by an exponential in n and can be in the worst
case of this order of magnitude.

The following result is well-known. It links the radius of convergence of
a sequence with the spectral radius of the associated matrix.

PROPOSITION 6 Let s be a reqular sequence recognized by a trim represen-
tation (G,I,T). Let M be the adjacency matriz of G. The radius of con-
vergence of s is the inverse of the mazximal eigenvalue of M.

Proof. The maximal eigenvalue A of M is A = limsup,,~q V/||M"||, where || ||
is any of the equivalent matrix norms. Let p be the radius of convergence of
s and, for each p,q € @, let pp, be the radius of convergence of the sequence
upg = (Mpy)n>0- Then 1/X\ = minpp,. Since (G,I,T) is trim, we have
Ppg > p for all p,q € Q. On the other hand, p > min py, since s is a sum of

some of the sequences up,. Thus p; = min pp, which concludes the proof. [

As a consequence of this result, the radius of convergence p of a regular
sequence s is a pole. Indeed, with the above notation, s(z) = i(1 — Mz) 't.
Then det(I — Mz) is a denominator of the rational fraction s, the poles of s
are among the inverses of the eigenvalues of M. And since 1/ is the radius
of convergence of s, it has to be a pole of s. In particular, s diverges for
z=p.

The following result, due to Berstel, is also well-known. It allows one to
compute the radius of convergence of the star of a sequence.

PROPOSITION 7 Let s be a reqular sequence. The radius of convergence of
the series s*(z) = 1/(1—s(z)) is the unique real number r such that s(r) = 1.

For a proof, see [22] pp 211-214, [18] p. 82 or [11] p. 84. As a consequence,
we obtain the following result.

14



PROPOSITION 8 Let s be a reqular sequence and let \ be the inverse of the
radius of convergence of s*. The sequence s satisfies the Kraft strict in-
equality s(1/k) < 1 (resp. equality s(1/k) = 1) if and only if X < k (resp.
A=k).

We have thus proved the following result, which is the basis of the con-
structions of the next sections.

PROPOSITION 9 Let s be a regular sequence satisfying Kraft’s inequality
s(1/k) < 1. Let (G,i,t) be a normalized representation of s and let (G, i,17)
be the closure of (G,i,t). The adjacency matriz M of G admits a k-approzi-
mate eigenvector.

Actually, under the hypothesis of Proposition 9, the graph G itself also
admits a k-approximate eigenvector. Indeed, let W = (W;)4cq-+ be a k-
approximate eigenvector of G. Then the vector w = (wq)geq defined by
w, = Wy for ¢ # t and w; = w; is a k-approximate eigenvector of G. This is
illustrated in the following example.

© e’oe G w

Figure 6: The graphs G and G.

Let us for example consider again s(z) = 322/(1—2?) (see Figure 5). The
sequence s is recognized by the normalized representation (G, 1,4) where G
is the graph represented on the left of Figure 6. The graph G is represented
on the right. The vectors

W = N W
g
Il
N W

are 2-approximate eigenvectors of G and G respectively.

15



3.4 The multiset construction

In this section, we present the main construction used in this paper. It
can be considered as a version with multiplicities of the subset construction
used in automata theory to replace a finite automaton by an equivalent
deterministic one. We use only unlabeled graphs but the construction can be
easily generalized to graphs with edges labeled by symbols from an alphabet.

Our construction is also linked with one used by D. Lind to build a pos-
itive matrix with given spectral radius (see [30], especially Lemma 11.1.9).

We use for convenience the term multiset of elements of a set () as a
synonym of Q-vector. If u = (uq)4ecq is such a multiset, the coefficient v, is
also called the multiplicity of q. The degree of u is the sum quQ ugq of all
multiplicities.

We start with a triple (G,1,t) where G = (Q, E) is a finite graph and i
(resp. t) is a row (resp. column) @Q-vector. We denote by M the adjacency
matrix of G.

Let m be a positive integer. We define another triple (H,J,X) which
is said to be obtained by the multiset construction. The graph H is called
an extension of the graph G. The extension is not unique and depends
as we shall see on some arbitrary choices. The set S of vertices of H is
formed of multisets of elements of @) of total degree at most m. Thus, an
element of S is a nonnegative vector u = (uq)4eq with indices in @ such
that > g0 Ug < m. This condition ensures that H is a finite graph.

We now describe the set of edges of the graph H by defining its adjacency
matrix N. Let U be the S x ()-matrix defined by U, 4 = u4. Then N is any
nonnegative S X S-matrix which satisfies

NU =UM.

Equivalently, for allu € S,

D Nuyv =ul.
veS

Let us comment informally the above formula. We can describe the con-
struction of the graph H as a sequence of choices. If we reach a vertex u
of H, we partition the multiset uM of vertices reachable from the vertices
composing u into multisets of degree at most m to define the vertices reach-
able from u in H. The integer N,y is the multiplicity of v in the partition.
The formula simply expresses the fact that the result is indeed a partition.
In general, there are several possible partitions. The matrix U is called the
transfer matriz of the extension.
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We further define the S-row vector J and the S-column vector X. Let
J be the S-row vector such that J; =1 and J,; = 0 for u #i. Let X be the
S-column vector such that X, = u - t.
Thus
JU =1, X =Ut.

To avoid unnecessary complexity, we only keep in S the vertices reachable
from i. Thus, we replace the set S by the set of elements u of S such that
there is a path from i to u.

The number of multisets of degree at most m on a set ) with n elements

. m+1__ . . . .
is "nifll Thus the number of vertices of a multiset extension is of order

n™. It is polynomial in n if m is taken as a constant.

Figure 7: The graphs G and H.

Let for example G be the graph represented on Figure 7 on the left. The
graph H represented on the right is a multiset extension of G with

i=[1 0], jzm.

The matrices M, N and U are

e[t -y et et -

In this case, the matrix U is invertible and the matrices M, N are conjugate.
The basic property of an extension is the following one.

PROPOSITION 10 Let H be an extension of G. The triple (H,J,X) is equiv-
alent to (G,1i,t).

Proof. For each n > 0, we have

UM" = N"U.
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Consequently, for each integer n > 0,

JN"X = JN"Ut
= JUM"t
= iM"t.

This shows that (H,J,X) recognizes s. O

We will also make use of the following additional property of extensions.

PROPOSITION 11 Let H be an extension of G. Let M (resp. N) be the
adjacency matriz of G (resp. H) and let U be the transfer matriz. If w is
a k-approzimate eigenvector of M, the vector W = Uw is a k-approximate
eigenvector of N. If w is positive, then W is also positive.

Proof. We have
NW =NUw=UMw < kUw =EkEW.

Since all rows of U are distinct from 0, the vector W is positive whenever
w is positive. [

In the next section, we will choose a particular extension of the graph
G called admissible and which is defined as follows. Let w be a positive
Q-vector and let m be a positive integer. Let H be an extension of G, let U
be the transfer matrix, and let W = Uw. We say that H is admissible with
respect to w and m if for each u € S, all but possibly one of the vertices v
such that (u,v) is an edge of H satisfy Wy, = 0 mod m.

THEOREM 5 For any graph G on Q, any positive Q-vector w and any in-
teger m > 0, the graph G admits an admissible extension with respect to w
and m.

The proof relies on the following combinatorial lemma. This lemma is
also used in a similar context by Adler et al. and Marcus [34],[1]. It is
actually presented in [3] as a nice variant of the pigeon-hole principle.

LEMMA 1 Let wi,wa,...,w, be positive integers. Then there is a non-
empty subset S C {1,2,... ,m} such that qus wq is divisible by m.
Proof. The partial sums wq,wi + wo, w1 +ws + w3, ... ,w1 +ws + -+ Wy,

either are all distinct (mod m), or two are congruent (mod m). In the former
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case, at least one partial sum must be congruent to 0 (mod m). In the latter,
there are 1 < p < r < m such that

wy +wy + -+ +wp = wyp +wz+ -+ + w,( mod m)
Hence wpy1 + wpio+ -+ +w, =0 (mod m). O

Proof. of Theorem 5. We build progressively the set of edges of H. Let u be
an element of S. We prove by induction on the degree d(uM) = 3_ o (uM),
of uM that there exists vy,...,v, € S such that uM = >, v; and
Wy, = 0modm for 1 <4 < n—-1 IfuM € S, ie. if dluM) < m,
we choose n = 1 and vi = uM. Otherwise, there exists a decomposition
uM = v + u’ such that d(v) = m. Let wy,ws, ... ,w, be the sequence of
integers formed by the w, repeated v, times. By Lemma 1 applied to the
sequence of integers w;, there is a decomposition v = v/ + r with v/ # 0
such that Wy = 0 mod m. We have uM = v' + w’ with w' = r + u’. Since
d(w') < d(uM), we can apply the induction hypothesis to w', giving the
desired result. [

For an S-vector W, we denote by f%] the S-vector Z such that for each
uin S,

Summing up the previous results, we obtain the following statement.

PROPOSITION 12 Let H be an admissible extension of G with respect to w
and m. Let M (resp. N) be the adjacency matriz of G (resp. H), let U
be the transfer matriz and let W = Uw. If w is a positive k-approximate
eitgenvector of M, then [%] 1§ a positive k-approximate eigenvector of N.

Proof. By Proposition 3.4, the vector W is a positive k-approximate eigen-
vector of N. Thus

NW < kW,

Let u be an element of S. We have W, = 0 mod m for all indices v such
that Nyv > 0 except possibly for an index vg. The previous inequality
implies that

W. W.
Z Nu,v—v+Nuv0 o Sk

Wu
veS—{vo} mn

m m



Since % is a nonnegative integer for v € Q — {vo}, we get
W. W. |44

Z Nu,v—v'I'Nu,vo[i} Sk |'_11'|
m m m

veS—{vo}

This proves that

0

3.5 Generating sequence of leaves

In what follows, we show how the multiset construction allows one to prove
the main result of [10] concerning the generating sequences of regular trees.
We begin with the following lemma, which is also used in the next section.
We use the term leaf for a vertex of a graph without outgoing edges.

LEMMA 2 Let G be a graph on a set Q of vertices. Let i € Q and T C Q.
If G admits a k-approzimate eigenvector w, there is a graph G' and a set of
vertices I' of G' such that

1. G' admits the k-approzimate eigenvector w' with all components equal
to 1.

2. the triple (G,i,w) is equivalent to the triple (G',I',w');

3. Ifw, =1 for all p € T, there is a set of vertices T' of G' such that the
triple (G,1,T) is equivalent to the triple (G',I',T"). Moreover, if T is
the set of leaves of G, we can choose for T' the set of leaves of G'.

We now state the main result of [10].

THEOREM 6 Let s = (sp)n>0 be a reqular sequence of nonnegative integers
and let k be a positive integer such that Y, ,spk™™ < 1. Then there is a
k-ary rational tree having s as its generating sequence.

Proof. Let us consider a regular sequence s and an integer k such that
Y om0 Snk™™ < 1. Since the result holds trivially for s(z) = 1, we may
suppose that sg = 0. Let (G,4,t) be a normalized representation of s and
let G be the closure of G as defined at the beginning of Section 2.1. We
denote by M (resp. M) the adjacency matrix of G (resp. G). Let Q = Q—{t}
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be the vertex set of G. Let A be the spectral radius of M. By Proposition 8,
the matrix M admits a positive k-approximate eigenvector w. By definition,
we have Mw < kw.

Let w be the Q-vector defined by w, = w, for all ¢ € Q and w; = w;.
Then, since there is no edge going out of ¢ in GG, w is a positive k-approximate
eigenvector of M. Let t be the Q)-vector which is the characteristic vector
of the vertex t. Let m = w;.

By Theorem 5 there exists an admissible extension H of G with respect
to w and m. Let U be the transfer matrix and let W = Uw. Since w; =
0 mod m, we may choose H with the following additional property. For all
u € S either uy =0 or u =t.

According to Proposition 10, the sequence s is recognized by (H,J, X)
where J is the characteristic row vector of i and X is the characteristic
column vector of t. This means that s is recognized by the normalized
representation consisting in the graph H, the initial vertex i, that we identify
to 4, and the terminal vertex t, that we identify to ¢.

Let N be the adjacency matrix of H. By Proposition 12, the vector [%]
is a positive k-approximate eigenvector of N. Remark that f%]z = f%]t =
1.

We may now apply Lemma, 2 to construct a triple (H', I', T") equivalent
to (H,i,t). The set T" is the set of leaves of H'. Since [¥]; = 1, I’ is
reduced to one vertex i’. Since H' admits a k-approximate eigenvector with
all components equal to one, the graph H' is of outdegree at most k. Finally
s is the generating sequence of the covering tree of H' starting at ¢/. This
tree is k-ary and regular. [

Let us consider the above constructions in the particular case of the
equality in Kraft’s inequality. In this case, the result is a complete k-ary
tree. Indeed, by Proposition 8, the matrix M admits a positive integral
eigenvector w for the eigenvalue k. We have for all p € Q,

E M, qwq = kwp.
7€Q
As a consequence, for any u # t, we have

> Ny Wy = kWy.
ves

Then the graph constructed in Lemma 2 is of constant outdegree k. Thus
the k-ary tree obtained is complete.
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Let us consider the complexity of the construction used in the proof
of Theorem 6. Let n be the number of vertices of the graph G giving a
normalized representation of s. The size of the integer m = w; is exponential
in n (see Section 3.3). Thus the number of vertices of the graph H is bounded
by a double exponential in n. The final regular tree is the covering tree of
a graph whose set of vertices has the same size in order of magnitude.

Let for example s be the sequence defined by

22 22

=T T i)

Since s(1/2) = 1, it satisfies the Kraft equality for k¥ = 2. The sequence
s is recognized by (G,i,t) where G = (Q, F) is the graph given in Figure
3.5 with @ = {1,2,3,4,5,6,7}, i = 1, t = 4. The adjacency matrix of G
admits the 2-approximate eigenvector represented on Figure 3.5, where the
coefficients of w are represented in squares beside the vertices. Thus m = 3.

Figure 8: A normalized representation of s

An admissible extension H of G with respect to w and m is given in
Figure 9. In this figure, each multiset of .S is represented by a sequence of
vertices with repetitions corresponding to the multiplicity. For example, the
multiset u = (0,0, 1,0,0,2,0) is represented by (3,6,6). The sequence s is
recognized by the normalized representation (H, 1,4), where the initial and
final vertices are named as they appear on Figure 9. The coefficients of W
are represented in squares beside the vertices.

A regular binary tree T having s as generating sequence of leaves, is
given in Figure 10. In this figure, the nodes have been renumbered, with
the children of a node with a given label represented only once. The leaves
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Figure 9: An admissible extension H.

of the tree are indicated by black boxes. The tree itself is obtained from
the graph of Figure 9 by application of the construction of Lemma 2. For
example, the vertex (2,5), which has coefficient 6 in W, is split into two
vertices named 2 and 3 in the tree.

This example was suggested to us by Christophe Reutenauer [39]. To
check directly that the length distribution is equal to s(z), one may compute
from the graph the following regular expression of s(z) and check by an
elementary computation (possibly with the help of a symbolic computation
system) that it is equal to s(z).

s(z) = (2%)%(22% + 2" + 227 + 2% + (2 + 32°)(52%)*32%). (1)

(note for a reader unfamiliar with regular expressions: the first factor (2°)*
corresponds to the vertex labeled 1 at level 6 of the tree. The term 2z +
24 4+ 22° 4+ 25 corresponds to the leaves reached by a path which does not
use a vertex labeled 5. The factor (22 +32°)(52%)* corresponds to the paths
from the root to a vertex labeled 5. Finally, the factor 3z% corresponds to
the direct paths from 5 to a leaf.)

This example shows an interesting feature of this problem. In fact, from
the point of view of regular expressions, the difficult operation in this prob-
lem is the sum. It would be a simple matter to build a rational tree for each
term of the sum in the expression (1) (see the example of Figure 5). The
difficulty would then be to merge these trees to obtain one corresponding to
the sum.
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Figure 10: A regular binary tree with length distribution s.

A curious consequence of Theorem 6 is the following property of regular
sequences.

COROLLARY 1 Let k > 2 be an integer and let u be a regular sequence
such that w(1/k) < 1 and u(0) = 0. Then there ezist k regular sequences
U, ... ,u such that u;(1/k) <1 and

k
u(z) = Zzul(z)
i=1

Proof. Tt is a simple consequence of Theorem 6. Indeed, if X is a regular
prefix code on the k element alphabet A, then X =" _, aX, where each
X, is a regular prefix code on the alphabet A. [

We don’t know of a direct proof of this result.

3.6 Generating sequence of nodes

In this section, we consider the generating sequence of the set of all nodes
in a tree instead of just the set of leaves. This is motivated by the fact that
in search trees, the information can either be carried by the leaves or by
all the nodes of the tree. We will see that the complete characterization
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of the generating sequences of nodes in regular trees (Theorem 7) is more
complicated than the one for leaves.

Soittola (see [42] p. 104) has characterized the series which are the gen-
erating sequences of nodes in a regular tree. We characterize the ones that
correspond to k-ary trees (Theorem 7). We also give a more direct construc-
tion in a particular case (Theorem 8).

Let T be a tree. The generating sequence of nodes of the tree T is the
sequence t = (t,)n>0, where t,, is the number of nodes of T" at height n. The
sequence t satisfies tg < 1 and, moreover, if T' is a k-ary tree, the condition

tn < ktn—l

for all n > 1. If T is a regular tree, then ¢ is a regular sequence. We
now completely characterize the regular sequences ¢ that are the generating
sequences of nodes of a k-ary regular tree.

THEOREM 7 Let t = (tn)nZO be a regular sequence and let k be a positive
integer. The sequence (tn)n>0 is the generating sequence of nodes of a k-ary
reqular tree iff it satisfies the following conditions.

(i) the convergence radius of t is strictly greater than 1/k,
(ii) the sequence s(z) = t(z)(kz — 1) + 1 is regular.

Proof. Let us first show that the conditions are necessary. Let T be the
complete k-ary tree obtained by adding 7 new leaves to each node that has
k — i children. Since T is a regular tree, T is also regular.

Let s be the generating sequence of leaves of T. Since T is complete,
s(1/k) = 1. Since kt, = sp41 + tp41 for all n > 0, we have

1—s(2) =t(2)(1 — k2).

Since s is a regular sequence, its radius of convergence is strictly larger than
1/k (see Section 3.3). Since the value of the derivative of s at z = 1/k is
kt(1/k), the same holds for t. This proves the necessity of the conditions.

Conversely, if ¢ satisfies the conditions of the theorem, the regular series
s(z) = t(z)(kz — 1) + 1 satisfies s(1/k) = 1. Thus, by Theorem 6, s is the
generating sequence of leaves of a complete k-ary regular tree. The internal
nodes of this tree form a k-ary regular tree whose generating sequence of
nodes is ¢. [J

The sequence s defined by condition (ii) is rational as soon as t is regular
and therefore rational. Given a regular sequence ¢, condition (ii) is decidable
in view of the theorem of Soittola (Theorem 1).
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We may observe that condition (ii) of the theorem implies the non-
negativity of the coefficients of the series s and thus the inequality Vn >
1,¢, < kt,_1. It also implies that ¢y < 1.

We now show that there are regular sequences ¢ satisfying ¢, < kt,_1
for all n > 1, and condition (i) of the theorem and such that the sequence
s(z) = t(z)(kz — 1) + 1 is not regular. The example is based on an example
of a rational sequence with nonnegative coefficients and which is not regular
(see [18] page 95). Let

= b*"cos?(nd)

with cos(#) = § where the integers a, b are such that b # 2a and 0 < a < b.
The sequence r is rational, has nonnegative integer coefficients and is not
regular. Its poles are b%, b%eZ”’ and %67219_ We now define the sequence ¢

as follows:

ton = kh7
tont1 = K"+

We also assume that b> < k. By Soittola’s theorem, the sequence t is
regular since it is a merge of rational sequences having a dominating root.
The convergence radius of ¢ is ﬁ > % Therefore the sequence t satisfies

the first condition of Theorem 7. Let s be the sequence defined by s(z) =
t(z)(kz — 1) + 1. If h = 2p is even,

sp = ktp1—ty
= kP b krpoy — kP 1 =krp_q + L.

Thus the sequence s is not regular.

The above example does not work for the small values of &k (the least
value is k£ = 10). We do not know of similar examples for 2 < k < 9.

We finally describe a particular case of Theorem 7 in which one has a
relatively simple method, based on the multiset construction, to build the
regular tree with a given generating sequence of nodes. This avoids the use
of Soittola’s characterization which leads to a method of higher complexity.

A primitive representation of a regular sequence s is a representation
(G,i,t) such that the adjacency matrix of G is primitive. The following re-
sult is proved in [8] with a different proof using the state-splitting method of
symbolic dynamics. The proof given in [10] relies on a simpler construction.

THEOREM 8 Let t = (t,)n>0 be a regular sequence and let k be a positive
integer such that to = 1, t, < kt,—1 for all n > 1 and such that
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(i) the convergence radius of t is strictly greater than 1/k,
(ii) t has a primitive representation.

Then (tn)n>0 i the generating sequence of nodes by height of a k-ary regular
tree.

The proof of this theorem given in [10] uses the multiset construction.
It relies on the following lemma.

LEMMA 3 Let M be a primitive matriz with spectral radius \. Let v be a
non-null and nonnegative integral vector and let k be an integer such that
A < k. Then there is a positive integer n such that M™v is a positive k-
approximate eigenvector of M.

Proof. For a primitive matrix M with spectral radius A, it is known that the
sequence ((%)n)nzo converges to r.l where r is a positive right eigenvector
and 1 a positive left eigenvector of M for the eigenvalue A with 1-r =1 (see
for example [30] p. 130). Thus (%V)nzo converges to r.l.v which is equal
to pr where p is a nonnegative real number. Since Mr = Ar, we get, for a
large enough integer n,
MTL n
Moy shoe

or equivalently MM"v < kM"™v. If n is large enough, we moreover have
M"v > 0 since M is primitive. [

The proof of Theorem 8 uses a shift of indices of the sequence to obtain
a new sequence to which a simple application of the multiset construction
can be applied. We illustrate it on an example.

Figure 11: A primitive representation G of .
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Let ¢t be the series recognized by the graph G of Figure 11 with

1

i=[1 0 0] andt= |1

0

The adjacency matrix M of G is the primitive matrix

1 10
M=10 01
1 00

Tts spectral radius is less than 2. The hypothesis of Theorem 8 are thus
satisfied. We have

2 3
M?*t = |1| and Mt = |2
2 2

Since M3t < 2M?t, the vector W = M?t is an approximate eigenvector of
M (the existence of such a vector is asserted by Lemma 3). Let w = M?2t.

Applying Lemma 2, we obtain from G the graph G’ represented on the
left side of Figure 12 . Moreover, (G, i, w) is equivalent to (G’, I',w') where
I' is the set of initial vertices indicated on Figure 12 and w is the vector with
all components equal to 1. The covering trees 771 and Tj 3 of G’ starting
at the vertices of I' give, with the appropriate shift of indices, the binary
regular tree T represented on the right side of Figure 12 (the nodes of the
tree have been renumbered).

4 Generating sequences of prefix codes

There is a close connexion between trees and prefix codes or prefix-closed
sets of words. We present below the translation of some of the notions and
results seen before in terms of prefix codes.

4.1 Trees and prefix codes

Let R be a set of words on the alphabet A = {0,1,... ,k —1}. The set R
is said to be prefiz-closed if any prefix of an element of R is also in R. The
set X of words which are not a proper prefix of a word in R is a prefix code,
called the prefix code associated to R.
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Figure 12: The graph G’ and the tree T.

When R is prefix closed, we can build a tree T'(R) as follows. The set of
nodes is R, the root is the empty word € and T'(ajasz - an) = a1a9- - ap_1.
The leaves of T' from a prefix code which is the prefix code associated to R.
The generating sequence of T' is the gerating sequence of X.

Let for example R = {¢,0,1,10,11}. The tree T'(R) is represented on
Figure 13. The associated prefix code is X = {0, 10, 11}.

Figure 13: The tree T'(X).

Let X be a prefix code on an alphabet with k& symbols. It is clear that
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its length distribution u = (u,),>1 satisfies Kraft’s inequality

Z upk™™ <1,

n>1

or equivalently u(1/k) < 1. The number u(1/k) can actually be interpreted
as the probability that a long enough word has a prefix in X.

There is also a connexion with the notion of entropy. Actually, if X is
a prefix code, the entropy of X™* is equal to log(1/p) where p is the solution
of the equation ux(p) = 1. Thus Kraft’s inequality expresses the fact that
h(X*) < logk.

Conversely, Kraft-McMillan’s theorem states that for any such sequence
t = (un)n>1, there exists a prefix code X on a k-symbol alphabet such that
U =ux.

The equality case in Kraft’s inequality corresponds to a particular class
of prefix codes often called complete. A prefix code X on the alphabet A is
complete if any word on A has either a prefix in X or is a prefix of a word
of X.

Theorem 6 shows that the generating sequences of regular prefix codes
are exactly the regular sequences satisfying Kraft’s inequality.

4.2 Bifix codes

We investigate here the length distributions of a particular class of prefix
codes, called bifix. Several other classes of prefix codes could give rise to a
similar study (for a description to these classes, see [21]).

The definition of a suffix code is symmetric to the definition of a prefix
code. It is a set of words X such that no element of X is a suffix of another
one. The notion of a complete suffix code is also symmetric. A bifix code is
a set X of words which is both a prefix and a suffix code.

Any set of words of fixed length is obviously a bifix code but there are
more complicated examples.

EXAMPLE 5 The set
X = {aaa, aaba, aabb, ab, baa, baba, babb, bba, bbb}

is a complete prefix code pictured in Figure 14. Tt is also a complete suffix
code as one may check by reading its words backwards.

Surprisingly, it is an open problem to characterize the length distribu-
tions of bifix codes. The following simple example shows that they are more
constrained than those of prefix codes.
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Figure 14: The bifix code X.

EXAMPLE 6 The sequence u(z) = z+ 222 is not realizable as the length dis-
tribution of a bifix code on a binary alphabet although u(1/2) = 1. Indeed,

one of the symbols has to be in X, say a. Then bb is the only word of length
2 that can be added.

The following nice partial result is due to Ahlswede, Balkenhol and
Khachatrian [2]. We state the result for a binary alphabet. It can be readily
generalized to k symbols but it presents less interest.

THEOREM 9 For any integer sequence u such that
u(1/2) <172,
there is a bifiz code X such that u = ux.

Proof. The proof is by induction. We suppose that we have already built a
bifix code X formed of words of length at most n— 1 with length distribution
(u1,u2,... ,up—1). We have

TL .
> w2 < 1/2,
i—=1
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and thus .
2 Z u; 2" < 2",
=1

Finally, we obtain
n—1

up <27 =23 w2
i=1
The expression of the right handside is at most equal to the number of
elements of the set A™ — XA* — A*X. Thus, we can choose u,, words of
length n which do not have a prefix or a suffix in X. This proves the result
by induction. (I

The authors of [2] formulate the interesting conjecture that Theorem 9
is still true if the hypothesis u(1/2) < 1/2 is replaced by u(1/2) < 3/4.

There are known additional conditions imposed on length distributions
of bifix codes. For example, one has the following result, originally due to
Schiitzenberger (see [16]).

THEOREM 10 If X is a finite complete bifix code on k symbols, then ux(1/k) =
1 and 7u'y (1/k) is an integer.
The number %’U,IX(l /k) can be interpreted as the average length of the

words of X. Indeed
2uly (2) = Z |z|217.

reX
ExAMPLE 7 For the bifix code of Example 5, we have
ux(z) = 22 + 423 4+ 42°

and thus
u'y (2) = 22 + 1222 4+ 1623,

Hence u’y(1/2) = 3.

The conditions of Theorem 10 show directly that the sequence of Example
6 is not realizable. Indeed, it satisfies the first condition but not the second
one. The conditions of Theorem 10 are not sufficient. Indeed, if u(z) =
z+42% we have u(1/2) = 1 and «/(1/2) = 4 although it is clearly impossible
that u = ux for a bifix code X.

Recently, Ye and Yeung [45] have made some progress on this prob-
lem. They are in particular able to prove that Theorem 9 still holds when
u(1/2) <5/8.
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5 Zeta functions, subshifts of finite type and cir-
cular codes

In this section, we present a number of results on interrelated objects which
are connected with cyclic permutation of words. The link with enumera-
tive combinatorics was developped in Lothaire’s volume [31] and later in R.
Stanley’s book [44]. We begin with notions classical in symbolic dynamics
(see [30] or [28] for a general reference; see [15] or [24] for the link with finite
automata).

5.1 Subshifts of finite type

A subshift is a set of biinfinite words on a finite alphabet A which avoids a
given set F' of forbidden words. It is a topological space as a closed subset
of the space A” of functions from Z into the set A. The full shift on A is
the set of all biinfinite words on A. Tt corresponds to the case F' = ().

A sofic subshift is the set of biinfinite labels of paths in a finite automa-
ton. A sofic subshift is called irreducible if the automaton can be chosen
strongly connected. A subshift of finite type is the set of biinfinite words
avoiding a finite set of finite words. Any subshift of finite type is sofic but
the converse is not true. The edge shift of a finite graph G is the set Sg
of biinfinite paths in G (viewed as biinfinite sequences of edges). It is a
subshift of finite type.

The shift o is the function on a subshift S which maps a point = to the
point y = o(z) whose ith coordinate is y; = z;41.

A morphism from a subshift S into a subshift T is a function f: S — T
which is continuous and invariant under the shift. A bijective morphism is
called a conjugacy. Any subshift of finite type is conjugate to some edge
shift.

The entropy h(S) of a subshift S is the entropy of the formal language
formed by the finite blocks occurring in words of S. It can be shown that the
entropy is a topological invariant, in the sense that two conjugate subshifts
have the same entropy.

While the entropy is a measure of number of forbidden words, it is possi-
ble to study the number of minimal forbidden words. It gives rise to another
invariant of subshifts [13], [14].

An integer p is a period of a point z = (ap)nez if anyp = ay, for alln € Z.
Equivalently, p is a period of z if o?(z) = x. The zeta function of a subshift
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S, is defined as the series
_ Dn n
() =exp) -
n>1

where p,, is the number of words with period n in S. It is also a topological
invariant, since a point of period n is mapped by a conjugacy on a point of
the same period.

The following result due to Bowen and Lanford [19] is classical (see [30]).

PROPOSITION 13 Let G be a finite graph and let M be the adjacency matriz
of G. Then
((Sq) = det(I — Mz)™ L.

Proof. We first have for each n > 1
TI‘(M n) = Dn

since the coefficient (i,5) of M"™ is the number of paths from 7 to j. Thus
— Pn n
((Sa) = expz 2
n>1

_ Tr(M") 4,
= expz E—
n>1
= expTr(log(I — M=z)™")
= det(I - Mz)™!

since, by the formula of Jacobi, exp Tr = det exp. [

ExAMPLE 8 Let S be the edge shift of the graph G of Figure 15. We have
1 1 0
M=]10 01
1 00

Consequently
1

1—z—23

¢(8) =
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Figure 15: A subshift of finite type

Let S be a subshift of finite type and let p, be the number of points
with period n. Let ¢, be the number of points with least period n. Since
qn 1s a multiple of n, we also denote g, = nl,. We have then the formula
expressing the zeta function as an infinite product using the integers [, as
exponents.

((S) =Tp>1 (1 —2") ™,

as one may verify using p, = djn @la and the definition of {(S5).
A classical result, related with what follows, is the following statement,
known as Krieger’s embedding theorem.

THEOREM 11 Let S,T be two subshifts of finite type. There exists an injec-
tive morphism f: S — T with f(S) # T iff

1. h(S) < h(T)
2. foreachn > 1, ¢,(S) < gn(T) where ¢,(S) (resp. qn(T')) is the number
of points of S (resp. T') of least period n.

The following result is the basis of many applications of symbolic dy-
namics to coding. It is due to Adler, Coppersmith and Hassner [1].

THEOREM 12 If S is an irreducible subshift of finite type such that h(S) >
log k, it is conjugate to a subshift of finite type Sg where the graph G has
outdegree at least k.

The proof is based on a state-splitting algorithm using approximate
eigenvectors and Lemma 1. This result is part of a number of construc-
tions leading to sliding block codes used in magnetic recording (see [35], [11]
or [30]). Tt gives at the same time the following result.

THEOREM 13 It S is a subshift of finite type such that h(S) < logk, then
there is a graph G of outdegree at most k such that S is conjugate to Sq.
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There is a connexion between this theorem and Theorem 6. Let indeed
u be a regular sequence of integers such that u(1/k) < 1. Let G be a
normalized graph recognizing « (in the sense of Section 2.1). Let G be the
graph obtained by merging the initial and terminal vertex. Then h(Ss) <
log k. We can apply Theorem 13 to obtain a graph H with outdegree at most
k such that Sg and Sy are conjugate. This gives the conclusion of Theorem
6 provided the initial-terminal vertex did not split in the construction. The
following examples show both cases (for details, see [7] and [8]).

ExaAMPLE 9 Let G be the graph of Figure 5. The splitting of vertex 2 gives
a graph of outdegree 2. A normalization gives the automaton on the right.

EXAMPLE 10 The sequence of the example given in Figure 6 is recognized
by a graph G such that G has three cycles of length 2. The solution as a
binary tree has only two cycles of length 2 and thus could not be obtained
by state-splitting.

5.2 Circular codes

A circular word, or necklace, is the equivalence class of a word under cyclic
permutation. For a word w, we denote by w the circular word represented
by w.

Let X be a set of words and w = z122 -2z, with z; € X. The set of
cyclic permutations of the sequence (z1,xs,... ,x,) is called a factorization
of the circular word .

A circular code is a set X of words such that the factorization of circular
words is unique.

EXAMPLE 11 The set X = {a,aba} is a circular code. Indeed, the position
of the symbols b determines uniquely the occurrences of aba.

EXAMPLE 12 The set X = {ab,ba} is not a circular code. Indeed, the

circular word @ for w = abab has two factorizations namely (ab,ab) and
(ba, ba).

The following characterization is useful (see [16]).

PROPOSITION 14 A set X is a circular code if and only if it is a code and
for all u,v € A*,
uwv,ou € X* = u,v € X*
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EXAMPLE 13 We obtain another way to prove that the set X = {ab,ba}
is not a circular code. Indeed, otherwise we would have a,b € X* which is
contradictory.

Let X be a finite code. The flower automaton of X, denoted Ax, is the
following automaton. The set of its states is

Q= {(u,v) € AT x A" |uv € X} U (1,1)

The transitions are of the form (u,av) % (ua,v) or (1,1) = (a,v) or
(u,a) = (1,1). The unique initial and final state is (1,1).

EXAMPLE 14 The flower automaton of the circular code {a, aba} is pictured
in Figure 16.

Figure 16: The flower automaton of {a, aba}.
The following result is easy to prove.

PROPOSITION 15 The flower automaton Ax recognizes X*. The code X is
circular iff for each word w, there is at most one cycle with label w.

We now study the length distributions of circular codes. Let X be a
circular code and let u(z) = (up)n>1 be its length distribution. For each
n > 1, let p, be the number of words w of length n such that w has a
factorization in words of X.

PROPOSITION 16 The sequences (pp)n>1 and (up)p>1 are related by
pn n 1
LV —— 2
eXpan 1 —u(z) 2)

n>1
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Proof. Each (p,) depends only on the first n terms of the sequence (uy,).
It is therefore possible to suppose that the sequence (uy) is finite, i.e. that
the code X is finite. Let A be the flower automaton of X. Let S be
the subshift of finite type associated with the graph of A. Then p, is the
number of elements of period n in S. Indeed, each word w such that w has
a factorization is counted exactly once as the label of a cycle in A. We have
also

det(I — Mz) =1 —u(z).
Thus, the result follows from Proposition 13. [

The explicit relation between the numbers u,, and p, is the following. For

eachi > 1, let u(® = (USZ')),M be the length distribution of X*. Equivalently,
(4) -

uy’ is the coefficient of degree n of u(z)*. Then for each n > 1

n

Pn = Z %Ug)

i=1
We also have for each n > 1
n—1
Pn = NUp + Zpiunfi- (3)
i=1

This formula can be easily deduced from Formula (2) by taking the loga-
rithmic derivative of each side of the formula. It shows directly that for
any sequence (un),>1 of nonnegative integers, the sequence p,, defined by
Formula (2) is formed of nonnegative integers.

Formula (3) is known as Newton’s formula in the field of symmetric
functions. Actually, the numbers w,, can be considered, up to the sign, as
elementary symmetric functions and the p,, as the sums of powers (see [32]).
The link between Witt vectors and symmetric functions was established in
[43].

Let pp, = din dly. Then [,, is the number of non-periodic circular words
of length n with a factorization. In terms of generating series, we have

exp %z” =TJa -2 " (4)

n>1 n>1

Putting together Formulae (2) and (4), we obtain

1 L
m:ﬂ(l—z)l. (5)

n>1
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For any sequence (uy),>1 of nonnegative integers, the sequence I = (I,)n>1
thus defined is formed of nonnegative integers. This can be proved either by
a direct computation or by a combinatorial argument since any sequence u
of nonnegative integers is the length distribution of a circular code on a large
enough alphabet. We denote | = ¢(u) and we say that [ is the ¢-transform
of the sequence u.

We denote by ¢, (k) the number of non-periodic circular words of length
n on k symbols. The numbers ¢, (k) are called the Witt numbers. It is clear
that the sequence (¢n,(k)),>1 is the ¢-transform of the sequence (£™)p>1.

The corresponding particular case of Identity (5)

1—kz= H(l — Z")enlk)
n>1
is known as the cyclotomic identity.
The following arrays display a tabulation of the Witt numbers for small
values of n and k.

n | on(2) | en(3) | ©n(4)
1 2 3 4
2 1 3 6
3 2 8 20
4 3 18 60
Y 6 48 204
6 9 116 670
7 18 312 2340
8 30 810 8160
9 56 | 2184 | 29120
10 99 | 5880 | 104754

The value ¢3(4) = 20 is famous because of the genetic code: there are
precisely 20 amino-acids coded by words of length 3 over a 4-symbol alphabet
A,C,G,U.

For any sequence a = (an)n>1, let

Pn = Z dag/d.
din

The pair (a,p) is called a Witt vector (see [29] or [36]). The numbers p,, are
the ghost components. In terms of generating series, one has

expz %z” = H(l —a,2") L

n>1 n>1
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The following result is due to Schiitzenberger (see [16]).

THEOREM 14 Let u = (un)n>1 be a sequence of nonnegative integers and
let | = (In)n>1 be the ¢-transform of u. The sequence (un)n>1 is the length
distribution of a circular code on k symbols iff for all (n > 1)

Several complements to Theorem 14 appear in [6]. In particular, the
relation with Kraft’s inequality is studied. The equality case in Kraft’s
inequality is characterized in terms of the sequence of inequalities above.

There is a connexion between Theorem 14 and Krieger’s embedding the-
orem (Theorem 11), in the sense that Theorem 14 gives a simple proof of
Theorem 11 in a particular case. Actually, let us consider the particular
case of subshift of finite type, called a renewal system.

A renewal system S is the edge shift of a graph G made up of cycles
sharing exactly one vertex. Such a graph is determined by the sequence
u = (u;)1<i<n Where u; is the number of loops with length i. Let T}, be the
full shift on k£ symbols. Suppose that the pair formed by S and T}, satisfies
the hypotheses of Krieger’s theorem. The number ¢,(S) of points of least
period n is nl, where | = (I,),>1 is the ¢-transform of the sequence u and
an(Tk) = nep (k). Thus, the sequence u satisfies the hypotheses of Theorem
14. Consequently, there is circular code X such that ux = u. The flower
automaton of X defines an embedding of S into the full shift on &£ symbols.
This gives an alternative proof of Krieger’s theorem in this case.

It would be interesting to have a proof of Krieger’s theorem along the
same lines in the general case.

To close this section, we mention the following open problem: If the
sequence u is regular and satisfies the inequalities

n <n(k)  (n21),

where | = ¢(u), does there exist a rational circular code on k symbols such
that u = ux?

5.3 Zeta functions

Theorem 13 admits the following generalization due to Reutenauer [40].

THEOREM 15 The zeta function of a sofic subshift is reqular.
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We have seen already (Theorem 13) that the zeta function of a subshift
of finite type is a rational fraction, and indeed the inverse of a polynomial.
The stronger statement that it is regular follows from the following formula
allowing to compute det(I — M z) when M is the adjacency matrix of a n. x n
graph G. One has

det(I — Mz) = (1 —v1(2)) - (1 —vn(2)),

where v;(z) is the length distribution of the set of first returns to state 4
using only states {i,7 +1,... ,n} (see [12]).

The proof that the zeta function of a sofic subshift is rational is a result
of Manning and Bowen [33], [20]. For an exposition, see [30] or [12]. A
generalization appears in [17].
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