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Abstra
t

We present the state of the art in the �eld of generating series for

formal languages. The emphasis is on regular languages and rational

series. The paper 
overs aspe
ts in
luding regular trees and the Kraft-

M
Millan inequality as well as ne
kla
es and zeta fun
tions.

Contents

1 Introdu
tion 2

2 Regular sequen
es and automata 3

2.1 Regular sequen
es . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Finite automata . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Beyond regular sequen
es . . . . . . . . . . . . . . . . . . . . 8

3 Enumeration on regular trees 9

3.1 Graphs and trees . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Regular sequen
es and trees . . . . . . . . . . . . . . . . . . . 11

3.3 Approximate eigenve
tor . . . . . . . . . . . . . . . . . . . . . 13

3.4 The multiset 
onstru
tion . . . . . . . . . . . . . . . . . . . . 16

3.5 Generating sequen
e of leaves . . . . . . . . . . . . . . . . . . 20

3.6 Generating sequen
e of nodes . . . . . . . . . . . . . . . . . . 24

4 Generating sequen
es of pre�x 
odes 28

4.1 Trees and pre�x 
odes . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Bi�x 
odes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



5 Zeta fun
tions, subshifts of �nite type and 
ir
ular 
odes 33

5.1 Subshifts of �nite type . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Cir
ular 
odes . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Zeta fun
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1 Introdu
tion

Generating series, also 
alled generating fun
tions play an important role in


ombinatorial mathemati
s. Many enumeration problems 
an be solved by

transferring the basi
 operations on sets into algebrai
 operations on formal

series leading to a solution of an enumeration problem. The famous paper

by Doubilet, Rota and Stanley 'The idea of generating fun
tion' [41℄, pla
es

the subje
t in a general mathemati
al frame allowing to present in a uni�ed

way the diverse sorts of generating fun
tions from the ordinary ones to the

exponential or even Diri
hlet ones.

Their pla
e within the �eld of 
ombinatori
s on words is parti
ular. It

was indeed M. P. S
h�utzenberger's point of view that sets of words 
an be


onsidered as series in several non-
ommutative variables. The generating

series of the set appears then as a the image of the non-
ommutative series

through an homomorphism. This gives rise to a ri
h domain in whi
h an

interplay between 
lassi
al 
ommutative algebra and 
ombinatori
s on words

is present.

In these le
tures, I will survey on several aspe
ts of these generating

fun
tions on words. The emphasis is on the most elementary 
ase 
orre-

sponding to sets of words whi
h 
an be de�ned using a �nite automaton,

usually 
alled regular. The 
orresponding series are a
tually rational. Two

spe
ial 
ases will be 
onsidered in turn. The �rst one is the 
ase of sets of

wodrs 
orresponding to leaves in a tree and usually 
alled pre�x 
odes. A

re
ent result due to Fr�ed�erique Bassino, Marie-Pierre B�eal and myself [10℄ is

presented. It 
ompletely 
hara
terizes the generating series of regular pre�x


odes. The se
ond one is the 
ase of sets of words 
onsidered up to a 
y
li


permutation, often 
alled ne
kla
es. The 
orresponding generating series

are the zeta fun
tions of symboli
 dynami
s.

A word on the terminology used here. We 
onstantly use the term regular

where a ri
her terminology is often used. In parti
ular, what we 
all here a

regular sequen
e is, in Eilenberg's terminology, an N-rational sequen
e (see

[22℄, [42℄ or [18℄).
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2 Regular sequen
es and automata

We 
onsider the set A

�

of all words on a given alphabet A. A subset of A

�

is often 
alled a formal language. For sets X;Y � A

�

, we denote

X + Y = X [ Y;

XY = fxy j x 2 X; y 2 Y g;

X

�

= fx

1

x

2

� � � x

n

j x

i

2 X;n � 0g

We say that the pair (X;Y ) is unambiguous if for ea
h z 2 XY there is at

most one pair (x; y) 2 X � Y su
h that z = xy.

We say that a set of nonempty words X is a 
ode if for ea
h x 2 X

�

there is at most one sequen
e (x

1

; x

2

; : : : ; x

n

) with x

i

2 X su
h that x =

x

1

x

2

� � � x

n

(one also says that X is uniquely de
ipherable). A parti
ular


ase of a 
ode is a pre�x 
ode. It is a set of words X su
h that no element

of X is a pre�x of another one. It is easy to see that su
h a set is either

redu
ed to the empty word or does not 
ontain the empty word and is then

a 
ode.

The length distribution of a set of words X is the sequen
e u

X

= (u

n

)

n�0

with

u

n

= Card(X \A

n

):

We denote by u

X

the formal series

u

X

(z) =

X

n�0

u

n

z

n

:

whi
h is the ordinary generating series of the sequen
e u

X

.

For example, the length distribution of X = A

�

is u(z) =

1

1�kz

where

k = Card(A).

The entropy of a formal language X is

h(X) = log(1=�);

where � is the radius of 
onvergen
e of the series u

X

(z). It is well de�ned

provided X is in�nite and thus � is �nite. If the alphabet A has k elements,

we have h(X) � log k.

The following result relates the basi
 operations on sets with operations

on series.

Proposition 1 The following properties hold for any subsets X;Y of A

�

.

(i) If X \ Y = ;, then u

X+Y

= u

X

+ u

Y

.
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(ii) If the pair (X;Y ) is unambiguous, then u

XY

= u

X

u

Y

.

(iii) If X is a 
ode, then u

X

�

= 1=(1 � u

X

).

Proof. The �rst two formulae are 
lear. If X is a 
ode, every word in X

�

has a unique de
omposition as a produ
t of words in X. This implies that

u

X

n

= (u

X

)

n

and thus,

u

X

�

= 1 + u

X

+ � � �+ u

X

n

+ � � � = 1=(1 � u

X

) :

�

Example 1 The set X = fb; abg is a pre�x 
ode. The series u

X

�

is

u

X

�

(z) =

1

1� z � z

2

:

Let (F

n

)

n�0

be the sequen
e of Fibona

i numbers de�ned by F

0

= 0, F

1

=

1, and F

n+2

= F

n+1

+ F

n

. It follows from the re
urren
e relation that

z

1� z � z

2

=

X

n�0

F

n

z

n

:

Consequently, u

X

�

(z) =

P

n�0

F

n+1

z

n

. It 
an also be proved by a 
ombina-

torial argument that the number of words of length n in X

�

is F

n+1

.

There are several variants of the generating series 
onsidered above. One

may �rst de�ne

p

X

(z) =

X

n�0

u

n

k

n

z

n

;

where k = Card(A). The 
oeÆ
ients of z

n

in p

X

(z) is the probability for

a word of length n to be in the set X. The relation between u

X

and p

X

is

simple sin
e p

X

(z) = u

X

(z=k). Another variant of the generating series is

the exponential generating series of the sequen
e (u

n

)

n�0

de�ned as

e(z) =

X

n�0

u

n

n!

z

n

:

We will also use the zeta fun
tion of a sequen
e (u

n

)

n�1

de�ned as

�(z) = exp

X

n�1

u

n

n

z

n

:
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2.1 Regular sequen
es

We 
onsider sequen
es of natural integers s = (s

n

)

n�0

. We shall not distin-

guish between su
h a sequen
e and the formal series s(z) =

P

n�0

s

n

z

n

:

We usually denote a ve
tor indexed by elements of a set Q, also 
alled a

Q-ve
tor, with boldfa
e symbols. For v = (v

q

)

q2Q

we say that v is nonneg-

ative, denoted v � 0, (resp. positive, denoted v > 0) if v

q

� 0 (resp. v

q

> 0)

for all q 2 Q. The same 
onventions are used for matri
es. A nonnegative

Q � Q-matrix M is said to be irredu
ible if, for all indi
es p; q, there is an

integer m su
h that (M

m

)

p;q

> 0. The matrix is primitive if there is an

integer m su
h that M

m

> 0.

The adja
en
y matrix of a graph G = (Q;E) is the Q � Q-matrix M

su
h that for ea
h p; q 2 Q, the integer M

p;q

is the number of edges from

p to q. The adja
en
y matrix of a graph G is irredu
ible i� the graph is

strongly 
onne
ted. It is primitive if, moreover, the g.
.d of lengths of 
y
les

in G is 1.

Let G be a �nite graph and let I, T be two sets of verti
es. For ea
h

n � 0, let s

n

be the number of distin
t paths of length n from a vertex of I

to a vertex of T . The sequen
e s = (s

n

)

n�0

is 
alled the sequen
e re
ognized

by (G; I; T ) or also by G if I and T are already spe
i�ed. When I = fig

and T = ftg, we simply denote (G; i; t) instead of (G; fig; ftg).

A sequen
e s = (s

n

)

n�0

of nonnegative integers is said to be regular if it

is re
ognized by su
h a triple (G; I; T ), where G is �nite. We say that the

triple (G; I; T ) is a representation of the sequen
e s. The verti
es of I are


alled initial and those of T terminal. Two representations are said to be

equivalent if they re
ognize the same sequen
e.

A representation (G; I; T ) is said to be trim if every vertex of G is on

some path from I to T . It is 
lear that any representation is equivalent to

a trim one.

A well known result in theory of �nite automata allows one to use a

parti
ular representation of any regular sequen
e s su
h that s

0

= 0. One


an always 
hoose in this 
ase a representation (G; i; t) of s with a unique

initial vertex i, a unique �nal vertex t 6= i su
h that no edge is entering

vertex i and no edge is going out of vertex t. Su
h a representation is 
alled

a normalized representation (see for example [37℄ page 14).

Let (G; i; t) be a trim normalized representation. If we merge the initial

vertex i and the �nal vertex t in a single vertex still denoted by i, we obtain

a new graph denoted by G, whi
h is strongly 
onne
ted. The triple (G; i; i)

is 
alled the 
losure of (G; i; t).

Let s be a regular sequen
e su
h that s

0

= 0. The star s

�

of the sequen
e
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s is de�ned by

s

�

(z) =

1

1� s(z)

:

Proposition 2 If (G; i; t) is a normalized representation of s, its 
losure

(G; i; i) re
ognizes the sequen
e s

�

.

Proof. The sequen
e s is the length distribution of the paths of �rst returns

to vertex i in G, that is of �nite paths going from i to i without going

through vertex i. The length distribution of the set of all returns to i is thus

1 + s(z) + s

2

(z) + : : : = 1=(1 � s(z)). �

An equivalent de�nition of regular sequen
es uses ve
tors instead of sets

I; F . Let i be a Q-row ve
tor of nonnegative integers and let t be a Q-


olumn ve
tor of nonnegative integers. We say that (G; i; t) re
ognizes the

sequen
e s = (s

n

)

n�0

if for ea
h integer n � 0

s

n

= iM

n

t;

where M is the adja
en
y matrix of G. The proof that both de�nitions are

equivalent follows from the fa
t that the family of regular sequen
es is 
losed

under addition (see [22℄). A triple (G; i; t) re
ognizing a sequen
e s is also


alled a representation of s and two representations are 
alled equivalent if

they re
ognize the same sequen
e.

A sequen
e s = (s

n

)

n�0

of nonnegative integers is rational if it satis�es

a re
urren
e relation with integral 
oeÆ
ients. Equivalently, s is rational

if there exist two polynomials p(z); q(z) with integral 
oeÆ
ients and with

q(0) = 1 su
h that

s(z) =

p(z)

q(z)

:

1 2

Figure 1: The Fibona

i graph.

For example, the sequen
e s de�ned by s(z) =

z

1�z�z

2

is the sequen
e of

Fibona

i numbers also de�ned by s

0

= 0; s

1

= 1 and s

n+1

= s

n

+ s

n�1

. It

is re
ognized by the graph of Figure 1 with I = f1g and T = f2g.
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Any regular sequen
e is rational. The 
onverse is however not true (see

Se
tion 3.6).

A theorem of Soittola [42℄, also found independently in [27℄ 
hara
terizes

those rational sequen
es whi
h are regular. We say that a rational sequen
e

has a dominating root, either if it is a polynomial or if it has a real positive

pole whi
h is stri
tly smaller than the modulus of any other one. A sequen
e

r is a merge of the sequen
es r

i

if there is an integer p su
h that

r(z) =

p�1

X

i=0

z

i

r

i

(z

p

):

Theorem 1 (Soittola) A sequen
e of nonnegative integers r = (r

n

)

n�0

is

regular if and only if it is a merge of rational sequen
es having a dominating

root.

This result shows that it is de
idable if a rational series is regular (see

[42℄). In the positive 
ase, there is an algorithm 
omputing a representation

of the sequen
e.

2.2 Finite automata

We present here a brief introdu
tion to the 
on
epts used in automata theory.

For a general referen
e, see [38℄ or [22℄.

An automaton over the alphabet A is 
omposed of a set Q of states, a

set E � Q � A � Q of edges or transitions and two sets I; T � Q of initial

and terminal states.

A path in the automaton A is a sequen
e

(p

1

; a

1

; p

2

); (p

2

; a

2

; p

3

); : : : ; (p

n

; a

n

; p

n+1

)

of 
onse
utive edges. Its label is the word x = a

1

a

2

� � � a

n

. A path is su
-


essful if it starts in an initial state and ends in a terminal state. The set

re
ognized by the automaton is the set of labels of its su

essful paths.

An automaton is deterministi
 if, for ea
h state p and ea
h letter a, there

is at most one edge whi
h starts at p and is labeled by a. The term right

resolving is also used.

Example 2 Let A be the automaton given in Figure 2 with 1 as unique

initial and terminal state. It re
ognizes the set X

�

where X is the pre�x


ode X = fb; abg:
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1 2

b

a

b

Figure 2: Golden mean automaton.

A set of words X over A is regular if it 
an be re
ognized by a �nite

automaton.

It is a 
lassi
al result that a set of words is regular i� it 
an be obtained

by a �nite number of operations union, produ
t and star, starting form the

�nite sets.

The following result is also 
lassi
al (see [22℄ for example).

Proposition 3 Every regular set 
an be re
ognized by a �nite deterministi


automaton having a unique initial state.

The following theorem is of fundamental importan
e. It belongs to the

early folklore of automata theory.

Theorem 2 The length distributions of regular sets are the regular sequen
es.

Proof. Let X be a regular set. By Proposition 3, it 
an be re
ognized by a

deterministi
 automaton A. Sin
e A is deterministi
, there is at most one

path with given label, origin and end. Thus the number of paths of length n

from the initial state to a terminal state is equal to the number u

n

of words

of X of length n.

Conversely, let u be a regular sequen
e enumerating the paths in a graph

G from I to T . We 
onsider the graph G as an automaton with all edges

with distin
t labels. Let X be the set of labels of paths from I to T . The

sequen
e u is the length distribution of the set X. �

Example 3 If X = a

�

b, then

u

X

(z) =

z

1� z

:

2.3 Beyond regular sequen
es

There are several natural 
lasses of series beyond the rational ones. The

algebrai
 series are those satisfying an algebrai
 equation. More generally,
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the hypergeometri
 series are those su
h that the quotient of two su

essive

terms is given by a rational fra
tion (see [26℄).

The 
lass of algebrai
 series is linked with the 
lass of 
ontext-free sets

(see [23℄). A typi
al example of a 
ontext-free set is the set of words on

the binary alphabet fa; bg having as many a's as b's. We 
ompute below its

length distribution whi
h is an algebrai
 series.

Example 4 The set of words on A = fa; bg having an equal number of

o

urren
es of a and b is a submonoid of A

�

generated by a pre�x 
ode D.

Sin
e any word of D

�

of length 2n is obtained by 
hoosing n positions among

2n, we have

u

D

�

(z) =

X

n�0

�

2n

n

�

z

2n

:

By a simple appli
ation of the binomial formula, we obtain

u

D

�

(z) = (1� 4z

2

)

�

1

2

:

This follows indeed, using the simple identity

�

�

1

2

n

�

=

1

(�4)

n

�

2n

n

�

:

We have u

D

(z) = 1� 1=u

D

�

(z) and thus

u

D

(z) = 1�

p

1� 4z

2

:

Thus u

D

(z) is an algebrai
 series, solution of the equation

f

2

� 2f + 4z

2

= 0:

3 Enumeration on regular trees

We now turn to the study of generating sequen
es linked with trees. A
tu-

ally, we do not enumerate trees but obje
ts within a tree like the nodes or

the leaves at ea
h level. This is a
tually equivalent to the enumeration of

parti
ular sets of words, namely pre�x-
losed sets and pre�x 
odes, as we

shall see below (Se
tion 4).
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3.1 Graphs and trees

In this paper, we use dire
ted multigraphs i.e. graphs with possibly several

edges with the same origin and the same end. We simply 
all them graphs

in all what follows. We denote G = (Q;E) a graph with Q as set of verti
es

and E as set of edges. We also say that G is a graph on the set Q.

A tree T on a set of nodes N with a root r 2 N is a fun
tion T :

N � frg �! N whi
h asso
iates to ea
h node distin
t from the root its

father T (n), in su
h a way that, for ea
h node n, there is a nonnegative

integer h su
h that T

h

(n) = r. The integer h is the height of the node n.

A tree is k-ary if ea
h node has at most k 
hildren. A node without


hildren is 
alled a leaf. A node whi
h is not a leaf is 
alled internal. A node

n is a des
endant of a node m if m = T

h

(n) for some h � 0. A k-ary tree is


omplete if all internal nodes have exa
tly k 
hildren and have at least one

des
endant whi
h is a leaf.

For ea
h node n of a tree T , the subtree rooted at n, denoted T

n

is the

tree obtained by restri
ting the set of nodes to the des
endants of n.

Two trees S; T are isomorphi
, denoted S � T , if there is a map whi
h

transforms S into T by permuting the 
hildren of ea
h node. Equivalently,

S � T if there is a bije
tive map f : N ! M from the set of nodes of S

onto the set of nodes of T su
h that f Æ S = T Æ f . Su
h a map f is 
alled

an isomorphism.

If T is a tree with N as set of nodes, the quotient graph of T is the graph

G = (Q;E) where Q and E are de�ned as follows. The set Q is the quotient

of N by the equivalen
e n � m if T

n

� T

m

. Let �m denote the 
lass of a

node m. The number of edges from �m to �n is the number of 
hildren of m

equivalent to n.

Conversely, the set of paths in a graph with given origin is a tree. Indeed,

let G = (Q;E) be a graph. Let r 2 Q be a parti
ular vertex and let N be

the set of paths in G starting at r. The tree T having N as set of nodes and

su
h that T (p

0

; p

1

; : : : ; p

n

) = (p

0

; p

1

; : : : ; p

n�1

) is 
alled the 
overing tree of

G starting at r.

Both 
onstru
tions are mutually inverse in the sense that any tree T is

isomorphi
 to the 
overing tree of its quotient graph starting at the image

of the root.

Proposition 4 Let T be a tree with root r. Let G be its quotient graph and

let i be the vertex of G whi
h is the 
lass of the root of T . For ea
h vertex

q of G and for ea
h n � 0, the number of paths of length n from i to q is

equal to the number of nodes of T at height n in the 
lass of q.

10



A tree is said to be regular if it admits only a �nite number of non-

isomorphi
 subtrees, i.e. if its quotient graph is �nite.

Figure 3: A regular tree.

1 3

42

Figure 4: And its quotient graph.

For example, the in�nite tree represented on Figure 3 is a regular tree.

Its quotient graph is represented on Figure 4.

3.2 Regular sequen
es and trees

If T is a tree, its generating sequen
e of leaves is the sequen
e of numbers

s = (s

n

)

n�0

, where s

n

is the number of leaves at height n. We also simply

say that s is the generating sequen
e of T .

The following result is a dire
t 
onsequen
e of the de�nitions.

Theorem 3 The generating sequen
e of a regular tree is a regular sequen
e.

Proof. Let T be a regular tree and let G be its quotient graph. Sin
e T

is regular, G is �nite. The leaves of T form an equivalen
e 
lass t. By

11



Proposition 4, the generating sequen
e of T is re
ognized by (G; i; t) where

i is the 
lass of the root of T . �

We say that a sequen
e s = (s

n

)

n�1

satis�es the Kraft inequality for the

integer k if

X

n�0

s

n

k

�n

� 1;

i.e. using the formal series s(z) =

P

n�0

s

n

z

n

, if

s(1=k) � 1:

We say that s satis�es the stri
t Kraft inequality for k if s(1=k) < 1.

The following result is well-known (see [4℄ page 35 for example).

Theorem 4 A sequen
e s is the generating sequen
e of a k-ary tree i� it

satis�es the Kraft inequality for the integer k.

Let us 
onsider the Kraft's equality 
ase. If s(1=k) = 1, then any tree T

having s as generating sequen
e is 
omplete. The 
onverse property is not

true in general (see [22℄ p. 231). However, it is a 
lassi
al result that when

T is a 
omplete regular tree, its generating sequen
e satis�es s(1=k) = 1 (see

Proposition 8).

For the sake of a 
omplete des
ription of the 
onstru
tion des
ribed

above in the proof of Theorem 4, we have to spe
ify the 
hoi
e made at ea
h

step among the leaves at height n. A possible poli
y is to 
hoose to give as

many 
hildren as possible to the nodes whi
h are not leaves and of maximal

height.

If we start with a �nite sequen
e s satisfying Kraft's inequality, the above

method builds a �nite tree with generating sequen
e equal to s. It is not

true that this in
remental method gives a regular tree when we start with a

regular sequen
e, as shown in the following example.

Let s(z) = z

2

=(1 � 2z

2

). Sin
e s(1=2) = 1=2, we may apply the Kraft


onstru
tion to build a binary tree with length distribution s. The result is

the tree T (X) where X is the set of pre�xes of the set

Y =

[

n�0

01

n

0f0; 1g

n

:

whi
h is not regular.

If s is a regular sequen
e su
h that s

0

= 0, there exists a regular tree T

having s as generating sequen
e. Indeed, let (G; i; t) be a normalized repre-

sentation of s. The generating sequen
e of the 
overing tree of G starting

12



at i is s. If s satis�es moreover the Kraft inequality for an integer k, it is

however not true that the regular 
overing tree obtained is k-ary, as shown

in the following example.

Let s be the regular sequen
e re
ognized by the graph of Figure 5 on

the left with i = 1 and t = 4. We have s(z) = 3z

2

=(1 � z

2

). Furthermore

s(1=2) = 1 and thus s satis�es Kraft's equality for k = 2. However there are

four edges going out of vertex 2 and its regular 
overing tree starting at 1 is

4-ary. A solution for this example is given by the graph of Figure 5 on the

right. It re
ognizes s and its 
overing tree starting at 1 is the regular binary

tree of Figure 3.

1 2 3

4

1 3

42

Figure 5: Graphs re
ognizing s(z) = 3z

2

=(1 � z

2

).

The aim of Se
tion 3.5 is to build from a regular sequen
e s that satis�es

the Kraft inequality for an integer k a tree with generating sequen
e s whi
h

is both regular and k-ary.

3.3 Approximate eigenve
tor

Let M be the adja
en
y matrix of a graph G. By the Perron-Frobenius

theorem (see [25℄, for a general presentation and [30℄, [28℄ or [11℄ for the

link with graphs and regular sequen
es), the nonnegative matrix M has a

nonnegative real eigenvalue of maximal modulus denoted by �, also 
alled

the spe
tral radius of the matrix.

When G is strongly 
onne
ted, the matrix is irredu
ible and the Perron-

Frobenius theorem asserts that the dimension of the eigenspa
e of the matrix

M 
orresponding to � is equal to one, and that there is a positive eigenve
tor

asso
iated to �.

Let k be an integer. A k-approximate eigenve
tor of a nonnegative matrix

M is, by de�nition, an integral ve
tor v � 0 su
h that

Mv � kv:

One has the following result (see [30℄ p. 152).

13



Proposition 5 An irredu
ible nonnegative matrix M with spe
tral radius

� admits a positive k-approximate eigenve
tor i� k � �.

For a proof, see [30℄ p. 152. When M is the adja
en
y matrix of a graph

G, we also say that v is a k-approximate eigenve
tor of G. The 
omputation

of an approximate eigenve
tor 
an be obtained by the use of Franaszek's

algorithm (see for example [30℄). It 
an be shown that there exists a k-

approximate eigenve
tor with elements bounded above by k

2n

where n is

the dimension of M [5℄. Thus the size of the 
oeÆ
ients of a k-approximate

eigenve
tor is bounded above by an exponential in n and 
an be in the worst


ase of this order of magnitude.

The following result is well-known. It links the radius of 
onvergen
e of

a sequen
e with the spe
tral radius of the asso
iated matrix.

Proposition 6 Let s be a regular sequen
e re
ognized by a trim represen-

tation (G; I; T ). Let M be the adja
en
y matrix of G. The radius of 
on-

vergen
e of s is the inverse of the maximal eigenvalue of M .

Proof. The maximal eigenvalue � ofM is � = lim sup

n�0

n

p

kM

n

k, where k k

is any of the equivalent matrix norms. Let � be the radius of 
onvergen
e of

s and, for ea
h p; q 2 Q, let �

pq

be the radius of 
onvergen
e of the sequen
e

u

pq

= (M

n

pq

)

n�0

. Then 1=� = min�

pq

. Sin
e (G; I; T ) is trim, we have

�

pq

� � for all p; q 2 Q. On the other hand, � � min�

pq

sin
e s is a sum of

some of the sequen
es u

pq

. Thus �

s

= min�

pq

whi
h 
on
ludes the proof. �

As a 
onsequen
e of this result, the radius of 
onvergen
e � of a regular

sequen
e s is a pole. Indeed, with the above notation, s(z) = i(1�Mz)

�1

t.

Then det(I �Mz) is a denominator of the rational fra
tion s, the poles of s

are among the inverses of the eigenvalues of M . And sin
e 1=� is the radius

of 
onvergen
e of s, it has to be a pole of s. In parti
ular, s diverges for

z = �.

The following result, due to Berstel, is also well-known. It allows one to


ompute the radius of 
onvergen
e of the star of a sequen
e.

Proposition 7 Let s be a regular sequen
e. The radius of 
onvergen
e of

the series s

�

(z) = 1=(1�s(z)) is the unique real number r su
h that s(r) = 1:

For a proof, see [22℄ pp 211-214, [18℄ p. 82 or [11℄ p. 84. As a 
onsequen
e,

we obtain the following result.

14



Proposition 8 Let s be a regular sequen
e and let � be the inverse of the

radius of 
onvergen
e of s

�

. The sequen
e s satis�es the Kraft stri
t in-

equality s(1=k) < 1 (resp. equality s(1=k) = 1) if and only if � < k (resp.

� = k).

We have thus proved the following result, whi
h is the basis of the 
on-

stru
tions of the next se
tions.

Proposition 9 Let s be a regular sequen
e satisfying Kraft's inequality

s(1=k) � 1. Let (G; i; t) be a normalized representation of s and let (G; i; i)

be the 
losure of (G; i; t). The adja
en
y matrix M of G admits a k-approxi-

mate eigenve
tor.

A
tually, under the hypothesis of Proposition 9, the graph G itself also

admits a k-approximate eigenve
tor. Indeed, let w = (w

q

)

q2Q�t

be a k-

approximate eigenve
tor of G. Then the ve
tor w = (w

q

)

q2Q

de�ned by

w

q

= w

q

for q 6= t and w

t

= w

i

is a k-approximate eigenve
tor of G. This is

illustrated in the following example.

1 2 3

4

1 2 3

Figure 6: The graphs G and G.

Let us for example 
onsider again s(z) = 3z

2

=(1�z

2

) (see Figure 5). The

sequen
e s is re
ognized by the normalized representation (G; 1; 4) where G

is the graph represented on the left of Figure 6. The graph G is represented

on the right. The ve
tors

w =

2

6

6

4

3

2

1

3

3

7

7

5

;w =

2

4

3

2

1

3

5

are 2-approximate eigenve
tors of G and G respe
tively.
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3.4 The multiset 
onstru
tion

In this se
tion, we present the main 
onstru
tion used in this paper. It


an be 
onsidered as a version with multipli
ities of the subset 
onstru
tion

used in automata theory to repla
e a �nite automaton by an equivalent

deterministi
 one. We use only unlabeled graphs but the 
onstru
tion 
an be

easily generalized to graphs with edges labeled by symbols from an alphabet.

Our 
onstru
tion is also linked with one used by D. Lind to build a pos-

itive matrix with given spe
tral radius (see [30℄, espe
ially Lemma 11.1.9).

We use for 
onvenien
e the term multiset of elements of a set Q as a

synonym of Q-ve
tor. If u = (u

q

)

q2Q

is su
h a multiset, the 
oeÆ
ient u

q

is

also 
alled the multipli
ity of q. The degree of u is the sum

P

q2Q

u

q

of all

multipli
ities.

We start with a triple (G; i; t) where G = (Q;E) is a �nite graph and i

(resp. t) is a row (resp. 
olumn) Q-ve
tor. We denote by M the adja
en
y

matrix of G.

Let m be a positive integer. We de�ne another triple (H;J;X) whi
h

is said to be obtained by the multiset 
onstru
tion. The graph H is 
alled

an extension of the graph G. The extension is not unique and depends

as we shall see on some arbitrary 
hoi
es. The set S of verti
es of H is

formed of multisets of elements of Q of total degree at most m. Thus, an

element of S is a nonnegative ve
tor u = (u

q

)

q2Q

with indi
es in Q su
h

that

P

q2Q

u

q

� m. This 
ondition ensures that H is a �nite graph.

We now des
ribe the set of edges of the graphH by de�ning its adja
en
y

matrix N . Let U be the S�Q-matrix de�ned by U

u;q

= u

q

. Then N is any

nonnegative S � S-matrix whi
h satis�es

NU = UM:

Equivalently, for all u 2 S,

X

v2S

N

u;v

v = uM:

Let us 
omment informally the above formula. We 
an des
ribe the 
on-

stru
tion of the graph H as a sequen
e of 
hoi
es. If we rea
h a vertex u

of H, we partition the multiset uM of verti
es rea
hable from the verti
es


omposing u into multisets of degree at most m to de�ne the verti
es rea
h-

able from u in H. The integer N

u;v

is the multipli
ity of v in the partition.

The formula simply expresses the fa
t that the result is indeed a partition.

In general, there are several possible partitions. The matrix U is 
alled the

transfer matrix of the extension.

16



We further de�ne the S-row ve
tor J and the S-
olumn ve
tor X. Let

J be the S-row ve
tor su
h that J

i

= 1 and J

u

= 0 for u 6= i. Let X be the

S-
olumn ve
tor su
h that X

u

= u � t.

Thus

JU = i; X = Ut:

To avoid unne
essary 
omplexity, we only keep in S the verti
es rea
hable

from i. Thus, we repla
e the set S by the set of elements u of S su
h that

there is a path from i to u.

The number of multisets of degree at most m on a set Q with n elements

is

n

m+1

�1

n�1

. Thus the number of verti
es of a multiset extension is of order

n

m

. It is polynomial in n if m is taken as a 
onstant.

1 2 1 12

Figure 7: The graphs G and H.

Let for example G be the graph represented on Figure 7 on the left. The

graph H represented on the right is a multiset extension of G with

i =

�

1 0

�

; j =

�

0

1

�

:

The matri
es M;N and U are

M =

�

2 1

0 1

�

; N =

�

1 1

0 2

�

; U =

�

1 0

1 1

�

;J =

�

1 0

�

;X =

�

0

1

�

:

In this 
ase, the matrix U is invertible and the matri
esM;N are 
onjugate.

The basi
 property of an extension is the following one.

Proposition 10 Let H be an extension of G. The triple (H;J;X) is equiv-

alent to (G; i; t).

Proof. For ea
h n � 0, we have

UM

n

= N

n

U:

17



Consequently, for ea
h integer n � 0,

JN

n

X = JN

n

Ut

= JUM

n

t

= iM

n

t:

This shows that (H;J;X) re
ognizes s. �

We will also make use of the following additional property of extensions.

Proposition 11 Let H be an extension of G. Let M (resp. N) be the

adja
en
y matrix of G (resp. H) and let U be the transfer matrix. If w is

a k-approximate eigenve
tor of M , the ve
tor W = Uw is a k-approximate

eigenve
tor of N . If w is positive, then W is also positive.

Proof. We have

NW = NUw = UMw � kUw = kW:

Sin
e all rows of U are distin
t from 0, the ve
tor W is positive whenever

w is positive. �

In the next se
tion, we will 
hoose a parti
ular extension of the graph

G 
alled admissible and whi
h is de�ned as follows. Let w be a positive

Q-ve
tor and let m be a positive integer. Let H be an extension of G, let U

be the transfer matrix, and let W = Uw. We say that H is admissible with

respe
t to w and m if for ea
h u 2 S, all but possibly one of the verti
es v

su
h that (u;v) is an edge of H satisfy W

v

� 0 mod m.

Theorem 5 For any graph G on Q, any positive Q-ve
tor w and any in-

teger m > 0, the graph G admits an admissible extension with respe
t to w

and m.

The proof relies on the following 
ombinatorial lemma. This lemma is

also used in a similar 
ontext by Adler et al. and Mar
us [34℄,[1℄. It is

a
tually presented in [3℄ as a ni
e variant of the pigeon-hole prin
iple.

Lemma 1 Let w

1

; w

2

; : : : ; w

m

be positive integers. Then there is a non-

empty subset S � f1; 2; : : : ;mg su
h that

P

q2S

w

q

is divisible by m.

Proof. The partial sums w

1

; w

1

+w

2

; w

1

+w

2

+w

3

; : : : ; w

1

+w

2

+ � � �+w

m

either are all distin
t (modm), or two are 
ongruent (modm). In the former

18




ase, at least one partial sum must be 
ongruent to 0 (modm). In the latter,

there are 1 � p < r � m su
h that

w

1

+ w

2

+ � � � + w

p

� w

1

+ w

2

+ � � �+ w

r

( mod m)

Hen
e w

p+1

+ w

p+2

+ � � �+ w

r

� 0 (mod m). �

Proof. of Theorem 5. We build progressively the set of edges of H. Let u be

an element of S. We prove by indu
tion on the degree d(uM) =

P

q2Q

(uM)

q

of uM that there exists v

1

; : : : ;v

n

2 S su
h that uM =

P

n

i=1

v

i

and

W

v

i

� 0 mod m for 1 � i � n � 1. If uM 2 S, i.e. if d(uM) � m,

we 
hoose n = 1 and v

1

= uM . Otherwise, there exists a de
omposition

uM = v + u

0

su
h that d(v) = m. Let w

1

; w

2

; : : : ; w

m

be the sequen
e of

integers formed by the w

q

repeated v

q

times. By Lemma 1 applied to the

sequen
e of integers w

i

, there is a de
omposition v = v

0

+ r with v

0

6= 0

su
h that W

v

0

� 0 mod m. We have uM = v

0

+w

0

with w

0

= r+ u

0

. Sin
e

d(w

0

) < d(uM), we 
an apply the indu
tion hypothesis to w

0

, giving the

desired result. �

For an S-ve
tor W, we denote by d

W

m

e the S-ve
tor Z su
h that for ea
h

u in S,

Z

u

= d

W

u

m

e:

Summing up the previous results, we obtain the following statement.

Proposition 12 Let H be an admissible extension of G with respe
t to w

and m. Let M (resp. N) be the adja
en
y matrix of G (resp. H), let U

be the transfer matrix and let W = Uw. If w is a positive k-approximate

eigenve
tor of M , then d

W

m

e is a positive k-approximate eigenve
tor of N .

Proof. By Proposition 3.4, the ve
tor W is a positive k-approximate eigen-

ve
tor of N . Thus

NW � kW:

Let u be an element of S. We have W

v

� 0 mod m for all indi
es v su
h

that N

u;v

> 0 ex
ept possibly for an index v

0

. The previous inequality

implies that

X

v2S�fv

0

g

N

u;v

W

v

m

+N

u;v

0

W

v

0

m

� k

W

u

m

:

19



Sin
e

W

v

m

is a nonnegative integer for v 2 Q� fv

0

g, we get

X

v2S�fv

0

g

N

u;v

W

v

m

+N

u;v

0

d

W

v

0

m

e � k d

W

u

m

e:

This proves that

Nd

W

m

e � kd

W

m

e:

�

3.5 Generating sequen
e of leaves

In what follows, we show how the multiset 
onstru
tion allows one to prove

the main result of [10℄ 
on
erning the generating sequen
es of regular trees.

We begin with the following lemma, whi
h is also used in the next se
tion.

We use the term leaf for a vertex of a graph without outgoing edges.

Lemma 2 Let G be a graph on a set Q of verti
es. Let i 2 Q and T � Q.

If G admits a k-approximate eigenve
tor w, there is a graph G

0

and a set of

verti
es I

0

of G

0

su
h that

1. G

0

admits the k-approximate eigenve
tor w

0

with all 
omponents equal

to 1.

2. the triple (G; i;w) is equivalent to the triple (G

0

; I

0

;w

0

);

3. If w

p

= 1 for all p 2 T , there is a set of verti
es T

0

of G

0

su
h that the

triple (G; i; T ) is equivalent to the triple (G

0

; I

0

; T

0

). Moreover, if T is

the set of leaves of G, we 
an 
hoose for T

0

the set of leaves of G

0

.

We now state the main result of [10℄.

Theorem 6 Let s = (s

n

)

n�0

be a regular sequen
e of nonnegative integers

and let k be a positive integer su
h that

P

n�0

s

n

k

�n

� 1. Then there is a

k-ary rational tree having s as its generating sequen
e.

Proof. Let us 
onsider a regular sequen
e s and an integer k su
h that

P

n�0

s

n

k

�n

� 1. Sin
e the result holds trivially for s(z) = 1, we may

suppose that s

0

= 0. Let (G; i; t) be a normalized representation of s and

let G be the 
losure of G as de�ned at the beginning of Se
tion 2.1. We

denote byM (resp.M) the adja
en
y matrix of G (resp. G). Let Q = Q�ftg
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be the vertex set of G. Let � be the spe
tral radius of M . By Proposition 8,

the matrixM admits a positive k-approximate eigenve
tor w. By de�nition,

we have Mw � kw.

Let w be the Q-ve
tor de�ned by w

q

= w

q

for all q 2 Q and w

t

= w

i

.

Then, sin
e there is no edge going out of t inG, w is a positive k-approximate

eigenve
tor of M . Let t be the Q-ve
tor whi
h is the 
hara
teristi
 ve
tor

of the vertex t. Let m = w

i

.

By Theorem 5 there exists an admissible extension H of G with respe
t

to w and m. Let U be the transfer matrix and let W = Uw. Sin
e w

t

�

0 mod m, we may 
hoose H with the following additional property. For all

u 2 S either u

t

= 0 or u = t.

A

ording to Proposition 10, the sequen
e s is re
ognized by (H;J;X)

where J is the 
hara
teristi
 row ve
tor of i and X is the 
hara
teristi



olumn ve
tor of t. This means that s is re
ognized by the normalized

representation 
onsisting in the graphH, the initial vertex i, that we identify

to i, and the terminal vertex t, that we identify to t.

Let N be the adja
en
y matrix of H. By Proposition 12, the ve
tor d

W

m

e

is a positive k-approximate eigenve
tor of N . Remark that d

W

m

e

i

= d

W

m

e

t

=

1.

We may now apply Lemma 2 to 
onstru
t a triple (H

0

; I

0

; T

0

) equivalent

to (H; i; t). The set T

0

is the set of leaves of H

0

. Sin
e d

W

m

e

i

= 1, I

0

is

redu
ed to one vertex i

0

. Sin
e H

0

admits a k-approximate eigenve
tor with

all 
omponents equal to one, the graph H

0

is of outdegree at most k. Finally

s is the generating sequen
e of the 
overing tree of H

0

starting at i

0

. This

tree is k-ary and regular. �

Let us 
onsider the above 
onstru
tions in the parti
ular 
ase of the

equality in Kraft's inequality. In this 
ase, the result is a 
omplete k-ary

tree. Indeed, by Proposition 8, the matrix M admits a positive integral

eigenve
tor w for the eigenvalue k. We have for all p 2 Q,

X

q2Q

M

p;q

w

q

= kw

p

:

As a 
onsequen
e, for any u 6= t, we have

X

v2S

N

u;v

W

v

= kW

u

:

Then the graph 
onstru
ted in Lemma 2 is of 
onstant outdegree k. Thus

the k-ary tree obtained is 
omplete.
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Let us 
onsider the 
omplexity of the 
onstru
tion used in the proof

of Theorem 6. Let n be the number of verti
es of the graph G giving a

normalized representation of s. The size of the integer m = w

i

is exponential

in n (see Se
tion 3.3). Thus the number of verti
es of the graphH is bounded

by a double exponential in n. The �nal regular tree is the 
overing tree of

a graph whose set of verti
es has the same size in order of magnitude.

Let for example s be the sequen
e de�ned by

s(z) =

z

2

(1� z

2

)

+

z

2

(1� 5z

3

)

:

Sin
e s(1=2) = 1, it satis�es the Kraft equality for k = 2. The sequen
e

s is re
ognized by (G; i; t) where G = (Q;E) is the graph given in Figure

3.5 with Q = f1; 2; 3; 4; 5; 6; 7g, i = 1, t = 4. The adja
en
y matrix of G

admits the 2-approximate eigenve
tor represented on Figure 3.5, where the


oeÆ
ients of w are represented in squares beside the verti
es. Thus m = 3.

3

3

1

5

4

7 62 1

2

3 1

2

4

Figure 8: A normalized representation of s

An admissible extension H of G with respe
t to w and m is given in

Figure 9. In this �gure, ea
h multiset of S is represented by a sequen
e of

verti
es with repetitions 
orresponding to the multipli
ity. For example, the

multiset u = (0; 0; 1; 0; 0; 2; 0) is represented by (3; 6; 6). The sequen
e s is

re
ognized by the normalized representation (H; 1; 4), where the initial and

�nal verti
es are named as they appear on Figure 9. The 
oeÆ
ients of W

are represented in squares beside the verti
es.

A regular binary tree T having s as generating sequen
e of leaves, is

given in Figure 10. In this �gure, the nodes have been renumbered, with

the 
hildren of a node with a given label represented only on
e. The leaves
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Figure 9: An admissible extension H.

of the tree are indi
ated by bla
k boxes. The tree itself is obtained from

the graph of Figure 9 by appli
ation of the 
onstru
tion of Lemma 2. For

example, the vertex (2; 5), whi
h has 
oeÆ
ient 6 in W, is split into two

verti
es named 2 and 3 in the tree.

This example was suggested to us by Christophe Reutenauer [39℄. To


he
k dire
tly that the length distribution is equal to s(z), one may 
ompute

from the graph the following regular expression of s(z) and 
he
k by an

elementary 
omputation (possibly with the help of a symboli
 
omputation

system) that it is equal to s(z).

s(z) = (z

6

)

�

(2z

2

+ z

4

+ 2z

5

+ z

6

+ (z

2

+ 3z

5

)(5z

3

)

�

3z

3

): (1)

(note for a reader unfamiliar with regular expressions: the �rst fa
tor (z

6

)

�


orresponds to the vertex labeled 1 at level 6 of the tree. The term 2z

2

+

z

4

+ 2z

5

+ z

6


orresponds to the leaves rea
hed by a path whi
h does not

use a vertex labeled 5. The fa
tor (z

2

+3z

5

)(5z

3

)

�


orresponds to the paths

from the root to a vertex labeled 5. Finally, the fa
tor 3z

3


orresponds to

the dire
t paths from 5 to a leaf.)

This example shows an interesting feature of this problem. In fa
t, from

the point of view of regular expressions, the diÆ
ult operation in this prob-

lem is the sum. It would be a simple matter to build a rational tree for ea
h

term of the sum in the expression (1) (see the example of Figure 5). The

diÆ
ulty would then be to merge these trees to obtain one 
orresponding to

the sum.
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Figure 10: A regular binary tree with length distribution s.

A 
urious 
onsequen
e of Theorem 6 is the following property of regular

sequen
es.

Corollary 1 Let k � 2 be an integer and let u be a regular sequen
e

su
h that u(1=k) � 1 and u(0) = 0. Then there exist k regular sequen
es

u

1

; : : : ; u

k

su
h that u

i

(1=k) � 1 and

u(z) =

k

X

i=1

zu

i

(z):

Proof. It is a simple 
onsequen
e of Theorem 6. Indeed, if X is a regular

pre�x 
ode on the k element alphabet A, then X =

P

a2A

aX

a

where ea
h

X

a

is a regular pre�x 
ode on the alphabet A. �

We don't know of a dire
t proof of this result.

3.6 Generating sequen
e of nodes

In this se
tion, we 
onsider the generating sequen
e of the set of all nodes

in a tree instead of just the set of leaves. This is motivated by the fa
t that

in sear
h trees, the information 
an either be 
arried by the leaves or by

all the nodes of the tree. We will see that the 
omplete 
hara
terization
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of the generating sequen
es of nodes in regular trees (Theorem 7) is more


ompli
ated than the one for leaves.

Soittola (see [42℄ p. 104) has 
hara
terized the series whi
h are the gen-

erating sequen
es of nodes in a regular tree. We 
hara
terize the ones that


orrespond to k-ary trees (Theorem 7). We also give a more dire
t 
onstru
-

tion in a parti
ular 
ase (Theorem 8).

Let T be a tree. The generating sequen
e of nodes of the tree T is the

sequen
e t = (t

n

)

n�0

, where t

n

is the number of nodes of T at height n. The

sequen
e t satis�es t

0

� 1 and, moreover, if T is a k-ary tree, the 
ondition

t

n

� kt

n�1

for all n � 1. If T is a regular tree, then t is a regular sequen
e. We

now 
ompletely 
hara
terize the regular sequen
es t that are the generating

sequen
es of nodes of a k-ary regular tree.

Theorem 7 Let t = (t

n

)

n�0

be a regular sequen
e and let k be a positive

integer. The sequen
e (t

n

)

n�0

is the generating sequen
e of nodes of a k-ary

regular tree i� it satis�es the following 
onditions.

(i) the 
onvergen
e radius of t is stri
tly greater than 1=k,

(ii) the sequen
e s(z) = t(z)(kz � 1) + 1 is regular.

Proof. Let us �rst show that the 
onditions are ne
essary. Let T be the


omplete k-ary tree obtained by adding i new leaves to ea
h node that has

k � i 
hildren. Sin
e T is a regular tree, T is also regular.

Let s be the generating sequen
e of leaves of T . Sin
e T is 
omplete,

s(1=k) = 1. Sin
e kt

n

= s

n+1

+ t

n+1

for all n � 0, we have

1� s(z) = t(z)(1 � kz):

Sin
e s is a regular sequen
e, its radius of 
onvergen
e is stri
tly larger than

1=k (see Se
tion 3.3). Sin
e the value of the derivative of s at z = 1=k is

kt(1=k), the same holds for t. This proves the ne
essity of the 
onditions.

Conversely, if t satis�es the 
onditions of the theorem, the regular series

s(z) = t(z)(kz � 1) + 1 satis�es s(1=k) = 1. Thus, by Theorem 6, s is the

generating sequen
e of leaves of a 
omplete k-ary regular tree. The internal

nodes of this tree form a k-ary regular tree whose generating sequen
e of

nodes is t. �

The sequen
e s de�ned by 
ondition (ii) is rational as soon as t is regular

and therefore rational. Given a regular sequen
e t, 
ondition (ii) is de
idable

in view of the theorem of Soittola (Theorem 1).
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We may observe that 
ondition (ii) of the theorem implies the non-

negativity of the 
oeÆ
ients of the series s and thus the inequality 8n �

1; t

n

� kt

n�1

. It also implies that t

0

� 1.

We now show that there are regular sequen
es t satisfying t

n

� kt

n�1

for all n � 1, and 
ondition (i) of the theorem and su
h that the sequen
e

s(z) = t(z)(kz � 1) + 1 is not regular. The example is based on an example

of a rational sequen
e with nonnegative 
oeÆ
ients and whi
h is not regular

(see [18℄ page 95). Let

r

n

= b

2n


os

2

(n�)

with 
os(�) =

a

b

where the integers a; b are su
h that b 6= 2a and 0 < a < b.

The sequen
e r is rational, has nonnegative integer 
oeÆ
ients and is not

regular. Its poles are

1

b

2

,

1

b

2

e

2i�

and

1

b

2

e

�2i�

. We now de�ne the sequen
e t

as follows:

t

2h

= k

h

;

t

2h+1

= k

h

+ r

h

:

We also assume that b

2

< k. By Soittola's theorem, the sequen
e t is

regular sin
e it is a merge of rational sequen
es having a dominating root.

The 
onvergen
e radius of t is

1

p

k

>

1

k

. Therefore the sequen
e t satis�es

the �rst 
ondition of Theorem 7. Let s be the sequen
e de�ned by s(z) =

t(z)(kz � 1) + 1. If h = 2p is even,

s

h

= kt

h�1

� t

h

= kk

p�1

+ kr

p�1

� k

p

+ 1 = kr

p�1

+ 1:

Thus the sequen
e s is not regular.

The above example does not work for the small values of k (the least

value is k = 10). We do not know of similar examples for 2 � k � 9.

We �nally des
ribe a parti
ular 
ase of Theorem 7 in whi
h one has a

relatively simple method, based on the multiset 
onstru
tion, to build the

regular tree with a given generating sequen
e of nodes. This avoids the use

of Soittola's 
hara
terization whi
h leads to a method of higher 
omplexity.

A primitive representation of a regular sequen
e s is a representation

(G; i; t) su
h that the adja
en
y matrix of G is primitive. The following re-

sult is proved in [8℄ with a di�erent proof using the state-splitting method of

symboli
 dynami
s. The proof given in [10℄ relies on a simpler 
onstru
tion.

Theorem 8 Let t = (t

n

)

n�0

be a regular sequen
e and let k be a positive

integer su
h that t

0

= 1, t

n

� kt

n�1

for all n � 1 and su
h that
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(i) the 
onvergen
e radius of t is stri
tly greater than 1=k,

(ii) t has a primitive representation.

Then (t

n

)

n�0

is the generating sequen
e of nodes by height of a k-ary regular

tree.

The proof of this theorem given in [10℄ uses the multiset 
onstru
tion.

It relies on the following lemma.

Lemma 3 Let M be a primitive matrix with spe
tral radius �. Let v be a

non-null and nonnegative integral ve
tor and let k be an integer su
h that

� < k. Then there is a positive integer n su
h that M

n

v is a positive k-

approximate eigenve
tor of M .

Proof. For a primitive matrixM with spe
tral radius �, it is known that the

sequen
e ((

M

�

)

n

)

n�0


onverges to r:l where r is a positive right eigenve
tor

and l a positive left eigenve
tor of M for the eigenvalue � with l � r = 1 (see

for example [30℄ p. 130). Thus (

M

n

�

n

v)

n�0


onverges to r:l:v whi
h is equal

to �r where � is a nonnegative real number. Sin
e Mr = �r, we get, for a

large enough integer n,

M

M

n

�

n

v � k

M

n

�

n

v

or equivalently MM

n

v � kM

n

v. If n is large enough, we moreover have

M

n

v > 0 sin
e M is primitive. �

The proof of Theorem 8 uses a shift of indi
es of the sequen
e to obtain

a new sequen
e to whi
h a simple appli
ation of the multiset 
onstru
tion


an be applied. We illustrate it on an example.

1 2 3

Figure 11: A primitive representation G of t.
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Let t be the series re
ognized by the graph G of Figure 11 with

i =

�

1 0 0

�

and t =

2

4

1

1

0

3

5

:

The adja
en
y matrix M of G is the primitive matrix

M =

2

4

1 1 0

0 0 1

1 0 0

3

5

:

Its spe
tral radius is less than 2. The hypothesis of Theorem 8 are thus

satis�ed. We have

M

2

t =

2

4

2

1

2

3

5

and M

3

t =

2

4

3

2

2

3

5

:

Sin
e M

3

t � 2M

2

t, the ve
tor W = M

2

t is an approximate eigenve
tor of

M (the existen
e of su
h a ve
tor is asserted by Lemma 3). Let w =M

2

t.

Applying Lemma 2, we obtain from G the graph G

0

represented on the

left side of Figure 12 . Moreover, (G; i;w) is equivalent to (G

0

; I

0

;w

0

) where

I

0

is the set of initial verti
es indi
ated on Figure 12 and w is the ve
tor with

all 
omponents equal to 1. The 
overing trees T

1;1

and T

1;2

of G

0

starting

at the verti
es of I

0

give, with the appropriate shift of indi
es, the binary

regular tree T represented on the right side of Figure 12 (the nodes of the

tree have been renumbered).

4 Generating sequen
es of pre�x 
odes

There is a 
lose 
onnexion between trees and pre�x 
odes or pre�x-
losed

sets of words. We present below the translation of some of the notions and

results seen before in terms of pre�x 
odes.

4.1 Trees and pre�x 
odes

Let R be a set of words on the alphabet A = f0; 1; : : : ; k � 1g. The set R

is said to be pre�x-
losed if any pre�x of an element of R is also in R. The

set X of words whi
h are not a proper pre�x of a word in R is a pre�x 
ode,


alled the pre�x 
ode asso
iated to R.
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Figure 12: The graph G

0

and the tree T .

When R is pre�x 
losed, we 
an build a tree T (R) as follows. The set of

nodes is R, the root is the empty word � and T (a

1

a

2

� � � a

n

) = a

1

a

2

� � � a

n�1

.

The leaves of T from a pre�x 
ode whi
h is the pre�x 
ode asso
iated to R.

The generating sequen
e of T is the gerating sequen
e of X.

Let for example R = f�; 0; 1; 10; 11g. The tree T (R) is represented on

Figure 13. The asso
iated pre�x 
ode is X = f0; 10; 11g.

Figure 13: The tree T (X).

Let X be a pre�x 
ode on an alphabet with k symbols. It is 
lear that
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its length distribution u = (u

n

)

n�1

satis�es Kraft's inequality

X

n�1

u

n

k

�n

� 1;

or equivalently u(1=k) � 1. The number u(1=k) 
an a
tually be interpreted

as the probability that a long enough word has a pre�x in X.

There is also a 
onnexion with the notion of entropy. A
tually, if X is

a pre�x 
ode, the entropy of X

�

is equal to log(1=�) where � is the solution

of the equation u

X

(�) = 1. Thus Kraft's inequality expresses the fa
t that

h(X

�

) � log k.

Conversely, Kraft-M
Millan's theorem states that for any su
h sequen
e

u = (u

n

)

n�1

, there exists a pre�x 
ode X on a k-symbol alphabet su
h that

u = u

X

.

The equality 
ase in Kraft's inequality 
orresponds to a parti
ular 
lass

of pre�x 
odes often 
alled 
omplete. A pre�x 
ode X on the alphabet A is


omplete if any word on A has either a pre�x in X or is a pre�x of a word

of X.

Theorem 6 shows that the generating sequen
es of regular pre�x 
odes

are exa
tly the regular sequen
es satisfying Kraft's inequality.

4.2 Bi�x 
odes

We investigate here the length distributions of a parti
ular 
lass of pre�x


odes, 
alled bi�x. Several other 
lasses of pre�x 
odes 
ould give rise to a

similar study (for a des
ription to these 
lasses, see [21℄).

The de�nition of a suÆx 
ode is symmetri
 to the de�nition of a pre�x


ode. It is a set of words X su
h that no element of X is a suÆx of another

one. The notion of a 
omplete suÆx 
ode is also symmetri
. A bi�x 
ode is

a set X of words whi
h is both a pre�x and a suÆx 
ode.

Any set of words of �xed length is obviously a bi�x 
ode but there are

more 
ompli
ated examples.

Example 5 The set

X = faaa; aaba; aabb; ab; baa; baba; babb; bba; bbbg

is a 
omplete pre�x 
ode pi
tured in Figure 14. It is also a 
omplete suÆx


ode as one may 
he
k by reading its words ba
kwards.

Surprisingly, it is an open problem to 
hara
terize the length distribu-

tions of bi�x 
odes. The following simple example shows that they are more


onstrained than those of pre�x 
odes.
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Figure 14: The bi�x 
ode X.

Example 6 The sequen
e u(z) = z+2z

2

is not realizable as the length dis-

tribution of a bi�x 
ode on a binary alphabet although u(1=2) = 1. Indeed,

one of the symbols has to be in X, say a. Then bb is the only word of length

2 that 
an be added.

The following ni
e partial result is due to Ahlswede, Balkenhol and

Kha
hatrian [2℄. We state the result for a binary alphabet. It 
an be readily

generalized to k symbols but it presents less interest.

Theorem 9 For any integer sequen
e u su
h that

u(1=2) � 1=2;

there is a bi�x 
ode X su
h that u = u

X

.

Proof. The proof is by indu
tion. We suppose that we have already built a

bi�x 
ode X formed of words of length at most n�1 with length distribution

(u

1

; u

2

; : : : ; u

n�1

). We have

n

X

i=1

u

i

2

�i

� 1=2;
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and thus

2

n

X

i=1

u

i

2

n�i

� 2

n

:

Finally, we obtain

u

n

� 2

n

� 2

n�1

X

i=1

u

i

2

n�i

:

The expression of the right handside is at most equal to the number of

elements of the set A

n

� XA

�

� A

�

X. Thus, we 
an 
hoose u

n

words of

length n whi
h do not have a pre�x or a suÆx in X. This proves the result

by indu
tion. �

The authors of [2℄ formulate the interesting 
onje
ture that Theorem 9

is still true if the hypothesis u(1=2) � 1=2 is repla
ed by u(1=2) � 3=4.

There are known additional 
onditions imposed on length distributions

of bi�x 
odes. For example, one has the following result, originally due to

S
h�utzenberger (see [16℄).

Theorem 10 If X is a �nite 
omplete bi�x 
ode on k symbols, then u

X

(1=k) =

1 and

1

k

u

0

X

(1=k) is an integer.

The number

1

k

u

0

X

(1=k) 
an be interpreted as the average length of the

words of X. Indeed

zu

0

X

(z) =

X

x2X

jxjz

jxj

:

Example 7 For the bi�x 
ode of Example 5, we have

u

X

(z) = z

2

+ 4z

3

+ 4z

4

and thus

u

0

X

(z) = 2z + 12z

2

+ 16z

3

:

Hen
e

1

2

u

0

X

(1=2) = 3:

The 
onditions of Theorem 10 show dire
tly that the sequen
e of Example

6 is not realizable. Indeed, it satis�es the �rst 
ondition but not the se
ond

one. The 
onditions of Theorem 10 are not suÆ
ient. Indeed, if u(z) =

z+4z

3

we have u(1=2) = 1 and u

0

(1=2) = 4 although it is 
learly impossible

that u = u

X

for a bi�x 
ode X.

Re
ently, Ye and Yeung [45℄ have made some progress on this prob-

lem. They are in parti
ular able to prove that Theorem 9 still holds when

u(1=2) � 5=8.
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5 Zeta fun
tions, subshifts of �nite type and 
ir-


ular 
odes

In this se
tion, we present a number of results on interrelated obje
ts whi
h

are 
onne
ted with 
y
li
 permutation of words. The link with enumera-

tive 
ombinatori
s was developped in Lothaire's volume [31℄ and later in R.

Stanley's book [44℄. We begin with notions 
lassi
al in symboli
 dynami
s

(see [30℄ or [28℄ for a general referen
e; see [15℄ or [24℄ for the link with �nite

automata).

5.1 Subshifts of �nite type

A subshift is a set of biin�nite words on a �nite alphabet A whi
h avoids a

given set F of forbidden words. It is a topologi
al spa
e as a 
losed subset

of the spa
e A

Z

of fun
tions from Z into the set A. The full shift on A is

the set of all biin�nite words on A. It 
orresponds to the 
ase F = ;.

A so�
 subshift is the set of biin�nite labels of paths in a �nite automa-

ton. A so�
 subshift is 
alled irredu
ible if the automaton 
an be 
hosen

strongly 
onne
ted. A subshift of �nite type is the set of biin�nite words

avoiding a �nite set of �nite words. Any subshift of �nite type is so�
 but

the 
onverse is not true. The edge shift of a �nite graph G is the set S

G

of biin�nite paths in G (viewed as biin�nite sequen
es of edges). It is a

subshift of �nite type.

The shift � is the fun
tion on a subshift S whi
h maps a point x to the

point y = �(x) whose ith 
oordinate is y

i

= x

i+1

.

A morphism from a subshift S into a subshift T is a fun
tion f : S ! T

whi
h is 
ontinuous and invariant under the shift. A bije
tive morphism is


alled a 
onjuga
y. Any subshift of �nite type is 
onjugate to some edge

shift.

The entropy h(S) of a subshift S is the entropy of the formal language

formed by the �nite blo
ks o

urring in words of S. It 
an be shown that the

entropy is a topologi
al invariant, in the sense that two 
onjugate subshifts

have the same entropy.

While the entropy is a measure of number of forbidden words, it is possi-

ble to study the number of minimal forbidden words. It gives rise to another

invariant of subshifts [13℄, [14℄.

An integer p is a period of a point x = (a

n

)

n2Z

if a

n+p

= a

n

for all n 2 Z.

Equivalently, p is a period of x if �

p

(x) = x. The zeta fun
tion of a subshift
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S, is de�ned as the series

�(S) = exp

X

n�1

p

n

n

z

n

where p

n

is the number of words with period n in S. It is also a topologi
al

invariant, sin
e a point of period n is mapped by a 
onjuga
y on a point of

the same period.

The following result due to Bowen and Lanford [19℄ is 
lassi
al (see [30℄).

Proposition 13 Let G be a �nite graph and let M be the adja
en
y matrix

of G. Then

�(S

G

) = det(I �Mz)

�1

:

Proof. We �rst have for ea
h n � 1

Tr(M

n

) = p

n

sin
e the 
oeÆ
ient (i; j) of M

n

is the number of paths from i to j. Thus

�(S

G

) = exp

X

n�1

p

n

n

z

n

= exp

X

n�1

Tr(M

n

)

n

z

n

= expTr(log(I �Mz)

�1

)

= det(I �Mz)

�1

sin
e, by the formula of Ja
obi, expTr = det exp. �

Example 8 Let S be the edge shift of the graph G of Figure 15. We have

M =

2

4

1 1 0

0 0 1

1 0 0

3

5

:

Consequently

�(S) =

1

1� z � z

3

:

34



1

2

3

Figure 15: A subshift of �nite type

Let S be a subshift of �nite type and let p

n

be the number of points

with period n. Let q

n

be the number of points with least period n. Sin
e

q

n

is a multiple of n, we also denote q

n

= nl

n

. We have then the formula

expressing the zeta fun
tion as an in�nite produ
t using the integers l

n

as

exponents.

�(S) = �

n�1

(1� z

n

)

�l

n

;

as one may verify using p

n

=

P

djn

dl

d

and the de�nition of �(S).

A 
lassi
al result, related with what follows, is the following statement,

known as Krieger's embedding theorem.

Theorem 11 Let S; T be two subshifts of �nite type. There exists an inje
-

tive morphism f : S ! T with f(S) 6= T i�

1. h(S) < h(T )

2. for ea
h n � 1, q

n

(S) � q

n

(T ) where q

n

(S) (resp. q

n

(T )) is the number

of points of S (resp. T ) of least period n.

The following result is the basis of many appli
ations of symboli
 dy-

nami
s to 
oding. It is due to Adler, Coppersmith and Hassner [1℄.

Theorem 12 If S is an irredu
ible subshift of �nite type su
h that h(S) �

log k, it is 
onjugate to a subshift of �nite type S

G

where the graph G has

outdegree at least k.

The proof is based on a state-splitting algorithm using approximate

eigenve
tors and Lemma 1. This result is part of a number of 
onstru
-

tions leading to sliding blo
k 
odes used in magneti
 re
ording (see [35℄, [11℄

or [30℄). It gives at the same time the following result.

Theorem 13 It S is a subshift of �nite type su
h that h(S) � log k, then

there is a graph G of outdegree at most k su
h that S is 
onjugate to S

G

.
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There is a 
onnexion between this theorem and Theorem 6. Let indeed

u be a regular sequen
e of integers su
h that u(1=k) � 1. Let G be a

normalized graph re
ognizing u (in the sense of Se
tion 2.1). Let

�

G be the

graph obtained by merging the initial and terminal vertex. Then h(S

�

G

) �

log k. We 
an apply Theorem 13 to obtain a graphH with outdegree at most

k su
h that S

G

and S

H

are 
onjugate. This gives the 
on
lusion of Theorem

6 provided the initial-terminal vertex did not split in the 
onstru
tion. The

following examples show both 
ases (for details, see [7℄ and [8℄).

Example 9 Let G be the graph of Figure 5. The splitting of vertex 2 gives

a graph of outdegree 2. A normalization gives the automaton on the right.

Example 10 The sequen
e of the example given in Figure 6 is re
ognized

by a graph G su
h that

�

G has three 
y
les of length 2. The solution as a

binary tree has only two 
y
les of length 2 and thus 
ould not be obtained

by state-splitting.

5.2 Cir
ular 
odes

A 
ir
ular word, or ne
kla
e, is the equivalen
e 
lass of a word under 
y
li


permutation. For a word w, we denote by �w the 
ir
ular word represented

by w.

Let X be a set of words and w = x

1

x

2

� � � x

n

with x

i

2 X. The set of


y
li
 permutations of the sequen
e (x

1

; x

2

; : : : ; x

n

) is 
alled a fa
torization

of the 
ir
ular word �w.

A 
ir
ular 
ode is a set X of words su
h that the fa
torization of 
ir
ular

words is unique.

Example 11 The set X = fa; abag is a 
ir
ular 
ode. Indeed, the position

of the symbols b determines uniquely the o

urren
es of aba.

Example 12 The set X = fab; bag is not a 
ir
ular 
ode. Indeed, the


ir
ular word �w for w = abab has two fa
torizations namely (ab; ab) and

(ba; ba).

The following 
hara
terization is useful (see [16℄).

Proposition 14 A set X is a 
ir
ular 
ode if and only if it is a 
ode and

for all u; v 2 A

�

,

uv; vu 2 X

�

) u; v 2 X

�
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Example 13 We obtain another way to prove that the set X = fab; bag

is not a 
ir
ular 
ode. Indeed, otherwise we would have a; b 2 X

�

whi
h is


ontradi
tory.

Let X be a �nite 
ode. The 
ower automaton of X, denoted A

X

, is the

following automaton. The set of its states is

Q = f(u; v) 2 A

+

�A

+

j uv 2 Xg [ (1; 1)

The transitions are of the form (u; av)

a

�! (ua; v) or (1; 1)

a

�! (a; v) or

(u; a)

a

�! (1; 1). The unique initial and �nal state is (1; 1).

Example 14 The 
ower automaton of the 
ir
ular 
ode fa; abag is pi
tured

in Figure 16.

1

2

3

a

a

b

a

Figure 16: The 
ower automaton of fa; abag.

The following result is easy to prove.

Proposition 15 The 
ower automaton A

X

re
ognizes X

�

. The 
ode X is


ir
ular i� for ea
h word w, there is at most one 
y
le with label w.

We now study the length distributions of 
ir
ular 
odes. Let X be a


ir
ular 
ode and let u

(

z) = (u

n

)

n�1

be its length distribution. For ea
h

n � 1, let p

n

be the number of words w of length n su
h that �w has a

fa
torization in words of X.

Proposition 16 The sequen
es (p

n

)

n�1

and (u

n

)

n�1

are related by

exp

X

n�1

p

n

n

z

n

=

1

1� u(z)

: (2)
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Proof. Ea
h (p

n

) depends only on the �rst n terms of the sequen
e (u

n

).

It is therefore possible to suppose that the sequen
e (u

n

) is �nite, i.e. that

the 
ode X is �nite. Let A be the 
ower automaton of X. Let S be

the subshift of �nite type asso
iated with the graph of A. Then p

n

is the

number of elements of period n in S. Indeed, ea
h word w su
h that �w has

a fa
torization is 
ounted exa
tly on
e as the label of a 
y
le in A. We have

also

det(I �Mz) = 1� u(z):

Thus, the result follows from Proposition 13. �

The expli
it relation between the numbers u

n

and p

n

is the following. For

ea
h i � 1, let u

(i)

= (u

(i)

n

)

n�1

be the length distribution ofX

i

. Equivalently,

u

(i)

n

is the 
oeÆ
ient of degree n of u(z)

i

. Then for ea
h n � 1

p

n

=

n

X

i=1

n

i

u

(i)

n

:

We also have for ea
h n � 1

p

n

= nu

n

+

n�1

X

i=1

p

i

u

n�i

: (3)

This formula 
an be easily dedu
ed from Formula (2) by taking the loga-

rithmi
 derivative of ea
h side of the formula. It shows dire
tly that for

any sequen
e (u

n

)

n�1

of nonnegative integers, the sequen
e p

n

de�ned by

Formula (2) is formed of nonnegative integers.

Formula (3) is known as Newton's formula in the �eld of symmetri


fun
tions. A
tually, the numbers u

n


an be 
onsidered, up to the sign, as

elementary symmetri
 fun
tions and the p

n

as the sums of powers (see [32℄).

The link between Witt ve
tors and symmetri
 fun
tions was established in

[43℄.

Let p

n

=

P

djn

dl

d

. Then l

n

is the number of non-periodi
 
ir
ular words

of length n with a fa
torization. In terms of generating series, we have

exp

X

n�1

p

n

n

z

n

=

Y

n�1

(1� z

n

)

�l

n

: (4)

Putting together Formulae (2) and (4), we obtain

1

1� u(z)

=

Y

n�1

(1� z

n

)

�l

n

: (5)
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For any sequen
e (u

n

)

n�1

of nonnegative integers, the sequen
e l = (l

n

)

n�1

thus de�ned is formed of nonnegative integers. This 
an be proved either by

a dire
t 
omputation or by a 
ombinatorial argument sin
e any sequen
e u

of nonnegative integers is the length distribution of a 
ir
ular 
ode on a large

enough alphabet. We denote l = �(u) and we say that l is the �-transform

of the sequen
e u.

We denote by '

n

(k) the number of non-periodi
 
ir
ular words of length

n on k symbols. The numbers '

n

(k) are 
alled the Witt numbers. It is 
lear

that the sequen
e ('

n

(k))

n�1

is the �-transform of the sequen
e (k

n

)

n�1

.

The 
orresponding parti
ular 
ase of Identity (5)

1� kz =

Y

n�1

(1� z

n

)

'

n

(k)

is known as the 
y
lotomi
 identity.

The following arrays display a tabulation of the Witt numbers for small

values of n and k.

n '

n

(2) '

n

(3) '

n

(4)

1 2 3 4

2 1 3 6

3 2 8 20

4 3 18 60

5 6 48 204

6 9 116 670

7 18 312 2340

8 30 810 8160

9 56 2184 29120

10 99 5880 104754

The value '

3

(4) = 20 is famous be
ause of the geneti
 
ode: there are

pre
isely 20 amino-a
ids 
oded by words of length 3 over a 4-symbol alphabet

A,C,G,U.

For any sequen
e a = (a

n

)

n�1

, let

p

n

=

X

djn

da

n=d

d

:

The pair (a; p) is 
alled a Witt ve
tor (see [29℄ or [36℄). The numbers p

n

are

the ghost 
omponents. In terms of generating series, one has

exp

X

n�1

p

n

n

z

n

=

Y

n�1

(1� a

n

z

n

)

�1

:
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The following result is due to S
h�utzenberger (see [16℄).

Theorem 14 Let u = (u

n

)

n�1

be a sequen
e of nonnegative integers and

let l = (l

n

)

n�1

be the �-transform of u. The sequen
e (u

n

)

n�1

is the length

distribution of a 
ir
ular 
ode on k symbols i� for all (n � 1)

l

n

� '

n

(k):

Several 
omplements to Theorem 14 appear in [6℄. In parti
ular, the

relation with Kraft's inequality is studied. The equality 
ase in Kraft's

inequality is 
hara
terized in terms of the sequen
e of inequalities above.

There is a 
onnexion between Theorem 14 and Krieger's embedding the-

orem (Theorem 11), in the sense that Theorem 14 gives a simple proof of

Theorem 11 in a parti
ular 
ase. A
tually, let us 
onsider the parti
ular


ase of subshift of �nite type, 
alled a renewal system.

A renewal system S is the edge shift of a graph G made up of 
y
les

sharing exa
tly one vertex. Su
h a graph is determined by the sequen
e

u = (u

i

)

1�i�n

where u

i

is the number of loops with length i. Let T

k

be the

full shift on k symbols. Suppose that the pair formed by S and T

k

satis�es

the hypotheses of Krieger's theorem. The number q

n

(S) of points of least

period n is nl

n

where l = (l

n

)

n�1

is the �-transform of the sequen
e u and

q

n

(T

k

) = n'

n

(k). Thus, the sequen
e u satis�es the hypotheses of Theorem

14. Consequently, there is 
ir
ular 
ode X su
h that u

X

= u. The 
ower

automaton of X de�nes an embedding of S

G

into the full shift on k symbols.

This gives an alternative proof of Krieger's theorem in this 
ase.

It would be interesting to have a proof of Krieger's theorem along the

same lines in the general 
ase.

To 
lose this se
tion, we mention the following open problem: If the

sequen
e u is regular and satis�es the inequalities

l

n

� '

n

(k) (n � 1);

where l = �(u), does there exist a rational 
ir
ular 
ode on k symbols su
h

that u = u

X

?

5.3 Zeta fun
tions

Theorem 13 admits the following generalization due to Reutenauer [40℄.

Theorem 15 The zeta fun
tion of a so�
 subshift is regular.
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We have seen already (Theorem 13) that the zeta fun
tion of a subshift

of �nite type is a rational fra
tion, and indeed the inverse of a polynomial.

The stronger statement that it is regular follows from the following formula

allowing to 
ompute det(I�Mz) whenM is the adja
en
y matrix of a n�n

graph G. One has

det(I �Mz) = (1� v

1

(z)) � � � (1� v

n

(z));

where v

i

(z) is the length distribution of the set of �rst returns to state i

using only states fi; i + 1; : : : ; ng (see [12℄).

The proof that the zeta fun
tion of a so�
 subshift is rational is a result

of Manning and Bowen [33℄, [20℄. For an exposition, see [30℄ or [12℄. A

generalization appears in [17℄.
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