Z. Adam, M. Turmel, C. Lemieux, and D. Sankoff, Common Intervals and Symmetric Difference in a Model-Free Phylogenomics, with an Application to Streptophyte Evolution, Journal of Computational Biology, vol.14, issue.4, pp.436-445, 2007.
DOI : 10.1089/cmb.2007.A005

F. Alizadeh, R. Karp, D. Weisser, and G. Zweig, Physical Mapping of Chromosomes Using Unique Probes, Journal of Computational Biology, vol.2, issue.2, pp.159-184, 1995.
DOI : 10.1089/cmb.1995.2.159

E. Althaus, S. Canzar, M. R. Emmett, A. Karrenbauer, A. G. Marshall et al., Computing H/D-exchange speeds of single residues from data of peptic fragments, Proceedings of the 2008 ACM symposium on Applied computing , SAC '08, p.12731277, 2008.
DOI : 10.1145/1363686.1363981

URL : https://hal.archives-ouvertes.fr/hal-00388515

J. E. Atkins, E. G. Boman, and B. Hendrickson, A Spectral Algorithm for Seriation and the Consecutive Ones Problem, SIAM Journal on Computing, vol.28, issue.1, p.297310, 1998.
DOI : 10.1137/S0097539795285771

J. E. Atkins and M. Middendorf, On Physical Mapping and the consecutive ones property for sparse matrices, Discrete Applied Mathematics, vol.71, issue.1-3, p.712340, 1996.
DOI : 10.1016/S0166-218X(96)00055-8

J. J. Bartholdi, J. B. Orlin, and H. D. Ratliff, Cyclic Scheduling via Integer Programs with Circular Ones, Operations Research, vol.28, issue.5, pp.1074-1085, 1980.
DOI : 10.1287/opre.28.5.1074

D. Bienstock, On the complexity of testing for odd holes and induced odd paths, Discrete Mathematics, vol.90, issue.1, pp.85-92, 1991.
DOI : 10.1016/0012-365X(91)90098-M

G. Blin, R. Rizzi, and S. Vialette, General framework for minimal conflicting set, 2010.

K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences, vol.13, issue.3, p.335379, 1976.
DOI : 10.1016/S0022-0000(76)80045-1

C. Chauve, J. Man?uchman?uch, and M. Patterson, On the Gapped Consecutive-Ones Property, Proc. 5th European conference on Combinatorics, Graph Theory and Applications (EuroComb), pp.121-125, 2009.
DOI : 10.1016/j.endm.2009.07.020

C. Chauve, T. Stephen, U. Haus, and V. You, Minimal conflicting sets for the consecutive ones property in ancestral genome reconstruction, Proc. 7th RECOMB Comparative Genomics Satellite Workshop (RECOMB-CG), pp.48-48, 2009.

C. Tannier, A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome, PLoS Comput. Biol, vol.4, p.1000234, 2008.

T. Christof, M. Jünger, J. Kececioglu, P. Mutzel, and G. Reinelt, A Branch-and-Cut Approach to Physical Mapping of Chromosomes by Unique End-Probes, Journal of Computational Biology, vol.4, issue.4, pp.433-447, 1997.
DOI : 10.1089/cmb.1997.4.433

T. Christof, M. Oswald, and G. Reinelt, Consecutive Ones and a Betweenness Problem in Computational Biology, 6th International Conference on Integer Programming and Combinatorial Optimization IPCO '98, p.213228, 1998.
DOI : 10.1007/3-540-69346-7_17

M. Conforti and M. R. Rao, Structural properties and decomposition of linear balanced matrices, Mathematical Programming, vol.10, issue.2, pp.129-168, 1992.
DOI : 10.1007/BF01581196

M. Dom, Algorithmic aspects of the consecutive-ones property, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, vol.98, p.2759, 2009.

M. Dom, J. Guo, and R. Niedermeier, Approximation and fixedparameter algorithms for consecutive ones submatrix problems, Journal of Computer and System Sciences, 2009.
DOI : 10.1016/j.jcss.2009.07.001

URL : http://doi.org/10.1016/j.jcss.2009.07.001

D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific Journal of Mathematics, vol.15, issue.3, p.835855, 1965.
DOI : 10.2140/pjm.1965.15.835

URL : http://projecteuclid.org/download/pdf_1/euclid.pjm/1102995572

M. Habib, R. M. Mcconnell, C. Paul, and L. Viennot, Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing, Theoretical Computer Science, vol.234, issue.1-2, p.2345984, 2000.
DOI : 10.1016/S0304-3975(97)00241-7

URL : http://doi.org/10.1016/s0304-3975(97)00241-7

M. Hajiaghayi and Y. Ganjali, A note on the Consecutive Ones Submatrix problem, Information Processing Letters, vol.83, issue.3, p.163166, 2002.
DOI : 10.1016/S0020-0190(01)00325-8

R. Hassin and N. Megiddo, Approximation algorithms for hitting objects with straight lines, Discrete Applied Mathematics, vol.30, issue.1, pp.29-42, 1991.
DOI : 10.1016/0166-218X(91)90011-K

S. Dorit, A. Hochbaum, and . Levin, Cyclical scheduling and multi-shift scheduling: Complexity and approximation algorithms, Discrete Optimization, vol.3, issue.4, pp.327-340, 2006.

W. Hsu, A simple test for the consecutive ones property, J. Algorithms, vol.43, issue.1, p.116, 2002.

W. Hsu and R. M. Mcconnell, PC trees and circular-ones arrangements, Theoretical Computer Science, vol.296, issue.1, p.99116, 2003.
DOI : 10.1016/S0304-3975(02)00435-8

URL : http://doi.org/10.1016/s0304-3975(02)00435-8

N. Korte and R. H. Mhring, An Incremental Linear-Time Algorithm for Recognizing Interval Graphs, SIAM Journal on Computing, vol.18, issue.1, p.6881, 1989.
DOI : 10.1137/0218005

L. T. Kou, Polynomial Complete Consecutive Information Retrieval Problems, SIAM Journal on Computing, vol.6, issue.1, pp.67-75, 1977.
DOI : 10.1137/0206004

URL : http://ecommons.cornell.edu/bitstream/1813/6035/1/74-193.pdf

W. Lu and W. Hsu, A Test for the Consecutive Ones Property on Noisy Data???Application to Physical Mapping and Sequence Assembly, Journal of Computational Biology, vol.10, issue.5, pp.709-735, 2003.
DOI : 10.1089/106652703322539051

R. M. Mcconnell, A certifying algorithm for the consecutive-ones property, 15th Annual ACMSIAM Symposium on Discrete Algorithms SODA '04, p.768777, 2004.

S. Mecke, A. Schbel, and D. Wagner, Station location complexity and approximation, 5th Workshop on Algorithmic Methods and Models for Optimization of Railways ATMOS '05, 2005.

S. Mecke and D. Wagner, Solving Geometric Covering Problems by Data Reduction, 12th Annual European Symposium on Algorithms ESA '04, p.760771, 2004.
DOI : 10.1007/978-3-540-30140-0_67

J. Meidanis, O. Porto, and G. P. Telles, On the consecutive ones property, Discrete Applied Mathematics, vol.88, issue.1-3, p.325354, 1998.
DOI : 10.1016/S0166-218X(98)00078-X

M. Oswald and G. Reinelt, The simultaneous consecutive ones problem, Theoretical Computer Science, vol.410, issue.21-23, p.19861992, 2009.
DOI : 10.1016/j.tcs.2008.12.039

N. Ruf and A. Schbel, Set covering with almost consecutive ones property, Discrete Optimization, vol.1, issue.2, pp.215-228, 2004.
DOI : 10.1016/j.disopt.2004.07.002

J. Tan and L. Zhang, The Consecutive Ones Submatrix Problem for Sparse Matrices, Algorithmica, vol.48, issue.3, p.287299, 2007.
DOI : 10.1007/s00453-007-0118-z

A. C. Tucker, A structure theorem for the consecutive 1s property, Journal of Combinatorial Theory. Series B, vol.12, p.153162, 1972.

A. F. Veinott and H. M. Wagner, Optimal Capacity Scheduling???I, Operations Research, vol.10, issue.4, pp.518-547, 1962.
DOI : 10.1287/opre.10.4.518