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Abstract. In the context of protein engineering, we consider the problem of computing an mRNA sequence
of maximal codon-wise similarity to a given mRNA (and consequently, to a given protein) that additionally
satisfies some secondary structure constraints, the so-called MRSO problem introduced in [3]. Since the MRSO
problem is known to be APX-hard [8], Bongartz proposed in [8] to attack the problem using the concept
of parameterized complexity. We prove in this paper that the MRSO problem is fixed-parameter tractable
parameterized by the number of degree 3 vertices or by the number of crossing edges in the implied structure
graph. This latter result answers an open problem posed in [8]. Aiming at precisely defining the complexity
landscape of the problem, we refine the NP-hardness result of [3] and complement this result by showing that
the MRSO problem is fixed-parameter tractable parameterized by an additional parameter. Finally, we present
a fixed parameter algorithm parameterized by the similarity score in a restrictive model.

Key Words: Computational biology, Parameterized Complexity, Protein Engineering.

1 Introduction

Backofen et al. introduced in [3, 4] the problem of computing an mRNA sequence of maximal codon-
wise similarity to a given mRNA (and consequently, to a given protein) that additionally satisfies some
secondary structure constraints, the so-called MRSO problem (see formal definition in the following
section). The initial motivation of the MRSO problem is concerned with selenocystein insertion, i.e.,
generating new amino acid sequences containing selenocystein. Selenocystein is a rare amino acid which
was discovered as the 21th amino acid [6]. Proteins containing selenocystein are called selenoproteins. It
has been shown [6] that in case of selenocystein, termination of translation is inhibited in the presence
of a specific mRNA sequence in the 3′-region after the UGA codon that forms a hairpin like structure.
It is argued in [3] that modifying existing proteins such that selenocystein is incorporated instead of a
catalytic cystein is an important problem for catalytic activity enhancement and X-ray crystallography.

Observe that selenocystein insertion is concerned with secondary structures without pseudo-knots, and
hence the linear-time algorithm presented in [3] provides an optimal solution. However, similar problems
occur with complex secondary structures, e.g. for programmed frameshifts which allow to encode two
different amino acid sequences in one mRNA sequence [14, 13]. This motivates the investigation of the
MRSO problem for more elaborate secondary structures [3, 8], i.e., secondary structures that contain
pseudo-knots. We mention also that an extension of the MRSO problem, where insertions and deletions
are allowed in the amino acid sequence, is presented in [2].

For the MRSO problem, it has been shown in [3] that there exists a linear-time algorithm if the
considered secondary structure corresponds to an outer-planar graph (as it is the case for selenoproteins).
In this paper, we refer to this algorithm as AOP. For the general case, the problem was proved to be NP-
complete in [3] and Bongartz showed recently that the problem is in fact APX-hard [8]. An algorithm
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for approximating the MRSO problem within ratio 2 is proposed in [3]. A slightly slower but somewhat
simpler algorithm for approximating the MRSO problem within ratio 4 is proposed in [8]. However,
both approximation algorithms presented in [3] and in [8] suffer from the same shortcoming, as they
both assume that any feasible solution has a non-negative score. Thus the optimal solution outputted by
these algorithms might be biologically irrelevant, as one can not prohibit, for instance, stop codons from
appearing in unwanted positions in the solution mRNA.

The computational challenge posed by NP-hard problems has inspired the development of a wide
range of algorithmic techniques. Since the MRSO problem for general implied structure graphs is known
to be APX-hard [8], Bongartz proposes in [8] to attack the problem using the concept of parameterized
complexity. Parameterized complexity [10] is an approach to complexity theory which offers a means of
analyzing algorithms in terms of their tractability. For many hard problems, the seemingly unavoidable
combinatorial explosion can be restricted to a small part of the input, the parameter, so that the problems
can be solved in polynomial-time when the parameter is fixed. The parameterized problems that have
algorithms of f(k) nO(1) time complexity are called fixed-parameter tractable, where k is the parameter,
f can be an arbitrary function depending only on k, and n denotes the overall input size. We designate
the class of fixed-parameter tractable problems FPT. In the last decade, parameterized complexity has
proved to be useful in computational biology, see for example [7, 11, 1]. The best general reference here is
[10].

This paper is organized as follows. After presenting some preliminaries in Section 2, we present in Sec-
tion 3 fixed-parameter algorithms for two natural parameters, namely the number of degree 3 vertices and
the number of crossing edges in the implied structure graph. In Section 4, we refine the NP-completeness
result of [3] and propose a fixed-parameter algorithm parametrized by the cutwidth of a given nice edge
bipartition (see Definition 3) of the implied structure graph. Finally, we present in Section 5 a fixed pa-
rameter algorithm parameterized by the similarity score in a restrictive model. Due to space constraints,
several details and proofs are not presented in this paper.

2 Preliminaries

In the following section we briefly introduce notations and terminology used throughout the paper. We
begin by introducing standard graph theory terminology. All graphs considered in this paper are simple.
For a graph G we denote V(G) as the set of vertices in G and E(G) as the set of edges in G. Given
a graph G and a subset V ′ ⊆ V(G) of the vertices in G, the induced subgraph G[V ′] is a graph with
V(G[V ′]) = V ′ and E(G[V ′]) = {uv ∈ E(G) : u, v ∈ V ′}. Given a subset E′ ⊆ E(G) of the edges in
G, the edge-induced subgraph G[E′] is a graph with E(G[E′]) = E′ and V(G[E′]) = {v ∈ e : e ∈ E′}.
A linear graph with n vertices is a vertex-labeled graph, where each vertex is labeled by a distinct label
from 1, 2, . . . , n. Given any linear graph G, we will always assume that the labeling of G is implied in the
indexing of V(G), i.e., that vi is the vertex with label i in V(G). A linear embedding of a graph G with
n vertices is a one-to-one labeling from V(G) onto 1, . . . , n. Consequently, this labeling defines a linear
ordering on the set of vertices, and can be geometrically interpreted as an embedding of the vertices on
a straight line. Accordingly, an interval Vi,j of a linear graph G is defined as the subset of consecutive
vertices {vi, vi+1, . . . , vj} ⊆ V(G). Let e1 = vivj and e2 = vxvy be two edges of an arbitrary linear graph
G, such that i < x. We say that e1 and e2 cross, if j < y, and this is denoted by e1 G e2. Now, given
any graph G, an outer-planar linear embedding (or simply outer-planar embedding) of G is a labeling
from 1, . . . , n onto V(G), such that G with this labeling has no crossing edges. A graph with such an
embedding is called outer-planar. It is well-known that, given a graph G, one can test in linear time if G
is outer-planar, and if so, find a linear embedding without crossing edges [19, 18]. Hence, we may always
assume that the outer-planar labeling of G is implied in the indexing of V(G) when G is outer-planar.
For additional graph-theoretical notions, we use the standard notations given in [9].

We now introduce notations for describing and comparing mRNA sequences. Let Σ = {A,C,G,U}
be an alphabet representing the four possible nucleotides in an mRNA molecule. The pairings {A,U}



3

and {C,G} are referred to as complementary nucleotide pairs, although all results in this paper can be
extended to consider additional pairings, e.g. the non-standard {G,U} pairing. Furthermore, as in most
natural models, we assume hydrogen bonds can occur between any complementary nucleotides which are
at least three positions apart in the mRNA sequence. A codon is a string of length 3 over Σ. A mRNA
sequence is a concatenation of n codons, or in other words, a string in Σ3n. Let S = s1 . . . s3n be an mRNA
sequence. Codon i, 1 ≤ i ≤ n, of S is simply the substring of length 3 ending at position 3i in S, denoted
CSi = s3i−2s3i−1s3i. Now, suppose we wish to compute the similarity between another mRNA sequence
T = t1 . . . t3n and S, and we wish to do so codon-wise. For this we can provide a set of n functions,
F = f1, . . . , fn, called similarity functions of S, such that for all 1 ≤ i ≤ n, each function fi is of the form
fi : Σ3 → Q. Thus, fi assigns a value to codon CTi according to its level of similarity in comparison with
codon CSi . The total level of similarity between S and T is then defined by:

sim(S, T ) =
n∑
i=1

fi(CTi ) =
n∑
i=1

fi(t3i−2, t3i−1, t3i)

Notice, that given a set of similarity functions F = f1, . . . , fn for S, one does not need to know anything else
about S in order to compute the similarity score of S and T . Now consider an arbitrary mRNA sequence
S of length 3n. The secondary structure of S, denoted S[S] ⊆ {{i, j} : 1 ≤ i < j ≤ 3n}, is a set of pairings
between distinct integers in {1, 2, . . . , 3n}, which represent hydrogen bonds in the folding of S. Since in
our model, we assume that each nucleotide can pair with at most one other nucleotide in any folding, we
assume that each integer appears in at most one pair in S[S]. Furthermore, there are no pairs of the form
{i, i+ 1} or {i, i+ 2} in S[S], for all 1 ≤ i ≤ 3n− 2. Consequently, the structure graph of S is the linear
graph Γ with maximum degree 1, such that V(Γ ) = {u1, u2, . . . , u3n} and E(Γ ) = {uiuj : {i, j} ∈ S[S]}
(see Figure 1). Let Γ be an arbitrary structure graph with V(Γ ) = {u1, . . . , u3n}, and let T = t1, . . . , t3n
be an arbitrary mRNA sequence. We say that nucleotides ti and tj are compatible with respect to Γ , if
either {ti, tj} is a complementary nucleotide pair or uiuj /∈ E(Γ ). The entire sequence T is compatible
with respect to Γ , if any pair of nucleotides ti and tj in T , 1 ≤ i < j ≤ 3n, is compatible with respect to
Γ . We are now in position to give a more formal definition of the mRNA Structure Optimization (MRSO)
problem.

Definition 1. Let F be a set of n similarity functions for a source mRNA sequence of length 3n, and let
Γ be a structure graph with V(Γ ) = {u1, u2, . . . , u3n}. The MRSO problem asks to find a target mRNA
sequence which is compatible with respect to Γ , and which achieves the highest possible similarity score
with respect to F .

Thus, MRSO can be thought of as the problem of assigning nucleotides (or letters from {A,C,G,U})
to vertices in Γ , with the requirement that the nucleotides assigned are complementary according to Γ ,
and also with the requirement that such an assignment achieves the maximal similarity score with respect
to F . Since we are really interested in codon-wise similarity, we use a more convenient representation of
a structure graph, namely the implied structure graph as defined in [3].

Definition 2. Let Γ be a structure graph with V(Γ ) = {u1, u2, . . . , u3n}. The implied structure graph of
Γ , denoted GΓ , is the linear graph with:

V(GΓ ) = {v1, v2, . . . , vn}
E(GΓ ) = {vxvy : ∃uiuj ∈ E(Γ ), i ∈ {3x− 2, 3x− 1, 3x} and

j ∈ {3y − 2, 3y − 1, 3y}}

Thus, the implied structure graph may be thought of as a compressed version of a structure graph,
where three consecutive vertices in the structure graph are block-wise joined into one compressed vertex,
which correspondingly represents a codon or a triplet of nucleotides (see Figure 1). Notice that this
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Fig. 1. A structure graph Γ compressed into its implied structure graph GΓ .

compression is not lossless, as there might be multiple (at most three) edges in G which correspond to
one edge in GΓ (but no edge can connect two nucleotides in a single codon). Nevertheless, we may assume
that the edges in the implied structure graph GΓ are labeled with the information needed to deduce the
complementary constraints defined by the edges of Γ . As this labeling will require only a constant increase
in space, we assume that it is implicitly existent, without ever referring to it throughout the paper. This
allows us to consider from hereafter, only implied structure graphs, and to speak of compatible codons
with respect to GΓ as opposed to compatible nucleotides with respect to Γ . Accordingly, we say that
a pair of codons Ci, Cj ∈ Σ3, assigned to vertices vi and vj respectively, is compatible with respect to
GΓ , if any pair of nucleotides t ∈ Ci and t′ ∈ Cj are compatible with respect to Γ . Furthermore, we
hereafter think of MRSO as a codon assignment problem, and consider instances for the problem of the
form (GΓ ,F), where GΓ is an implied structure graph, and Γ is a structure graph which can always
be inferred from GΓ . This will prove very useful in avoiding heavy notations and improving the overall
brevity of the expose.

3 Two natural parameters for MRSO

We begin the discussion in this paper by considering two natural parameters for MRSO. Namely, we
consider the number of degree 3 vertices in the implied structure graph GΓ , and the number of crossing
edges in GΓ . We denote both these parameters throughout this section by δ and χ respectively, i.e.,
δ = |{v ∈ V(GΓ ) : d(v) = 3}| and χ = |{{e1, e2} : e1, e2 ∈ E(GΓ ) ∧ e1 G e2}. As it turns out, MRSO is in
FPT when considering either one of these two parameters to be fixed (one of these two results answers an
open problem posed in [8]). To show this, we will first describe a general algorithm, and later demonstrate
how it can be applied for both cases. Before describing our algorithm, we first introduce the following
central definition, which will prove essential throughout the entire paper.

Definition 3 (Edge bipartition and nice edge bipartition of GΓ ). Let GΓ be an implied structure
graph with n vertices. An edge partition P = {Et, Eb} of GΓ is a partitioning of the edges in GΓ into Et
and Eb, such that Et ∪ Eb = E(GΓ ), Et ∩ Eb = ∅ and Et 6= ∅. P is said to be nice, if the subgraph GΓ [Et] is
outer-planar.

A convenient graphical representation of an edge bipartition P = {Et, Eb} of some implied structure
graph GΓ , is obtained by drawing the vertices on a line according to their linear embedding, and then
drawing the edges in Et and Eb above and below this line respectively (see Figure 3). Thus we will often
refer to Et as the top edges of P, and to Eb as the bottom edges of P. We now turn to describe our general
algorithm which we call ANEB. ANEB will apply only for cases when a nice edge bipartition of GΓ with
a fixed number of vertices incident to bottom edges is known in advance. Indeed, such an assumption
may be a bit unrealistic since not all graphs have such an edge partitioning, and also since finding a nice
edge bipartition with a minimal number of vertices incident to bottom edges can be a daunting task.
Nonetheless, following the description of ANEB, we show that when considering either δ or χ to be fixed,
one can obtain such a bipartition with very little effort.
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ANEB uses the algorithm described in [3] for the case when GΓ is outer-planar, i.e., algorithm AOP, as a
sub-procedure. Recall thatAOP solves MRSO for this case in linear time. Furthermore, it is worth pointing
out thatAOP can be applied even ifGΓ is outer-planar and its natural linear embedding (i.e. natural codon
order) contains crossing edges. Now, notice that AOP could easily be modified to find an optimal mRNA
target sequence with a prespecified subset of codons. For example, given an instance (GΓ ,F = f1, . . . , fn)
for MRSO, we can modify AOP to compute the optimal mRNA sequence starting with codon AAA.
For this, we simply replace our original instance with a new instance (GΓ ,F ′ = f ′1, . . . , f

′
n) such that

f ′1(AAA) = f1(AAA), f ′1(C1) = −∞ for any codon C1 6= AAA, and f ′i = fi for all 2 ≤ i ≤ n. To extend
this example, in the following definition we consider any codon assignment for vertices in V(GΓ ), i.e., any
function φ of the form φ : V ′ → Σ3, where V ′ is any subset of vertices in V(GΓ ).

Definition 4. Let (GΓ ,F = f1, . . . , fn) be an instance of MRSO, and let V ′ ⊆ V(GΓ ). Also, let φ :
V ′ → Σ3 be a codon assignment for V ′. The corresponding set of similarity functions of assignment φ,
denoted Fφ = fφ1 , . . . , f

φ
n , is defined as follows: (i) fφi = fi for all i such that vi ∈ V(GΓ ) − V ′ and (ii)

fφi (φ(vi)) = fi(φ(vi)), f
φ
i (Ci) = −∞ for any Ci 6= φ(vi), for all i such that vi ∈ V ′.

Notice that given an assignment φ and a set of n similarity functions F , one can easily generate Fφ in
O(n) time. Now, given an instance (GΓ ,F) of MRSO, and a nice edge bipartition P = {Et, Eb} of GΓ , let
υ denote the number of vertices in GΓ incident to edges in Eb, i.e., υ = |V(GΓ [Eb])|. At its core, ANEB is
basically an exhaustive search procedure that searches through all possible codon assignments to vertices
incident to edges in Eb. For each such assignment, ANEB first checks if the assignment is compatible with
respect to the edge-induced subgraph GΓ [Eb], and if so, it invokes AOP with the set of similarity functions
corresponding to this assignment. Finally, ANEB outputs the maximum solution over all solutions returned
by AOP. A more schematic description of ANEB is given in Figure 2.

Algorithm ANEB(GΓ ,F ,P)

Data : An implied structure graph GΓ of order n, a set of similarity functions F = f1, . . . , fn and a nice edge
bipartition P = (Et, Eb).

Result : An optimal target mRNA sequence t = t1t2 . . . tn which is compatible with GΓ .
begin

foreach possible codon assignment φ to vertices incident to edges in Eb do
if φ is compatible with respect to GΓ [Eb] then

(a) Construct the collection Fφ of similarity functions corresponding to φ.
(b) Invoke Algorithm AOP(GΓ [Et],Fφ) for finding an optimal target mRNA sequence which is
compatible with GΓ .

end
end
return the target mRNA sequence found in Step (b) with the largest similarity value.

end

Fig. 2. Algorthim ANEB.

Lemma 1. Given an instance (GΓ ,F = f1, . . . , fn) for MRSO accompanied by a nice edge bipartition
P = {Et, Eb} of GΓ , algorithm ANEB computes an optimal target mRNA sequence for this instance in
O(64υn) time, where υ = |{v ∈ e : e ∈ Eb}|.

We now consider parameter δ, the number of degree 3 vertices in the implied structure graph GΓ .
Recall that a vertex with degree 3 in GΓ represents a codon with three nucleotides, each pairing with
complementary nucleotides in three different codons. Although this situation can occur in a folding of an
mRNA molecule, it can be expected to be quite rare due to the natural geometric and thermodynamic
constrains imposed on any such folding. Thus, we expect that in most real-life applications, the number
of degree 3 vertices in GΓ will be relatively small in comparison with the total length of the source mRNA
sequence.
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Let (GΓ ,F) be an instance of MRSO, and let V ′ = {v ∈ V(GΓ ) : d(v) = 3} be the degree 3 vertices
in GΓ . In the following we show that a nice edge bipartition of GΓ can easily be obtained with at most
δ = |V ′| bottom edges. This is easily established when considering the following folklore lemma.

Lemma 2. If G is a graph with maximum degree 2, then G is outer-planar.

Now, consider an edge bipartition of GΓ such that for each vertex v ∈ V ′, at most one edge incident
to v is a bottom edge. Clearly, such a bipartition with at most δ bottom edges exists and can be found by
a simple scan of the vertices in GΓ . Let P = {Et, Eb} be an edge bipartition obtained in this fashion. Now,
since GΓ is at most cubic, every vertex is incident to at most two top edges in P. Thus, by Lemma 2,
G[Et] is outer-planar and so one can find in linear-time, a linear embedding of GΓ such that P is nice.
Considering all this, we state the following proposition.

Proposition 1. The MRSO problem is in FPT for parameter δ = |{v ∈ V(GΓ ) : d(v) = 3}|.

Proof. According to the above discussion, GΓ has a nice edge bipartition with at most δ bottom edges
and this partitioning can be found in linear time. Thus, by Lemma 1, algorithm ANEB can be applied to
find an optimal solution in O(642δn) time, and so the above proposition holds. ut

We now consider parameter χ. Recall that χ denotes the number of crossing edges in GΓ . Also recall
that finding an optimal solution of MRSO when parameterized by this number was posed as an open
problem in [8]. Indeed, in most real life applications this parameter can be considered fixed, as most
known secondary structures of real mRNA molecules consist of a very small number of pseudo-knots.

As in the case of parameter δ, a nice edge bipartition with χ bottom edges can easily be obtained in
this case as well. Simply consider an edge bipartition with one bottom edge for each pair of crossing edges
in GΓ . Clearly such an edge bipartition is nice, has χ bottom edges, and can be obtained in linear time
with respect to the number of vertices in GΓ . Thus we state the following proposition.

Proposition 2. The MRSO problem is in FPT for parameter χ = |{{e1, e2} : e1, e2 ∈ E(GΓ ) ∧ e1 G
e2}|.

Proof. Replace δ with χ in the proof of Proposition 1. ut

4 On the borderline between NP-completeness and P

We now explore the borderline between instances of MRSO which are tractable and instances which are
intractable. We already know that in general, the MRSO problem is NP-complete [3], so we know there
exist instances for which the problem is intractable. Furthermore, also due to [3], we know that if the
implied structure graph is outer-planar, then the problem is tractable. Thus, in the following, we aim
to refine this border by suggesting a tighter NP-completeness result, accompanied by a parameterized
algorithm for a new parameter later on introduced.

Since the MRSO problem can be solved in optimal time for instances with outer-planar implied
structure graphs, one can ask if the problem is still tractable when the implied structure graph is, for
instance, planar. As we shall soon see, the answer to this question is negative, even for restrictive subclasses
of planar graphs. More specifically, we prove in the following that the MRSO problem is NP-complete,
even when the page-number of the implied structure graph is 2. The page-number of a given graph G,
is the smallest partitioning of E(G) possible, such that each subset of edges in the partition forms an
edge-induced outer-planar subgraph under the same linear embedding. Clearly the page-number of an
outer-planar graph is 1. For planar graphs however, this number is bounded by 4, and furthermore, there
exist examples of planar graphs which achieve this number [21]. A very interesting related result by Heath
states that the edges of a planar graph can be partitioned into two parts, each inducing an outer planar
graph [12]. Our proof is a direct extension of the APX-completeness proof provided in [8] for MRSO.
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Proposition 3. The MRSO problem is NP-complete when restricted to implied structure graphs with
page-number 2.

Proposition 3 gives a tight description of NP-hard instances for MRSO. We now complement this
result by giving a tight description of polynomial time solvable instances of MRSO. For this, we consider
a new parameter for the MRSO problem. Consider any linear graph G with n vertices. The cutwidth of
G is defined as the number max1≤i≤n |{vxvy ∈ E(G) : x < i < y}|, i.e., the maximum number of edges
in E(GΓ ) cut by any position i in 1, . . . , n. Let (GΓ ,F) be an instance of MRSO, and let P = {Et, Eb}
be a nice edge bipartition of GΓ given with this instance. The cutwidth of P is defined as the cutwidth
of the edge-induced linear subgraph GΓ [Eb], and this value is denoted by ψ (for example see Figure 3).
In the following we present a method for computing the optimal target mRNA sequence in polynomial
time, in cases where a nice edge bipartition of GΓ , with fixed cutwidth, is known in advance. Although
the main motivation for this result is theoretical, it is conceivable to assume that it can be applied to
practical applications as well, perhaps in conjunction with the results described in the previous section.

Fig. 3. Two nice edge bipartitions of GΓ with cutwidth 1 (a) and 2 (b). In (a), edge vxvy is cut by interval Vi,j with respect
to P. In (b), edge vxvy is cut by interval Vi,j with respect to P, and edge vxvy′ is cut by interval Vk,l with respect to P.

We begin by giving a general description of algorithm AOP. Let (GΓ ,F = f1, . . . , fn) be an instance
of MRSO such that GΓ is outer-planar. Throughout the following, we associate with any interval Vi,j =
{vi, vi+1, . . . , vj} of GΓ , the subproblem defined by the instance (GΓ [Vi,j ],Fi,j = fi, . . . , fj). Thus V1,n =
V(GΓ ) for example, is associated with the original instance (GΓ ,F). For our purposes, it suffices to
describe AOP as a recursive algorithm which solves the subproblem associated with Vi,j , by solving the
two subproblems associated with Vi,p and Vp,j . Intervals Vi,i+1 of GΓ , 1 ≤ i < n, are the base cases of
this recursion, and their values are computed as the maximum value fi(Ci) + fi+1(Ci+1), over all codons
Ci, Ci+1 ∈ Σ3, such that Ci and Ci+1, assigned to vertices vi and vi+1 respectively, are compatible with
respect to GΓ . The cutting point of interval Vi,j , i.e., index p, is determined by the edges outgoing from
vi into Vi,j . If there is no edge between vi and a vertex in Vi,j , then p = i+ 1. Otherwise p is the largest
index in i+ 1, . . . , j − 1 such that vivp is an edge in E(GΓ ). Since GΓ is outer-planar, there are no edges
which connect vertices in Vi,p to vertices in Vp,j . Thus, using a simple inductive argument, the authors
in [3] proved that the recursive computation of AOP yields a feasible optimal solution. Furthermore, since
GΓ is outer-planar, the number of subproblems is bounded by O(n), and AOP can be implemented to run
in O(n) time [3].

We now turn to describe our suggested modified version of AOP which we call A∗
OP. Let (GΓ ,F) be

an instance of MRSO accompanied by a nice edge bipartition P of GΓ with cutwidth ψ. Algorithm A∗
OP

computes the optimum solution for the outer-planar edge-induced subgraph GΓ [Et], in a similar recursive
fashion as AOP, while simultaneously considering all edges in Eb. Thus, when computing a subproblem
defined by interval Vi,j for example, we modify AOP to consider possible codon assignments for vertices
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in Vi,j which are connected in Eb and are about to be separated into the two subproblems defined by
intervals Vi,p and Vp,j . We develop this idea in the following.

Consider any interval Vi,j ⊆ V(GΓ ), i+ 1 < j, and suppose p is its cutting point in GΓ [Et], i.e., p is
the largest index in i + 1, . . . , j − 1 such that vivp is an edge in Et, or p = i + 1 if no such edge exists.
Also, assume there exists an edge vxvy ∈ Eb such that i ≤ x < p < y ≤ j. Splitting Vi,j into two intervals
Vi,p and Vp,j will result in cutting the edge vxvy and splitting vx and vy into two separate subproblems.
Thus, we say that interval Vi,j cuts edge vxvy with respect to P.

Let us begin by considering a simple case where Eb has only one edge vxvy which is cut by interval
Vi,j with cutting point p in GΓ [Et] (see Figure 3 (a)). Suppose we wish to compute the optimal score
for the subproblem associated with Vi,j . We can do this by enumerating all possible compatible codon
assignments for vertices vx and vy with respect to GΓ , and then computing the maximum score for
subproblem Vi,j with a set of similarity functions corresponding to each such assignment. In other words,
using the notations in Definition 4, we compute the maximum score for subproblem Vi,j over all sets of
similarity functions Fφ, for any codon assignment φ of the form φ : {vx, vy} → Σ3 such that φ(vx) and
φ(vy) are compatible with respect to GΓ . Clearly, a solution computed in this fashion is guaranteed to be
feasible and optimal.

Now let us extend our example to the case where P has two bottom edges, vxvy, vxvy′ ∈ Eb, such that
y′ < y. Suppose interval Vi,j of GΓ cuts edge vxvy with respect to P, but does not cut edge vxvy′ . Thus,
there exists another interval Vk,l ⊂ Vi,j , i ≤ k < l < j, such that Vk,l cuts vxvy′ , and furthermore, Vk,l is a
subproblem of Vi,j (see Figure 3 (b)). Now suppose we compute the optimal score for subproblem Vi,j as in
the previous example. Thus, in this case, we will recursively compute the optimal solution for subproblem
Vk,l over all sets of similarity functions Fφ. Here, instead of enumerating codon assignments for both
vx and vy′ , we only enumerate assignments for vy′ , since all codon assignments for vx are considered
when computing the optimal solution for Vi,j . Furthermore, given any set of similarity functions Fφ, the
optimal score for subproblem Vk,l with similarity functions Fφ is computed by enumerating only those
assignments which assign codons to vy′ that are compatible with codon Cx with respect to GΓ , where Cx
is the codon assigned to vx in the current recursive call. In other words, codon Cx is the codon such that
fφx (Cx) > −∞, where fφx ∈ Fφ is the similarity function corresponding to vertex vx. If there is no such
assignment, then the score of subproblem Vk,l with the set of similarity functions Fφ is −∞. This ensures
us that we consider only feasible solutions for subproblem Vk,l.

To generalize the discussion above, we use the following notation. Let Vi,j be an interval of GΓ , and
let F ′ be any set of similarity functions. To compute the optimal solution for Vi,j with F ′, we distinguish
between two cases of vertices which are incident to bottom edges that are cut by Vi,j with respect to P.
Let vxvy ∈ Eb be a bottom edge cut by Vi,j with respect to P. We say that vx is unassigned in Vi,j with
respect to P and F ′, if there are at least two distinct codons Cx, C ′

x ∈ Σ3 such that f ′x(Cx), f
′
x(C

′
x) > −∞,

where f ′x ∈ F ′ is the similarity function corresponding to vertex vx. Otherwise, we say that vx is assigned
in Vi,j with respect to P and F ′. Thus in our previous example, vx and vy′ are respectively assigned and
unassigned vertices in Vk,l with respect to P and F ′. Note that vertices in Vi,j which are not incident to
bottom edges which are cut in Vi,j , are not considered assigned nor considered unassigned. Let Ui,j and
Ai,j denote respectively, the unassigned and assigned vertices in Vi,j with respect to P and F ′, for any
interval Vi,j . When computing the optimal solution for Vi,j with F ′, we enumerate only assignments φ
of the form φ : Ui,j → Σ3, such that for any assigned vertex vx ∈ Ai,j connected by a bottom edge to
an unassigned vertex vy ∈ Ui,j , φ(vy) and Cx are compatible with respect to GΓ , where Cx is the codon
assigned to vx in the current recursive call, i.e,. f ′x(Cx) > −∞, f ′x ∈ F ′. For brevity, we denote by Φ[Ui,j ],
the set of all such assignments, i.e., Φ[Ui,j ] is the set of all codon assignments to vertices in Ui,j , which
assign codons to vertices in Ui,j that are compatible to the current codons assigned to vertices in Ai,j
with respect to GΓ .

Thus, our suggested modified version of AOP, algorithm A∗
OP, computes the optimal solution for any

instance (GΓ ,F) of MRSO by computing the optimal solution for (GΓ [Et],F) in a similar recursive fashion
as AOP. However, for each subproblem Vi,j encountered in this recursion, A∗

OP computes the maximum
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score for Vi,j over all sets of similarity functions Fφ corresponding to codon assignments φ such that
φ ∈ Φ[Ui,j ]. Computing in this fashion ensures that only feasible solutions are considered. Furthermore,
by the optimality of AOP, the solution computed by A∗

OP must be optimal, since A∗
OP eventually considers

all compatible codon assignments for vertices incident to bottom edges.

Lemma 3. Given an instance (GΓ ,F = f1, . . . , fn) for MRSO accompanied by a nice edge bipartition
P = {Et, Eb} of GΓ , the optimal target mRNA sequence for this instance can be computed in O(642ψψn)
time, where ψ is the cutwidth of GΓ [Eb].

Lemma 3 helps establish a finer borderline between tractable and intractable instances of MRSO.
Indeed, any instance (GΓ ,F = f1, . . . , fn) of MRSO, such that GΓ has a nice edge bipartition P =
{Et, Eb}, where the cutwidth of GΓ [Eb] is bounded by O(lg n), can be solved in polynomial time. However,
determining whether GΓ has such a bipartition can be quite difficult. In any case, we expect that in
most practical applications, a convenient bipartition of this sort can easily be found using simple heuristic
techniques. Furthermore, in some applications, one may be able to combine the above result with the
results presented in the previous section. For example, given an instance with an implied structure graph
containing only a few number of degree 3 vertices, one can combine the result presented in the previous
section with a simple heuristic to obtain a nice edge bipartition with an even smaller cutwidth.

5 Parameterizing by the similarity score

Although the parameters introduced in the previous sections have clear biological relevance, we assume
that in some practical applications these will not suffice. Thus, in the following we consider a more common
parameter, namely the value of the optimum solution. For this we consider a relaxation on the similarity
functions of an MRSO instance. We consider only similarity functions of the form fi : Σ3 → N+, where
Σ = {A,C,G,U} as usual. We call similarity functions of this sort restrictive similarity functions, and
denote MRSOr the MRSO problem restricted to instances with restrictive similarity functions. Most of
the interest in restrictive similarity functions stems from the following proposition.

Proposition 4. The MRSOr problem is in FPT for parameter k, where k is the score of the solution.

Proof. Let (GΓ ,F = f1, . . . , fn) be an instance of MRSOr. Denote by α(GΓ ) the size of the maximum
independent set in GΓ . We present an algorithm which searches for a target mRNA string T , by focusing
on finding k pairwise compatible codons with respect to GΓ . The proof is divided into two separate parts
depending on the size of a maximum independent set in GΓ . We may assume without loss of generality
that for all 1 ≤ i ≤ n, fi(C) > 0 for some codon C ∈ Σ3.

Suppose k ≤ α(GΓ ). Let V ′ ⊆ V(GΓ ) be an independent set of size k in GΓ . Since GΓ is at most
cubic, such a subset V ′ can be found in O(4kn) time using a bounded search tree technique. We define
a string T of length 3n as follows. For each vi ∈ V ′, assign codon Ci ∈ Σ3 such that fi(Ci) ≥ 1 (this is
always possible since V ′ is an independent set in GΓ , and since F is composed of restrictive similarity
functions). For each vj ∈ V(GΓ )− V ′, assign codon Cj which is compatible with all previously assigned
codons with respect to GΓ (again this is always possible since Γ has maximum degree 1). We check at
once that T = C1C2 . . . Cn is compatible with respect to GΓ and

∑n
i=1 fi(Ci) ≥ |V ′| = k.

Now suppose k > α(GΓ ). Since GΓ is at most cubic, we have α(GΓ ) ≥ n
4 , and hence k > n

4 . Here,
the algorithm suggested is by direct enumeration. More precisely, the algorithm tries in turn to obtain
a solution mRNA string T by assigning ` compatible codons in it, where ` ranges from 1 to k. So, let
` ∈ {1, 2, . . . , k}. We search through all `-subsets of V(GΓ ) for an `-subset with an assignment which is
compatible with respect to GΓ . Such an exhaustive search can be executed in O(

(
n
`

)
n 64`) time. Summing-

up over ` and neglecting the time to check k > α(GΓ ), i.e., O(4k), we obtain O(n
∑k

`=1

(
n
`

)
64`), which

is O(2O(k) kk+1) since GΓ is at most cubic and k > α(GΓ ) ≥ n
4 .

Thus, the MRSOr problem can be solved in O(2O(k) kk+1 + 4kn) time, where k is the score of the
solution. Hence, it follows that the MRSOr problem is in FPT, and the proposition follows. ut
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One may argue that the restrictive model we suggest here, is too harsh and too constraining. Notice,
however, that all hardness results obtained for MRSO still hold under this model. Nevertheless, using
a simple combinatorial argument, we can easily obtain an optimal algorithm if we consider the score
of the optimal solution for MRSO under restrictive similarity functions to be fixed. Even so, it is a
challenging problem to investigate the parameterized complexity of the MRSO problem for more general
similarity functions. We do believe that it might be worth considering similarity functions of the form
fi : Σ3 → N+∪{−∞} since they capture most of the information necessary in most practical applications.
Here, the −∞ value can be used in case a certain codon (e.g. a stop codon) is not acceptable in a certain
position of T .

6 Conclusions and future work

In the context of protein engineering, we considered the problem of computing an mRNA sequence of
maximal similarity to a given mRNA and a given protein that additionally satisfies some secondary struc-
ture constraints (the MRSO problem). We proved that the MRSO problem is fixed-parameter tractable
parameterized by the number of degree 3 vertices, by the number of crossing edges (thus answering an
open problem posed in [8]) or by the cutwidth of the implied structure graph. We believe these parameters
to be relevant for practical applications. Also, we showed that the problem is in fixed-parameter tractable
parameterized by the score for a restrictive class of similarity functions.

There are many interesting related problems arising in the above context. Most of them are relevant
for practical applications of the MRSO problem, and hence our interest in these problems ranges from
approximation to efficient fixed-parameter algorithms. Below are some of them (the first three ones ask
for a preprocessing procedure prior to a fixed-parameter algorithm):

1. Proposition 2 suggests the following problem: Given an at most cubic graph G, find a linear embedding
of G with a minimal number of crossing edges. This problem is known as the Outer-Planar Cross-
ing Number problem and has been proved to be NP-complete for general graphs in [17]. A related
problem, the so-called Maximum Outer-Planar Subgraph problem, is concerned with finding a
linear embedding of G together with a nice edge bipartition P = {Et, Eb} such that |Et| is maximized.
This problem is NP-complete [20] for general graphs. However, we are not aware of any attempts to
approximate the above problems. Furthermore, observe that for a given linear embedding, obtaining
such a nice edge bipartition reduces to finding a maximum independent set in an overlap graph.

2. In the light of AlgorithmAPEB(GΓ ,F ,P) (see Section 3), the following problem is relevant for practical
applications: Given an at most cubic graph G, find a linear embedding of G together with a nice edge
bipartition P = {Et, Eb} with a minimal number of vertices incident to bottom edges.

3. Given an at most cubic graph G, find a a linear embedding of G together with a nice edge bipartition
of G with a minimal cutwidth (in the sense of Lemma 3). The general problem of minimizing the
cutwidth of an at most cubic graph is NP-complete [16].

4. Is the MRSO problem fixed-parameter tractable parameterized by the similarity score when restricted
to similarity functions of the form fi : Σ3 → N+ ∪ {−∞}. If so, is it still fixed-parameter stractable
for any general function?
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Appendix (Program committee version only)

Lemma 1. Given an instance (GΓ ,F = f1, . . . , fn) for MRSO accompanied by a nice edge bipartition
P = {Et, Eb} of GΓ , algorithm ANEB computes an optimal target mRNA sequence for this instance in
O(64υn) time, where υ = |{v ∈ e : e ∈ Eb}|.

Proof. Consider the schematic description of algorithm ANEB given in Figure 2. Since any assignment
enumerated is verified for compatibility with respect to GΓ [Eb], and by the correctness ofAOP, any solution
outputted by algorithm ANEB with a score higher than −∞ is feasible. Furthermore, by the optimality
of AOP this solution must be optimal. Now, consider any vertex in GΓ . The number of possible codons
assignments to this vertex is |Σ3| = 64, so the number of assignments enumerated is bounded by O(64υ).
Furthermore, checking any such assignment for compatibility with respect to GΓ [Eb] can be done in O(υ)
time. As Steps (a) and (b) both require O(n) time, the overall time complexity of ANEB is bounded by
O(64υ(n)), and so the above lemma holds. ut

Proposition 3. The MRSO problem is NP-complete when restricted to implied structure graphs with
page-number 2.

Proof. We describe a reduction from the Maximum Independent Set problem, which is known to be
NP-complete even when restricted to cubic planar bridegeless connected graphs [5]. The proof is a direct
extension of the APX-completeness proof provided in [8] for MRSO.

Let an instance of the Maximum Independent Set problem be given by a cubic planar bridgeless
connected graphs G of order n. According to [15], there exists a linear-time algorithm for finding a 2-page
embedding of a cubic planar bridgeless graph, and hence there is no loss of generality in assuming that
G is given in the form of a linear graph with page-number 2. We now turn to defining the corresponding
instance of the MRSO problem. The implied structure graph GΓ is merely the input graph G and the
set of similarity functions fi : Σ3 → Q, 1 ≤ i ≤ n, is defined as follows:

∀i, 1 ≤ i ≤ n, fi(t3i−2, t3i−1, t3i) =

{
1 if t3i−2t3i−1t3i = AAA

0 otherwise

Quoting [8], the idea of the reduction is simply to identify the set of vertices which are assigned to
AAA in a solution for the corresponding instance of the MRSO problem, with an independent set in G.
Correctness of the proof now follows directly from [8], Theorem 3. ut

Lemma 3. Given an instance (GΓ ,F = f1, . . . , fn) for MRSO accompanied by a nice edge bipartition
P = {Et, Eb} of GΓ , the optimal target mRNA sequence for this instance can be computed in O(642ψψn)
time, where ψ is the cutwidth of GΓ [Eb].

Proof. Let (GΓ ,F = f1, . . . , fn) be an arbitrary instance for MRSO accompanied by a nice edge bipartition
P = {Et, Eb} of GΓ with cutwidth ψ. Compute the optimal solution using the modified version of AOP,
algorithm A∗

OP. By this modified version, each codon assignment to any vertex is compatible with respect
to GΓ [Eb], and by correctness of AOP, also with respect to GΓ [Et]. Thus, A∗

OP will yield only feasible
solutions for this instance. Furthermore, by the optimality of AOP, the solution computed by A∗

OP must
be optimal, since A∗

OP eventually considers all compatible codon assignments for vertices incident to
bottom edges. Now, by definition, any interval Vi,j ⊆ V(GΓ ) can cut at most ψ edges of Eb. As a result,
for each such interval Vi,j , then number of assigned and unassigned vertices, i.e., |Ai,j ∪Ui,j |, is bounded
by 2ψ. It follows from this, that for any interval Vi,j ⊆ V(G), the number of assignments in Φ[Ui,j ] is
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bounded by 642ψ. Furthermore, each assignment φ : Ui,j → Σ3 can be checked for compatibility with
Ai,j in O(ψ) time. Thus, excluding the time for computing the recursion calls, the optimal score for any
interval Vi,j can be computed in O(642ψψ) time. Since GΓ [Et] is outer-planar, there are at most O(n)
subproblems, and so the total time of this computation is bounded by O(642ψψn). ut


