Improvement of schedulability bound by task splitting in partitioning scheduling
Frédéric Fauberteau, Serge Midonnet, Laurent George

To cite this version:
Frédéric Fauberteau, Serge Midonnet, Laurent George. Improvement of schedulability bound by task splitting in partitioning scheduling. 1st International Real-Time Scheduling Open Problems Seminar (RTSOPS’10), Jul 2010, Brussels, Belgium. pp.20-21. hal-00620347

HAL Id: hal-00620347
https://hal-upec-upem.archives-ouvertes.fr/hal-00620347
Submitted on 19 Mar 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Improvement of schedulability bound by task splitting in partitioning scheduling

Frédéric Fauberteau
Université Paris-Est
LIGM, UMR CNRS 8049
Email: fauberte@univ-mlv.fr

Serge Midonnet
Université Paris-Est
LIGM, UMR CNRS 8049
Email: midonnet@univ-mlv.fr

Laurent George
ECE, LACSC
37, quai de Grenelle,
75015 Paris, France
Email: lgeorge@ieee.org

Abstract

We focus on the class of static-priority partitioning scheduling algorithm on multiprocessor. We are interested in improving the schedulability of these algorithms by splitting the tasks which cannot be successfully allocated on processors.

1. Context

Unless \(P \neq NP \), no polynomial time algorithm exists to solve the \textsc{Multiprocessor-Task-Partitioning} problem. Indeed, this problem can be transformed from \textsc{Bin-Packing} problem which is \(NP \)-hard in the strong sense. Fortunately, there are several heuristics which solve \textsc{Bin-Packing} problem and they may be adapted to produce partitioned schedulings. For instance, the algorithm FBB-FDD is based on \textit{First-Fit Decreasing} [1] and the algorithm RM-DU-NFS is based on \textit{Next-Fit} [2].

We are interested in proposing a partitioning algorithm which is robust to task Worst Case Execution Time (WCET) overruns faults with the same objective as in [3]. This partitioning tends to maximize the capacity of the system to handle the WCET overruns by offering the maximum \textit{Allowance} to each faulty task of the system. The \textit{Allowance} of a task is the execution duration which can be added to its WCET such that all the deadlines in the system are met [4].

We have shown in [5] that the \textit{Worst-Fit} heuristic offers good results in order to maximize the robustness of a partitioned system. \textit{Worst-Fit} selects the least loaded processor (in terms of utilization) which can accept a task. Unfortunately, the performances of \textit{Worst-Fit} in terms of schedulability are less efficient than those of the heuristics widely used in partitioning algorithms (\textit{First-Fit Decreasing}/\textit{Best-Fit}/\textit{Next-Fit}). In order to improve the schedulability bound of \textit{Worst-Fit} and potentially those of the other heuristics, we propose to split the tasks which cannot be allocated one a single processor. Contrary to the portioned scheduling approach proposed in [6] and [7], we don’t migrate a job from a processor to another during its execution but we allocate jobs on different processors such that the migrations occur at job boundaries [8].

2. Task splitting approach

\textbf{Description.} Let \(\Pi \) be a multiprocessor composed by \(m \) identical processors denoted by \(\Pi = \{ \pi_1, \ldots, \pi_m \} \). Let \(\tau \) be a set of tasks made of \(n \) periodic (or sporadic) real-time tasks denoted \(\tau = \{ \tau_1, \ldots, \tau_n \} \). Each task is characterized by its WCET, its deadline and its period (or minimum interarrival time). We consider a partitioning algorithm denoted \(A \) which allocates the tasks of \(\tau \) on \(\Pi \). \(A \) is designed as follows:

- \(\tau \) is sorted according to a decreasing order policy (for instance \textit{Decreasing Utilization}),
- a heuristic chooses the processor on which a given task should be allocated,
- a schedulability test is used to decide whether the task can be allocated on the processor chosen by the heuristic.

The resulting algorithm \(A \) produces a partition of \(\tau \) on \(\Pi \). If \(A \) fails to allocate the task \(\tau_i \), the set of pending tasks \(\{ \tau_1, \ldots, \tau_n \} \) is unallocated.

In order to schedule these unallocated tasks, two approaches can be considered: portioned scheduling and scheduling at job boundaries (\textit{i.e.} restricted migration). To illustrate the first one, we show in Figure 1 four tasks
\{τ_1(2, 3), τ_2(3, 4), τ_3(3, 5), τ_4(3, 6)\} scheduled on three processors. No partition can be found because \(u_i + u_j > 1, \forall i \neq j, i, j \in \{1, 2, 3, 4\}\) (\(u_i = \frac{WCET}{period}\)). In this example, the tasks are allocated in decreasing utilization order and \(τ_4\) is the last one. Therefore \(τ_4\) is portioned and its jobs are scheduled on the three processors.

This approach can be difficult to implement because it is not easy to split a job in many parts. A job consists in pieces of code which can contain indivisible sections. Moreover, a large number of migrations occurs since a job can migrate several times. The second approach is attractive because the migrations are at job boundaries. Therefore no migration overhead are incurred if the consecutive jobs of a task don’t share any data. We propose to split a task in several \(k\) subtasks. Each subtask has the same WCET and deadline as its parent task but the subtasks are less frequently activated (their periods are multiplied). \(k - 1\) subtasks are unsynchronized with an offset to avoid the jobs overlaps. We represent in Figure 2 the same example as in Figure 1. For instance, the subtasks \(τ_1^4\) (0, 2, 3, 9) on \(P_1\), \(τ_2^3\) (3, 2, 3, 9) on \(P_2\) and \(τ_3^4\) (6, 2, 3, 9) on \(P_3\) produce the same execution as \(τ_3(2, 3)\) (where \((w, x, y, z)\) is \((offset, WCET, deadline, period)\)).

Open problem. We consider the case where a partitioning algorithm doesn’t succeed to partition the set \(τ\) of tasks. Our aim is to build an algorithm which can split the pending tasks in subtasks such that a feasible partition of \(τ\) can be found. If no pending task can be split, already allocated tasks can be split until a feasible partition is found. The problem is to build an algorithm which finds a valid splitting scheme if such a scheme exists such that a feasible partition can be found.

Insights. We want to build an algorithm which splits the tasks such that the migration occurs at job boundaries. A first approach is to build a static-priority restricted migration scheduler. This scheduler allocates jobs of the tasks when they are activated on a ready processor according to a static-priority scheme. By logging the allocations made by this scheduler, we can build our splitting scheme. Notice that, this approach can be complex because it may require the consideration of an interval of study which can be exponential. Moreover, it is not obvious to decide on which processor a task must be activated to minimize the number of subtasks.

References

