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The Average Complexity of Moore’s State
Minimization Algorithm is O(n log log n) ⋆

Julien David

Institut Gaspard Monge, Université Paris Est
77454 Marne-la-Vallée Cedex 2, France.

Abstract. We prove that the average complexity, for the uniform distri-
bution on complete deterministic automata, of Moore’s state minimiza-
tion algorithm is O(n log log n), where n is the number of states in the
input automata.

1 Introduction

Due to their efficiency to represent regular languages and perform most of usual
computations they involve, finite state automata are used in various fields such as
linguistics, bioinformatics, program verification and data compression. A min-
imal automata is the smallest complete deterministic automata that can be
associated to a regular language. Because this automaton is unique, up to iso-
morphism on the labels of the states, it is a canonical representation of a reg-
ular language and permits to test the equality between regular languages and
equivalence between automata. Most state minimization algorithms compute the
minimal automaton of a regular language taking a deterministic automaton as
an input, by identifying the indistinguishable states.
Moore proposed the first minimization algorithm[8], which is based on the cal-
culus of the Myhill-Nerode equivalence, by refinements of partitions of the set of
states. There are at most n−2 such refinements, each of them requiring a linear
running time: in the worst case, the complexity is quadratic. Though, in [1], it is
proved that the average complexity of the algorithm is bounded by O(n log n).
Since this result does not rely on the underlying graph of the automaton, it
holds for any probabilistic distribution on this graph. Also, the bound is tight
for unary automata.
Hopcroft’s state minimization algorithm [6] is the best known algorithm with
an O(n log n) worst-case complexity. It also uses partition refinements to com-
pute the minimal automaton, but its description is not deterministic, making
its analysis complicated. Different proofs of its correctness were given [5, 7] and
several authors [3, 4] proved the tightness of the upper bound of the complexity
for different families of automata.
In this paper, we prove that for the uniform distribution on complete deter-
ministic automata, the average complexity of the algorithm due to Moore is

⋆ This work was completed with the support of the ANR project GAMMA number
07 − 2 195422.



O(n log log n). The article is organized as follows: after recalling the basics of
automata minimization (Section 2), we introduce the tools we use for the av-
erage analysis (Subsections 2.3 to 2.5). Section 3 is dedicated to the average
time complexity analysis of Moore’s algorithm. Due to a lack of space, the proof
of Lemma 6 is not fully detailed, but an idea of the proof is given. The paper
closes with a discussion on Hopcroft’s algorithm executions, which are faster
than Moore’s algorithm ones, for any input automaton and a conjecture on the
average complexity of both algorithms, for various distributions on automata.

2 Preliminaries

2.1 Definitions and notations

A finite deterministic automaton A = (A, Q, ·, q0, F ) is a quintuple where Q is
a finite set of states, A is a finite set of letters called alphabet, the transition
function · is a mapping from Q×A to Q, q0 ∈ Q is the initial state and F ⊂ Q is
the set of final states. An automaton is complete when its transition function is
total. The transition function can be extended by morphism to all words of A∗:
p · ε = p for any p ∈ Q and for any u, v ∈ A∗, p · (uv) = (p ·u) · v. A word u ∈ A∗

is recognized by an automaton when p · u ∈ F . The set of all words recognized
by A is denoted by L(A). We note Ai the words of length i and A≤i the word of
length less or equal to i. An automaton is accessible when for any state p ∈ Q,
there exists a word u ∈ A∗ such that q0 · u = p.

A transition structure is an automaton where the set of final states is not
specified. Given such a transition structure T = (A, Q, ·, q0) and a subset F of
Q, we denote by (T , F ) the automaton (A, Q, ·, q0, F ). For a given determinis-
tic transition structure with n states there are exactly 2n distinct deterministic
automata that can be built from this transition structure. Each of them corre-
sponds to a choice of set of final states.

In the following we only consider complete deterministic automata and com-
plete deterministic transition structures, the accessibility is not guaranteed. Con-
sequently these objects will most of the time just be called respectively automata
or transition structures. The set Q of an n-state transition structure will be de-
noted by {1, . . . , n}. The set of automata and the set of transition structures
with n states will respectively be denoted An and Tn. Also, since there are kn
transitions and since for each transition, there are n possible arrival states, we
have |Tn| = nkn and |An| = 2nnkn (when |E| is the cardinal of the set E). The
term 2n comes from the choice of the set of final states.
The military order on words, noted <mil, is defined as follows: ∀u, v ∈ A∗,
u <mil v if |u| < |v| or |u| = |v| and u is smaller than v in the lexicographical
order. Let Cond be a Boolean condition, the Iverson bracket [[Cond]] is equal to
1 if the condition Cond is satisfied and 0 otherwise.
For any non-negative integer i, two states p, q ∈ Q are i-equivalent, denoted by
p ∼i q, when for all words u ∈ A≤i , [[p · u ∈ F ]] = [[q · u ∈ F ]]. Two states p and q
are equivalent (noted p ∼ q) when for all u ∈ A∗, [[p · u ∈ F ]] = [[q · u ∈ F ]]. This



equivalence relation on Q is called Myhill-Nerode equivalence [9]. This relation
is said to be right invariant, meaning that

for all u ∈ A∗ and all p, q ∈ Q, p ∼ q ⇒ p · u ∼ q · u.

Proposition 1. Let A = (A, Q, ·, q0, F ) be a deterministic automaton with n
states. The following properties hold:

(1) For all i ∈ N, ∼i+1 is a partition refinement of ∼i, that is, for all p, q ∈ Q,
if p ∼i+1 q then p ∼i q.

(2) For all i ∈ N and for all p, q ∈ Q, p ∼i+1 q if and only if p ∼i q and for all
a ∈ A, p · a ∼i q · a.

(3) If for some i ∈ N (i + 1)-equivalence is equal to i-equivalence then for every
j ≥ i, j-equivalence is equal to Myhill-Nerode equivalence.

For any integer n ≥ 1 and any m ∈ N, we denote by Am
n the set of automata

with n states for which m is the smallest integer such that the m-equivalence
∼m is equal to Myhill-Nerode equivalence. It is well known that m ≤ n − 2.

2.2 Moore’s State Minimization Algorithm

In this section we describe Moore’s algorithm [8] to compute the minimal au-
tomaton of a regular language represented by a deterministic automaton. It
builds the partition of the set of states corresponding to Myhill-Nerode equiva-
lence and mainly relies on properties (2) and (3) of Proposition 1: The partition
π is initialized according to the 0-equivalence ∼0, then at each iteration the
partition corresponding to the (i + 1)-equivalence ∼i+1 is computed from the
one corresponding to the i-equivalence ∼i using property (2). The algorithm
halts when no new partition refinement is obtained, and the result is Myhill-
Nerode equivalence according to property (3). The minimal automaton can then
be computed from the resulting partition since it is the quotient automaton by
Myhill-Nerode equivalence.
According to Proposition 1, if an automaton is minimized in more than ℓ par-
tition refinements, then there exists at least a pair of states p, q and a word u
of length ℓ + 1, such that p ∼ℓ q and p · u ≁0 q · u, that is to say at least two
states are separated during the ℓ + 1-th partition refinement. In the remain-
der of this section we introduce the dependency tree and a modification of
the dependency graph introduced in [1]. Those tools will allow us to give an
upper bound on the number of automata minimized in more than ℓ partition
refinements, which is useful for the average complexity analysis.

2.3 The Dependency Tree

In the following, we introduce the dependency tree to model a set of transition
structures. To begin with, we explain how a dependency tree R(p) can be ob-
tained from a fixed transition structure τ and a fixed state p and then how this
object will help to estimate the cardinal of a set of transition structures. For a



Algorithm 1: Moore’s algorithm

if F = ∅ then1

return (A, {1}, ∗, 1, ∅)2

if F = {1, . . . , n} then3

return (A, {1}, ∗, 1, {1})4

forall p ∈ {1, . . . , n} do5

π′[p] = [[p ∈ F ]]6

π = undefined7

while π 6= π′ do8

π = π′
9

compute π′ from π10

return the quotient of A by π11

In this description of Moore’s algorithm,
∗ denotes the function such that 1 ∗a = 1
for all a ∈ A. Lines 1-4 correspond to the
special cases where F = ∅ or F = Q. In
the process, π′ is the new partition and π

the former one. Lines 5-6 is the initializa-
tion of π′ to the partition of ∼0, π is ini-
tially undefined. Lines 8-10 are the main
loop of the algorithm where the new par-
tition is computed, using the second algo-
rithm below. The number of iterations of
Moore’s algorithm is the number of times
those lines are executed.

The computation of the new partition
is done using the following property on
associated equivalence relations:

p ∼i+1 q ⇔

(

p ∼i q

p · a ∼i q · a ∀a ∈ A

To each state p is associated a signa-
ture s[p] such that p ∼i+1 q if and only
if s[p] = s[q]. The states are then sorted
according to their signature, in order
to compute the new partition. The use
of a lexicographic sort provides a com-
plexity of Θ(kn) for this part of the al-
gorithm.

Algorithm 2: Computing π′ from π

forall p ∈ {1, . . . , n} do1

s[p] = (π[p], π[p · a1], . . . , π[p · ak])2

compute the permutation σ that3

sorts the states according to s[]

i = 04

π′[σ(1)] = i5

forall p ∈ {2, . . . , n} do6

if s[p] 6= s[p − 1] then i = i + 17

π′[σ(p)] = i8

return π′
9

Fig. 1. Description of Moore’s algorithm

fixed transition structure with n states over a k-letter alphabet and a fixed state
p, we define the function isnode mapping A∗ to {0, 1} as follows:

isnode(w) =

{
0 if ∃v ∈ A∗ such that p · w = p · v and v <mil w,

1 otherwise.

R(p) is a tree in which nodes and leaves of depth h are labelled by words of
length h. It is built recursively, using a breadth-first traversal of the nodes of
the tree starting from the node p. For each node of depth h labelled by w, and
each letter a in the alphabet, we add a node labelled by wa at depth h + 1 if
isnode(wa) is equal to 1, and a leaf otherwise. Figure 2 gives an example of a
dependency tree. Note that this construction resembles the method used in [2]
to randomly generate accessible automata, except the authors use a depth-first
traversal. It is easy to see that some dependency trees can be obtained from
several fixed transition structures and states. In the remainder of the paper, we
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Fig. 2. Let (a) be the fixed transition structure and 2 be the fixed state, (b) is the
associated dependency tree R(2). We have S2(2) = {ε, a, b, aa, ab}, L2(2) = {aa, ab}
and s2(2) = {2, 3, 4, 5, 6}.

characterize sets of transition structures corresponding to particular dependency
trees.
We introduce some notations associated to a dependency tree R(p): Sh(p) de-
notes the set of all nodes of depth less or equal to h, Lh(p) denotes the set of all
the nodes at given depth h. Since every node in the tree is labelled by a word,
we note w ∈ Sh(p) or w ∈ Lh(p) if w is a word labelling a node in those sets.
We also define the set sh(p) of all the states that are reached from a state p by
following a path labelled by a word of less or equal to h. For all the transition
structures associated to a dependency tree R(p), we have |sh(p)| = |Sh(p)|.

Lemma 1. For any fixed state p, if a dependency tree R(p) contains f leaves
at a depth less or equal to h, then the number of associated transition structures

is bounded above by |Tn|
(

|Sh(p)|
n

)f

.

Proof. We recall that |Tn| is equal to the product of the cardinals of the sets
of possible arrival states, for each transition. Let wa be the label of a leaf at
depth less than h. For every transition structure associated to the tree R(p), the
transition labelled by a outgoing from the state p · w ends in a state p · v, with
v ∈ Sh(p). Therefore, the number of possible arrival states for this transition
is bounded above by |Sh(p)| instead of n. This is a rough upper bound but
sufficient for the needs of the proof.

2.4 The T -Dependency graph

We introduce another model for sets of transition structures. For two fixed states
p and q, two fixed x-tuples (x is a fixed integer) of non-empty words −→u =
(u1, . . . , ux) and −→v = (v1, . . . , vx), two fixed sets ϕp and ϕq of pairs of words



(w,w′) such that w′ <mil w, we define the set Tn(p, q, ϕp, ϕq,
−→u ,−→v ) as follows:

Tn(p, q, ϕp, ϕq,
−→u ,−→v ) = {τ ∈ Tn |∀(wp, w

′
p) ∈ ϕp, p · wp = p · w′

p,

∀(wq, w
′
q) ∈ ϕq, q · wq = q · w′

q,

∀i ≤ x, p · ui = q · vi}

We define the x-tuples of words
−→
u′ = (u′

1, . . . , u
′
x) and

−→
v′ = (v′1, . . . , v

′
x) and

the x-tuples of letters
−→
α′ = (α′

1, . . . , α
′
x) and

−→
β′ = (β′

1, . . . , β
′
x), such that for

all i ≤ x we have ui = u′
iαi and vi = v′iβi. From Tn(p, q, ϕp, ϕq,

−→u ,−→v ), one
can define the undirected graph Gn(p, q, ϕp, ϕq,

−→u ,−→v ), called the T -dependency
graph, as follows:

– its vertices are pairs (r, a), with r ∈ Q and a ∈ A, that model transitions.
– There is an edge ((r, a), (t, b)) in Gn(p, q, ϕp, ϕq,

−→u ,−→v ) if and only if for all
τ ∈ Tn(p, q, ϕp, ϕq,

−→u ,−→v ), r · a = t · b.

The T -dependancy graph Gn(p, q, ϕp, ϕq,
−→u ,−→v ) satisfies the two following prop-

erties:

– For all i ≤ x, there exists an edge ((p · u′
i, αi), (q · v′i, βi)).

– For all (w1, w2) ∈ ϕp (resp. (w3, w4) ∈ ϕq), we have w1 = w′
1a1 and

w2 = w′
2a2 with a1, a2 ∈ A and such that there exists an edge ((p ·w′

1, a1), (p ·
w′

2, a2)) (resp. ((q · w′
3, a3), (q · w′

3, a3))).

Lemma 2. If Gn(p, q, ϕp, ϕq,
−→u ,−→v ) contains an acyclic subgraph induced by a

subset of nodes with j edges, then:

|Tn(p, q, ϕp, ϕq,
−→u ,−→v )| ≤

|Tn|

nj

Proof. Two transitions in the same connected components of Gn(p, q, ϕp, ϕq,-
−→u ,−→v ) share the same arrival state. Hence if x is the number of connected com-
ponents in the graph, then |Tn(p, q, ϕp, ϕq,

−→u ,−→v )| ≤ nx. If Gn(p, q, ϕp, ϕq,
−→u ,−→v )

contains an acyclic subgraph with exactly j edges, then there is at most kn − j
connected components.

2.5 The F-Dependency Graph

In this subsection, we slightly modify the notion of dependency graph introduced
in [1]. Let τ be a fixed transition structure with n states and ℓ be an integer
such that 1 ≤ ℓ < n. Let p, q be two states of τ such that p 6= q and u a word
of length ℓ. We define Fτ (p, q, u) as the set of sets of final states F for which in
the automaton (τ, F ) the states p and q are separated by the word u. That is to
say :

Fτ (p, q, u) = {F ⊂ {1, . . . , n} | for all (τ, F ), p ∼|u|−1 q,

[[p · u ∈ F ]] 6= [[q · u ∈ F ]]}

From the set Fτ (p, q, u) one can define the undirected graph Gτ (p, q, u), called
the F-dependency graph, as follows:
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Fig. 3. (a) is a fixed transition structure and (b) the F-dependency graph for p = 3,
q = 9 and u = abbaa. Thanks to (b), we know that all states in a same connected
component will be either all final or all non-final. Hence, there are at most 24 possible
sets of final states, instead of 29.

– its set of vertices is {1, . . . , n}, the set of states of τ ;
– there is an edge (s, t) between two vertices s and t if and only if there exists

a word w of length less than ℓ such that s = p · w and t = q · w and for all
F ∈ Fτ (p, q, u), [[s ∈ F ]] = [[t ∈ F ]].

The F -dependency graph contains some information that is a basic ingredient
of the proof: it is a convenient representation of necessary conditions for a set
of final states to be in Fτ (p, q, u), that is, for Moore’s algorithm to require more
than |u| iterations because of p, q and u. Figure 3 shows an example of a F -
dependency graph.

Lemma 3. [1] If Gτ (p, q, u) contains an acyclic subgraph with at least i edges,
then |Fτ (p, q, u)| ≤ 2n−i.

The notions of dependency graphs and dependency tree will be used in subsec-
tions 3.2 and 3.3 to obtain upper bounds on the cardinal of sets of automata with
given properties and prove that their contribution to the average complexity is
negligible.

3 Moore’s Algorithm: average case analysis

In [1], it is proved that the average complexity of Moore’s state minimization
algorithm is O(n log n). Since the result is obtained by studying only properties
on the sets of final states of automata minimized in a given complexity, it holds
for any distribution on the set of transition structures. In this paper, in order to
improve the upper bound on the average complexity, we also have to study some
properties of transition structures. Since the enumeration of accessible automata
with given properties is an open problem, we focus our study on the uniform
distribution over the set of complete deterministic automata.



3.1 Main Result and Decomposition of the Proof

The main result of this paper is the following.

Theorem 1 For any fixed integer k ≥ 2 and for the uniform distribution over
the deterministic and complete automata with n states over a k-letter alphabet,
the average complexity of Moore’s state minimization algorithm is O(n log log n).

Recall that the number of partition refinements made by Moore’s state minimiza-
tion algorithm is smaller or equal to n − 2 and that Ai

n is the set of automata
of An for which i is the smallest integer such that ∼i is equal to Myhill-Nerode
equivalence. The average number of partition refinements is given by:

Nn =
1

|An|

(
n−2∑

i=0

(i + 1) × |Ai
n|

)

We define λ = ⌈logk log2 n3 +2⌉, which will be used in the sequel. We gather the
sets Ai

n , in order to obtain the following upper bound:

Nn ≤
λ + 1

|An|

∑

i≤λ

|Ai
n|

︸ ︷︷ ︸
+

(5 log2 n + 1)

|An|

5 log2 n∑

i=λ+1

|Ai
n|

︸ ︷︷ ︸
+

n − 1

|An|

n−2∑

i=5 log2 n+1

|Ai
n|

︸ ︷︷ ︸
S1 S2 S3

S1 is less than λ and equal to O(log log n).

In [1], it is proved that
∑n−2

i=5 log2 n+1 |A
i
n| ≤

|An|
n

. Therefore we know that S3 is

equal to O(1). Hence, in the following, we prove that:

S2 =
(5 log2 n + 1)

|An|

5 log2 n∑

i=λ+1

|Ai
n| = O(log log n) (1)

For any ℓ > 0, we define the set An(p, q, ℓ) as the set of automata with n states,
where the states p and q are separated during the ℓ-th partition refinement:

An(p, q, ℓ) = {(τ, F ) ∈ An | τ ⊂ Tn, F ⊆ {1, . . . , n}, p ∼ℓ−1 q, p ≁ℓ q}

Remark 1. Note that if in the automaton (τ, F ), for all letter a ∈ A, p · a =
q · a, then either p ≁0 q or p ∼ q. Therefore (τ, F ) /∈ An(p, q, ℓ) with ℓ > 0.
Consequently, in the remainder of the proof, in all sets of transition structures
where p and q are fixed, there exists a letter a such that p · a 6= q · a.

The following statement comes from the definition of the sets it involves:
⋃

i>λ

Ai
n =

⋃

p,q∈{1,...,n}

An(p, q, λ + 1)

Let τ be a transition structure, and p, q be two distinct states. Recalling that
sh(p) is defined in Section 2.3, if A is a k-letter alphabet, and µ a positive integer,
we define two properties associated to transition structures:



(1) largeT ree(τ, p, µ) is true if and only if |sµ(p)| ≥ kµ − 1.
Note that this implies that |sµ−2(p)| ≥ kµ−2 − 1.

(2) noIntersection(τ, p, q) is true if and only if sλ−2(p) ∩ sλ−2(q) = ∅.

For fixed states p and q, an automaton is in An(p, q, λ + 1) if its associated
transition structure is in one of the three distinct sets we are about to define:

– Xn is the set of all transition structures τ such that:
• there exists a state r ∈ Q such that largeT ree(τ, r, λ) is false.

Note that this set does not rely on the values of p and q.
– Yn(p, q) is the set of transition structures τ such that:

• for all state r ∈ Q, the property largeT ree(τ, r, λ) is true,
• for all words w ∈ A≤2, the property noIntersection(τ, p · w, q · w) is

false.
– αn(p, q) is the set of transition structures τ such that:

• for all state r ∈ Q, the property largeT ree(τ, r, λ) is true,
• there exists w ∈ A≤2 such that noIntersection(τ, p · w, q · w) is true.

3.2 Transition Structures with a Huge F-Dependency Graph

Lemma 4. For any fixed transition structures τ ∈ αn(p, q), and a fixed word u
of length λ+1, the following property holds: every F-dependency graph Gτ (p, q, u)
contains an acyclic subgraph with at least kλ−2 − 1 edges.

Proof. Let G′ be the subgraph Gτ (p, q, u) defined as follows: there exists an edge
(p·wv, q·wv) in G′, if and only if v labels a node in Sλ−2(p·w). G′ contains exactly
|sλ−2(p ·w)| edges, since for all v ∈ Sλ−2(p ·w), the states p ·wv are all pairwise
distinct. Since largeT ree(τ, r, λ) is true for all state r ∈ Q, we have |sλ−2(p·w)| ≥
kλ−2−1. G′ is acyclic: indeed, the property noIntersection(τ, p·w, q ·w) indicates
that the set of nodes connected to at least one edge forms a bipartite graph (the
nodes of sλ−2(p ·w) on one side and the nodes of sλ−2(q ·w) on the other), where
all the nodes of sλ−2(p · w) are only connected to one edge.

Corollary 1. For λ = ⌈logk log2 n3+2⌉, the number of automata in An(p, q, λ+

1) whose transition structures are in αn(p, q) is O
(
|Tn|

2n log n
n3

)
.

Proof. This follows directly from Lemmas 3 and 4 : for any distinct states p and
q, any word u of length λ + 1 , and any fixed transition structure τ ∈ αn(p, q),
we have

|Fτ (p, q, u)| = O
(
2n−log2 n3

)

For a fixed transition structure τ ∈ αn(p, q), since the number of words in Aλ+1

is O(log n), the number of choices of sets of final states such that the automata
are in An(p, q, λ + 1) is bounded above by:

∑

u∈Aλ+1

|Fτ (p, q, u)| = O

(
2n log n

n3

)



3.3 Negligible Sets of Transition Structures

Lemma 5. The number of transition structure in Xn is O
(
|Tn|

log5 n
n

)
.

Proof. For a fixed state r and a fixed integer µ ∈ {1, . . . , λ}, we define the sets
Xn(r, µ) of all transition structures τ for which µ is the smallest integer such
that the property largeT ree(τ, r, µ) is false. We have :

Xn =
⋃

r∈{1,...,n}


 ⋃

µ∈{1,...,λ}

Xn(r, µ)




For all transition structures in Xn(r, µ), the dependency tree R(r) contains at
least two leaves of depth less or equal to µ. Indeed, if R(r) contains at most one
leaf of depth less than µ, then there exist k−1 letters a ∈ A such that R(r·a) does
not contain any leaf of depth less than µ. Therefore we have |Sµ(p)| ≥ kµ − 1.
We decompose the possible dependency trees R(r) into two different kinds:

1. All leaves are at level µ. Let k be the size of the alphabet and f the number

of leaves, the number of trees of this kind is equal to
∑kµ

f=2

(
kµ

f

)
.

2. There exists exactly one leaf of depth h (with h < µ), and at least one of

depth µ. The number of trees of this kind is at most
∑µ−1

h=1

(
kh
∑kµ

f=1

(
kµ

f

))
.

Using the upper bound of Lemma 1 on the number of transition structures
counted by each tree, we obtain:

|Xn(r, µ)| ≤
kµ∑

f=2

[(
kµ

f

)
|Tn|

(
|Sµ(r)|

n

)f
]
+

µ−1∑

h=1

kµ∑

f=1

[
kh

(
kµ

f

)
|Tn|

(
|Sµ(r)|

n

)f+1
]

Since µ ≤ λ, we have |Sµ(r)| < kλ+1 and:

|Xn(r, µ)| < |Tn|




kλ∑

f=2

[(
kλ

f

)(
kλ+1

n

)f
]

+
λk2λ+1

n

kλ∑

f=1

[(
kλ

f

)(
kλ+1

n

)f
]


Since we have
(

kλ

f

) (
kλ+1

n

)f

≤
(

k2λ+1

n

)f

:

|Xn(r, µ)| < |Tn|


k4λ+2

n2

∞∑

f=0

(
k2λ+1

n

)f

+
λk4λ+2

n2

∞∑

f=0

(
k2λ+1

n

)f



|Xn(r, µ)| = O

(
|Tn|

λk4λ

n2

)
= O

(
|Tn|

log4 n3 × log log n3

n2

)

Since this upper bound holds for any µ ∈ {1, . . . , λ} and any r ∈ Q, we obtain:

|Xn| ≤


 ∑

r∈{1,...,n}

∑

µ∈{1,...,λ}

|Xn(r, µ)|


 = O

(
|Tn|

log4 n3 × log2 log n3

n

)



Lemma 6. For any distinct states p and q, the number of transition structures

in Yn(p, q) is O
(
|Tn|

log6 n
n3

)
.

Proof. For any transition structure in Yn(p, q), for all words w ∈ A≤2, there
exist two words u, v ∈ A≤λ−2 such that p · wu = q · wv. We partition the set
Yn(p, q) according to the leaves the dependency trees contain.
Both trees do not contain a leaf of depth less or equal to λ : let E be the set of
letters, such that for all a ∈ E, p · a = q · a. We define e = |E|. According to
Remark 1, we have e < k. For all b ∈ A \ E and all c ∈ A, noIntersection(τ, p ·
bc, q · bc) is false. For −→u and −→v of size x = e + k(k − e), such that for all
1 ≤ j ≤ e, we have uj = vj = aj with aj ∈ E and such that for all e < j′ ≤ x,
w′

j is a prefix of uj′ and vj′ , where w′
j is a word of the form bc. This subset is

included in: ⋃

E(A
∀a∈E, p·a=q·a

⋃

−→u ,−→v

Tn(p, q, ∅, ∅,−→u ,−→v )

There are 2k−1 possible subsets E. There are less than k2λ(x−e) possible choices
for ui, vi ∈ A≤λ, for e < i ≤ x. For all j, l ≤ x, j 6= l, since uj and ul (resp.
vj and vl) label nodes in R(p) (resp. R(q)), setting uj = u′

jαj and ul = u′
lαl,

we have (p · u′
j, αj) 6= (p · u′

l, αl) and there is no path between (p · u′
j , αj) and

(p · u′
l, αl) since if would imply that p · uj = p · ul and that either uj or ul labels

a leaf. Therefore, Gn(p, q, ∅, ∅,−→u ,−→v ) contains an acyclic graph with x edges
((p · u′

j, αj), (q · v′j , βj)). Since x ≥ k + 1 (for e = k − 1), using Lemma 2, we
obtain the upper bound stated above.
At least one tree contains a leaf of depth less or equal to λ : due to a lack of
space, we will not describe this set. The idea is that, just like in the previous case,
we are able to guarantee that a T -dependency graph always contains an acyclic
subgraph with k + 1 edges and that there is O(log2(k+1) n) possible graphs.

3.4 Concluding the proof

Recall that we want to prove Equation 1. We define X̃n, α̃n(p, q) and Ỹn(p, q) as
the sets of automata whose transition structure are respectively in Xn, αn(p, q)
and Yn(p, q). We have:

⋃

i>λ

Ai
n =

⋃

p,q∈{1,...,n}

An(p, q, λ + 1) ⊆ X̃n ∪


 ⋃

p,q∈{1,...,n}

α̃n(p, q) ∪ Ỹn(p, q)




Using Lemmas 4,5 and 6 we obtain:

∑

i>λ

|Ai
n| ≤ |Tn|

2n log5 n

n
+ n2

(
|Tn| ×

2n log n

n3
+ |Tn|

2n log6 n

n3

)
≤ |An|

log6 n

n

(5 log2 n + 1)

|An|

5 log2 n∑

i=λ+1

|Ai
n| = O

(
log7 n

n

)
= O (log log n)

Hence Nn = O(log log n), this concludes the proof of the main theorem.



4 Conclusion

In this paper, we obtained a new upper bound on the average complexity of
Moore’s state minimization algorithm, for the uniform distribution on complete
deterministic automata. Also, it is possible to describe a set of Hopcroft’s al-
gorithm executions which, for any deterministic automata, compute the equiv-
alence in less steps than Moore’s algorithm (due to a lack of space, we are not
giving the description of those executions in this paper). Hence, for the uniform
distribution on complete deterministic automata with n states, there exists an
execution of Hopcroft’s algorithm whose average complexity is O(n log log n).
This paper is a first step to prove the conjecture made in the conclusion of [1]:
for the uniform distribution on complete deterministic accessible automata, the
average complexity of Moore algorithm is Θ(n log log n). To prove this conjec-
ture is not an easy task, since it requires a better knowledge of the average
size of the accessible part in a complete deterministic automaton, but also the
average number of minimal automata amongst the complete deterministic and
accessible.
I would like to thank Phillipe Duchon for the fruitful discussion on upper bound
of the cardinal of the set Xn, but also Cyril Nicaud and Frederique Bassino for
their advices and comments.
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