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Abstract. In this paper, we study the pattern matching problem in
given intervals. Depending on whether the intervals are given a priori for
pre-processing, or during the query along with the pattern or, even in
both cases, we develop solutions for different variants of this problem.
In particular, we present efficient indexing schemes for each of the above
variants of the problem.

1 Introduction

The classical pattern matching problem is to find all the occurrences of a given
pattern P = P[1..m] of length m in a text T = T [1..n] of length n, both being
sequences of characters drawn from a finite character set Σ. This problem is in-
teresting as a fundamental computer science problem and is a basic need of many
applications, such as text retrieval, music retrieval, computational biology, data
mining, network security, to name a few. Several of these applications require,
however, more sophisticated forms of searching. As a result, most recent works
in pattern matching has considered ‘inexact matching’. Many types of differ-
ences have been defined and studied in the literature, namely, errors (Hamming
distance, LCS [10, 17], edit distance [10, 20]), wild cards or don’t cares [10, 11,
14, 23], rotations [3, 7], scaling [4, 5], permutations [9] among others.

Contemporary research on pattern matching has taken many other different
and interesting directions ranging from position restricted pattern matching [21]
to pattern matching with address error [2] and property matching [6]. In this
paper, we are interested in pattern matching in given intervals and focus on
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building an index data structure to handle this problem efficiently. This partic-
ular variant of the classic pattern matching problem is motivated by practical
applications depending on different settings. For example, in many text search
situations one may want to search only a part of the text collection, e.g. re-
stricting the search to a subset of dynamically chosen documents in a document
database, restricting the search to only parts of a long DNA sequence, and so on.
In these cases we need to find a pattern in a text interval where the intervals are
given with the query pattern. On the other hand, in a different setting, the inter-
val or a set thereof may be supplied with the text for preprocessing. For example,
in molecular biology, it has long been a practice to consider special genome areas
by their structure. Examples are repetitive genomic structures [18] such as tan-
dem repeats, LINEs (Long Interspersed Nuclear Sequences) and SINEs (Short
Interspersed Nuclear Sequences) [19]. In this setting, the task may be to find
occurrences of a given pattern in a genome, provided it appears in a SINE, or
LINE. Finally a combination of these two settings is also of particular interest:
find occurrences of a given pattern in a particular part of a genome, provided it
appears in a SINE, or LINE.

Note that, if we consider the ‘normal’ (non-indexing) pattern matching sce-
nario, the pattern matching in given intervals become straightforward to solve:
we solve the classic pattern matching problem and then output only those that
belong to the given intervals. However, the indexing version of the problem seems
to be much more complex. Depending on whether the intervals are given a priori
for pre-processing (Problem PMGI), or during the query along with the pattern
(Problem PMQI) or, even in both the cases (Problem PMI), we develop solu-
tions for different variants of this problem. A slightly different variant of Problem
PMGI was studied in [6], whereas Problem PMQI was introduced and handled
in [21] (See Section 2 for details).

The contribution of this paper is as follows. We first handle the more gen-
eral problem PMI (Section 3) and present an efficient data structure requiring
O(n log3 n) time and O(n log2 n) space with a query time of O(m+log log n+K)
per query, where K is the size of the output. We then solve Problem PMGI (Sec-
tion 4) optimally (O(m+K) query time on a data structure with O(n) time and
O(n log n)-bit space complexity). Finally, we improve the query time of [21] for
Problem PMQI (Section 5) to optimal i.e. O(m+K) per query. The correspond-
ing data structure, however, requires O(n2) time due to a costly preprocessing of
an intermediate problem, which remains as the bottleneck in the overall running
time.

The rest of the paper is organized as follows. In Section 2, we present the
preliminary concepts. The contributions of this paper are presented in Section 3
to 5. We conclude briefly in Section 6.

2 Preliminaries

A text, also called a string, is a sequence of zero or more symbols from an alphabet
Σ. A text T of length n is denoted by T [1..n] = T1T2 . . . Tn, where Ti ∈ Σ for



1 ≤ i ≤ n. The length of T is denoted by |T | = n. A string w is a factor or
substring of T if T = uwv for u, v ∈ Σ∗; in this case, the string w occurs at
position |u| + 1 in T . The factor w is denoted by T [|u| + 1..|u| + |w|]. A prefix
(suffix ) of T is a factor T [x..y] such that x = 1 (y = n), 1 ≤ y ≤ n (1 ≤ x ≤ n).

In traditional pattern matching problem, we want to find the occurrences
of a given pattern P[1..m] in a text T [1..n]. The pattern P is said to occur at
position i ∈ [1..n] of T if and only if P = T [i..i+m−1]. We use OccPT to denote
the set of occurrences of P in T .

The problems we handle in this paper can be defined formally as follows.

Problem “PMQI” (Pattern Matching in a Query Interval). Suppose we
are given a text T of length n. Preprocess T to answer following form of queries.
Query: Given a pattern P and a query interval [ℓ..r], with 1 ≤ ℓ ≤ r ≤ n, con-
struct the set

OccPT [ℓ..r] = {i | i ∈ OccPT and i ∈ [ℓ..r]}.

Problem “PMGI” (Pattern Matching in Given Intervals). Suppose we
are given a text T of length n and a set of disjoint intervals π = {[s1..f1], [s2..f2],
. . . , [s|π|..f|π|]} such that si, fi ∈ [1..n] and si ≤ fi, for all 1 ≤ i ≤ |π|. Preprocess
T to answer following form of queries.
Query: Given a pattern P construct the set

OccPT ,π = {i | i ∈ OccPT and i ∈ ̟ for some ̟ ∈ π}.

Problem “PMI” (Generalized Pattern Matching with Intervals). Su-
ppose we are given a text T of length n and a set of intervals π = {[s1..f1], [s2..f2],
. . . , [s|π|..f|π|]} such that si, fi ∈ [1..n] and si ≤ fi, for all 1 ≤ i ≤ |π|. Preprocess
T to answer following form of queries.
Query: Given a pattern P and a query interval [ℓ..r] such that ℓ, r ∈ [1..n] and
ℓ ≤ r, construct the set

OccPT [ℓ..r],π = {i | i ∈ OccPT and i ∈ [ℓ, r]
⋂

̟ for some ̟ ∈ π}.

Problem PMQI was studied extensively in [21]. The authors in [21] presented
a number of algorithms depending on different trade-offs between the time and
space complexities. The best query time they achieved was O(m + log log n +
|OccPT [ℓ..r]|) against a data structure exhibiting O(n log1+ǫ n) space and time
complexity, where 0 ≤ ǫ ≤ 1. A slightly different version of Problem PMGI
was studied in [6]5. In particular, the difference lies in the fact that the problem
handled in [6], looks for the occurrences of the given pattern completely confined
in the given set of intervals, π, whereas in Problem PMGI, only the occurreces
that starts in π are of interest. Problem PMI, as is evident from the definition,
is the combination of Problem PMQI and PMGI and hence is a more general
problem in this regard.

5 In [6] a data structure requiring O(n log Σ+n log log n) time was presented to support
O(m + K) time query, where K is the output size.



In traditional indexing problem one of the basic data structures used is the
suffix tree data structure. In our indexing problem, we make use of this suffix
tree data structure. A complete description of a suffix tree is beyond the scope
of this paper, and can be found in [22, 25] or in any textbook on stringology
(e.g. [12, 16]). However, for the sake of completeness, we define the suffix tree
data structure as follows. Given a string T of length n over an alphabet Σ, the
suffix tree STT of T is the compacted trie of all suffixes of T $, where $ /∈ Σ.
Each leaf in STT represents a suffix T [i..n] of T and is labeled with the index i.
We refer to the list (in left-to-right order) of indices of the leaves of the subtree
rooted at node v as the leaf-list of v; it is denoted by LL(v). Each edge in STT

is labeled with a nonempty substring of T such that the path from the root to
the leaf labeled with index i spells the suffix T [i..n]. For any node v, we let ℓv

denote the string obtained by concatenating the substrings labeling the edges on
the path from the root to v in the order they appear. Several algorithms exist
that can construct the suffix tree STT in O(n log Σ) time6 [22, 25, 13]. The space
requirement of suffix tree is O(n log n) bits. Given the suffix tree STT of a text
T we define the “locus” µP of a pattern P as the node in STT such that ℓµP

has the prefix P and |ℓµP | is the smallest of all such nodes. Note that the locus
of P does not exist, if P is not a substring of T . Therefore, given P, finding
µP suffices to determine whether P occurs in T . Given a suffix tree of a text
T , a pattern P, one can find its locus and hence the fact whether T has an
occurrence of P in optimal O(|P|) time.In addition to that, all such occurrences
can be reported in constant time per occurrence.

3 Problem PMI

In this section, we handle Problem PMI. Since this is a more general problem
than both PMQI and PMGI, any solution to PMI would also be a solution to
both PMQI and PMGI. Our basic idea is to build an index data structure that
would solve the problem in two steps. First, it will (implicitly) give us the set
OccPT . Then, the index would ‘select’ some of the occurrences to provide us with
our desired set OccPT [ℓ..r],π.

We describe now the idea we employ. We first construct a suffix tree STT .
According to the definition of suffix tree, each leaf in STT is labeled by the
starting location of its suffix. We do some preprocessing on STT as follows. We
maintain a linked list of all leaves in a left-to-right order. In other words, we
realize the list LL(R) in the form of a linked list, where R is the root of the
suffix tree. In addition to that, we set pointers v.left and v.right from each tree
node v to its leftmost leaf vℓ and rightmost leaf vr (considering the subtree
rooted at v) in the linked list. It is easy to realize that, with these set of pointers
at our disposal, we can indicate the set of occurrences of a pattern P by the two
leaves µP

ℓ and µP
r because all the leaves between and including µP

ℓ and µP
r in

LL(R) correspond to the occurrences of P in T . In what follows, we define the

6 For bounded alphabet the running time remains linear, i.e. O(n).



terms ℓT and rT such that LL(R)[ℓT ] = µP
ℓ and LL(R)[rT ] = µP

r , where R is
the root of STT .

Now recall that our data structure has to be able to somehow “select” and
report only those occurrences that lies in the intersection of the query interval
and one of the given intervals. To solve this we use the following two interesting
problems.

Problem “CRSI” (Colored Range Set Intersection Problem). Suppose
V [1..n] and W [1..n] are two permutations of [1..n]. Also, assume that each
i ∈ [1..n] is assigned a not necessarily distinct color. Preprocess V and W to
answer the following form of queries.
Query: Find the distinct colors of the intersection of the elements of V [i..j] and
W [k..ℓ], 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ ℓ ≤ n.

Problem “CRSG” (Colored Range Search Problem on Grid). Suppose
A[1..n] is a set of n colored points on the grid [0..U ] × [0..U ]. Preprocess A to
answer the following form of queries.
Query: Given a query rectangle q ≡ (a, b)× (c, d), find the set of distinct colors
of points contained in q.

Our idea is to first reduce Problem PMI to Problem CRSI and then to the
much more studied Problem CRSG. Recall that, we have an array LL(R) and
an interval [ℓT ..rT ], which implicitly gives us the set OccPT . Recall also that, our
goal is to select those i ∈ OccPT such that i occurs in one of the intervals of π
and also in [ℓ..r]. We first construct an array M = M[1..n], such that for all
k ∈ [1..n],M[k] = k. Also, we construct a ‘color array’ C to assign colors to each
k ∈ [1..n] as follows. For each k ∈ [1..n] we assign C[k] = ck, if there exists an
i such that si ≤ k ≤ fi, [si..fi] ∈ π; we then say that the color of k is ck. Any
other k ∈ [1..n] is assigned a fixed different color, say cfixed. In other words, all
the positions of the text T , not covered by any of the intervals of π are given a
fixed color cfixed and every other position carries a distinct color each. We also
realize the inverse relation in the form of the array, C−1, such that C−1[ck] = k,
if and only if, C[k] = ck and ck 6= cfixed. Note that, there may exist more than
one positions having color cfixed. We define C−1(cfixed) = ∞.

Now we can reduce our problem to Problem CRSI as follows. We have two
arrays LL(R) and M and, respectively, two intervals [ℓT ..rT ] and [ℓ..r]. Also
we have color array C, which associates a (not necessary distinct) color to each
i ∈ [1..n]. Now it is easy to see that, if we can find the distinct colors in the set
of intersections of elements of LL(R)[ℓT ..rT ] and M[ℓ..r], then we are (almost)
done. The only additional thing we need to take care of is that if we have the
color cfixed in our output, we need to discard it. So, the Problem PMI is reduced
to Problem CRSI.

On the other hand, we can see that Problem CRSI is just a different formu-
lation of the Problem CRSG. This can be realized as follows. We set U = n.
Since V and W in Problem CRSI are permutations of [1..n], every number in
[1..n] appears precisely once in each of them. We define the coordinates of every



number i ∈ [1..n] to be (x, y), where V [x] = W [y] = i. Thus we get the n col-
ored points (courtesy to C) on the grid [0..n]× [0..n], i.e. the array A of Problem
CRSG. The query rectangle q is deduced from the two intervals [i..j] and [k..ℓ] as
follows: q ≡ (i, k)× (j, ℓ). It is straightforward to verify that the above reduction
is correct and hence we can solve Problem CRSI using the solution of Problem
CRSG.

Algorithm 1 Algorithm to build IDS PMI

1: Build a suffix tree STT of T . Let the root of STT is R.
2: Label each leaf of STT by the starting location of its suffix.
3: Construct a linked list L realizing LL(R). Each element in L is the label of the

corresponding leaf in LL(R).
4: for each node v in STT do

5: Store v.left = i and v.right = j such that L[i] and L[j] corresponds to, respec-
tively, (leftmost leaf) vℓ and (rightmost leaf) vr of v.

6: end for

7: for i = 1 to n do

8: Set M[i] = i

9: end for

10: for i = 1 to n do

11: Set C[i] = cfixed

12: end for

13: for i = 1 to |π| do

14: for j = si to fi do

15: C[j] = cj

16: end for

17: end for

18: for i = 1 to n do

19: Set A[i] = ǫ

20: end for

21: for i = 1 to n do

22: if there exists (x, y) such that M[x] = L[y] = i then

23: Set A[i] = A[i]
S

(x, y)
24: end if

25: end for

26: Preprocess A (and C) for Colored Range Search on a Grid [0..n] × [0..n].

To solve Problem CRSG, we are going to use the data structure of Agar-
wal et al. [1]7. This data structure can answer the query of Problem CRSG in
O(log log U + K) time, where K is the number of points contained in the query
rectangle q. The data structure can be built in O(n log n log2 U) time and re-
quires O(n log2 U) space. Algorithm 1 formally states the steps to build our data
structure. In the rest of this paper, we refer to this data structure as IDS PMI.

7 To the best of our knowledge, this is the only data structure that handles the colored
range query exploiting the grid property to gain efficiency.



One final remark is that, we can use the suffix array instead of suffix tree as well
with some standard modifications in Algorithm 1.

3.1 Analysis

Let us now analyze the cost of building the index data structure IDS PMI. To
build IDS PMI, we first construct a traditional suffix tree requiring O(n log Σ)
time. The preprocessing on the suffix tree can be done in O(n) by traversing
STT using a breadth first or in order traversal. The color array C can be setup
in O(n) because π is a set of disjoint intervals and it can cover, at most, n points.
The construction of the set A of points in the grid [0..n]× [0..n], on which we will
apply the range search, can also be done in O(n) as follows. Assume that L is the
linked list realizing LL(R). Each element in L is the label of the corresponding
leaf in LL(R). We construct L−1 such that L−1[L[i]] = i. It is easy to see that
with L−1 in our hand we can easily construct A in O(n). After A is constructed
we build the data structure to solve Problem CRSG which requires O(n log3 n)
time and O(n log2 n) space because U = n. Since, we can assume Σ ≤ n, the
index IDS PMI can be constructed in O(n log3 n) time.

Algorithm 2 Algorithm for Query Processing

1: Find µP in STT .
2: Set i = µP .left, j = µP .right.
3: Compute the set B, where B is the set of distinct colors in the set of points

contained in q ≡ (i, ℓ) × (j, r)
4: return OccPT [ℓ..r],π = {C−1[x] | x ∈ B and x 6= cfixed}

3.2 Query processing

So far we have concentrated on the construction of IDS PMI. Now we discuss
the query processing. Suppose we are given a query pattern P along with a
query interval [ℓ..r]. We first find the locus µP in STT . Let i = µP .left and
j = µP .right. Then we perform a colored range search query on A with the
rectangle q ≡ (i, ℓ)×(j, r). Let B is the set of those colors as output by the query.
Then it is easy to verify that OccPT [ℓ..r],π = {C−1[x] | x ∈ B and x 6= cfixed}.
The steps are formally presented in the form of Algorithm 2.

The running time of the query processing is deduced as follows. Finding
the locus µP requires O(m) time. The corresponding pointers can be found in
constant time. The construction of the set B is done by performing the range
query and hence requires O(log log n+ |B|) time. Note that |B| is either equal to
|OccPT [ℓ..r],π| or just one unit more than that. The latter happens when we have

cfixed ∈ B. So, in total the query time is O(m + log log n + |OccPT [ℓ..r],π| + 1) =

O(m + log log n + |OccPT [ℓ..r],π|). We state the results of this section in the form
of following theorem.



Theorem 1. For Problem PMI, we can construct the IDS PMI data structure
in O(n log3 n) time and O(n log2 n) space and we can answer the relevant queries
in O(m + log log n + |OccPT [ℓ..r],π|) time per query.

4 Problem PMGI

In Section 3, we have presented an efficient index data structure, namely IDS PMI,
to solve Problem PMI. In this section, we consider Problem PMGI. Since PMI
is a generalized version of PMGI, we can easily use the solution in Section 3
to solve PMGI. We use the same data structure IDS PMI. During the query,
since PMGI doesn’t have any query interval, we just need to assume the query
interval to be [1..n]. So we have the following theorem.

Theorem 2. For Problem PMGI, we can construct the IDS PMI data structure
in O(n log3 n) time and O(n log2 n) space and we can answer the relevant queries
in O(m + log log n + |OccPT ,π|) time per query.

However, as it turns out, we can achieve better results for Problem PMGI.
And in fact, as we show below, we can solve Problem PMGI optimally. We
first discuss how we construct the data structure, namely IDS PMGI, to solve
PMGI. As before, we start by constructing a suffix tree (or suffix array) STT .
Then we do all the preprocessing done on STT as we did to construct IDS PMI.
We also construct the color array C. This time however, we do a slightly different
encoding as follows. For each k ∈ [1..n], we assign C[k] = −1, if there exists an i
such that si ≤ k ≤ fi, [si..fi] ∈ π. For all other k ∈ [1..n] we assign C[k] = 0. In
other words, all the positions of the text T , not covered by any of the intervals
of π gets 0 as their color and every other positions gets the color −1. Now we
make use of the following interesting problem.

Problem “RMIN” (Range Minima Query Problem). We are given an ar-
ray A[1..n] of numbers. We need to preprocess A to answer following form of
queries:
Query: Given an interval I = [is..ie], 1 ≤ is ≤ ie ≤ n, the goal is to find the
index k (or the value A[k] itself) with minimum (maximum, in the case of Range
Maxima Query) value A[k] for k ∈ I.

Problem RMIN has received much attention in the literature and Bender
and Farach-Colton showed that we can build a data structure in O(n) time
using O(n log n)-bit space and can answer subsequent queries in O(1) time per
query [8]8. Recently, Sadakane [24] presented a succinct data structure which
achieves the same time complexity using O(n) bits of space.

Now, we preprocess the array C to answer the range minima queries (RMQ).
Note that, in C, we have only two values. So to define a unique value in case
of a tie, we consider the index along with the value. More formally, we define
C[i] ≺ C[j], 1 ≤ i 6= j ≤ n if and only if C[i] ≤ C[j] and i < j. And we employ

8 The same result was achieved in [15], albeit with a more complex data structure.



RMQ using the relation ≺. This can be easily done in O(n) slightly modifying
the preprocessing used in [8]9. Finally, for each C[i] = −1, we maintain a pointer
to C[j] = −1 such that j > i and j is the smallest index with this property; if
there doesn’t exist any such C[j], then C[i] points to ‘NULL’. More formally, we
maintain another array D[1..n] such that for all i ∈ [1..n] with C[i] = −1, we have
D[i] = j, if and only if, C[j] = −1 and C[k] = 0, i < k < j. For all other index
the D is given a ‘NULL’ value. This completes the construction of IDS PMGI.
Note that, the overall running time to construct IDG PMGI remains dominated
by the construction of the suffix tree STT . As a result, the construction time is
O(n) for bounded alphabet and O(n log Σ) otherwise.

Now we discuss how we perform the query on IDS PMGI. Suppose we are
given a query pattern P. We first find the locus µP in STT . Let i = µP .left and
j = µP .right. Now we basically have the set OccPT in L[i..j]. Now we perform a
range minima query on C with the query interval [i..j]. This gives us, in constant
time [8], the first index k ∈ [i..j] such that C[k] = −1. Then we follow the
linked list realized by D to report all the indices in the range [i..j] having color
−1. More formally, we construct the set B = {k | k ∈ [i..j] and C[k] = −1}.
With the help of D this can be done in O(|B|) time. And it is easy to realize
that OccPT ,π = {L[i] | i ∈ B}. Therefore we can perform the query in optimal

O(m+ |OccPT ,π|) time. The following theorem present the results achieved in this
section.

Theorem 3. For Problem PMGI, we can construct the IDS PMGI data struc-
ture in O(n log Σ) time and O(n log n) bits of space and the relevant queries can
be answered optimally in O(m + |OccPT ,π|) time per query.

For bounded alphabets, we have the following result.

Theorem 4. For Problem PMGI, we can construct the IDS PMGI data struc-
ture in O(n) time and O(n log n) bits of space and the relevant queries can be
answered optimally in O(m + |OccPT ,π|) time per query.

5 Problem PMQI

This section is devoted to Problem PMQI. As is mentioned above, PMQI was
studied extensively in [21]. The best query time achieved in [21] was O(m +
log log n + |OccPT [ℓ..r]|) against a data structure exhibiting O(n log1+ǫ n) space
and time complexity, where 0 ≤ ǫ ≤ 1. Note that, we can easily use IDS PMI to
solve PMQI by assuming π = {[1..n]}. So, with a slightly worse data structure
construction time, we can achieve the same query time of [21] to solve PMQI
using our data structure IDS PMI to solve a more general problem, namely PMI.
However, as pointed out in [21], it would be really interesting to get an optimal
query time for this problem. In this section, we attain an optimal query time

9 In particular, the only modification needed is in the construction of the Cartesian
tree.



for PMQI. However, the optimal query time is achieved against a O(n2) prepro-
cessing time.

The data structure, namely IDS PMQI, is constructed as follows. As before,
we start by constructing a suffix tree (or suffix array) STT . Then we do all the
preprocessing done on STT as we did to construct IDS PMI and IDS PMGI.
Recall that, with STT in our hand, preprocessed as above, we can have the set
OccPT in the form of L[i..j] in O(m) time. To achieve the optimal query time
we now must ‘select’ k ∈ L[i..j] such that k ∈ [ℓ..r] without spending more
than constant time per selection. To achieve this goal we introduce the following
interesting problem.

Problem “RNV” (Range Next Value Query Problem). We are given an
array A[1..n], which is an permutation of [1..n]. We need to preprocess A to
answer the following form of queries.
Query: Given an integer k ∈ [1..n], and an interval [i..j], 1 ≤ i ≤ j ≤ n, the goal
is to return the index of the immediate higher (or equal) number (‘next value’)
than k from A[i..j] if there exists one. More formally, we need to return ℓ (or
A[ℓ] as the value itself) such that i ≤ ℓ ≤ j and A[ℓ] = min{A[q] | A[q] ≥
k and i ≤ q ≤ j}

Despite extensive results on various range searching problems we are not
aware of any result that directly addresses this problem. Recall that our goal now
is to answer the RNV queries in O(1) time per query. We below give a solution
where we can preprocess A in O(n2) time and then can answer the subsequent
queries in O(1) time per query. The idea is is as follows. We maintain n arrays
Bi, 1 ≤ i ≤ n. Each array, Bi has n elements. So we could view B as a two
dimensional array as well. We fill each array Bi depending on A as follows. For
each 1 ≤ i ≤ n we store in Bi the difference between i and the corresponding
element of A and then replace all negative entries of Bi with ∞. More formally,
for each 1 ≤ i ≤ n and for each 1 ≤ j ≤ n we set Bi[j] = A[j] − i if A[j] ≥ i;
otherwise we set Bi[j] = ∞. Then we preprocess each Bi, 1 ≤ i ≤ n for range
minima query [8]. This completes the construction of the data structure. It is
clear that it will require O(n2) time. The query processing is as follows. Suppose
the query parameters are k and [i..j]. Then we simply apply range minima query
in Bk for the interval [i..j]. So we have the following theorem.

Theorem 5. For Problem RNV, we can construct a data structure in O(n2)
time and space to answer the relevant queries in O(1) time per query.

Now we show how we can use the result of Theorem 5 to answer the queries
of Problem PMQI optimally. To complete the construction of IDS PMQI, we
preprocess the array L for Problem RNV. The query processing is as follows.
Recall that, we can have the set OccPT in the form of L[i..j] in O(m) time. Recall
also that as part of the PMQI query, we are given an interval [ℓ..r]. Now we
perform an RNV query on L with the parameters ℓ and [i..j]. Suppose the query
returns the index q. It is easy to see that if L[q] ≤ r, then L[q] ∈ OccPT [ℓ..r]. And



then we repeat the RNV query with parameters L[q] and [i..j]. We stop as soon
as a query returns an index q such that L[q] > r. So, in this way, given L[i..j],
we can get the set OccPT [ℓ..r] in O(|OccPT [ℓ..r]|) time. So we have the following
theorem.

Theorem 6. For Problem PMQI, we can construct a data structure, namely
IDS PMQI, in O(n2) time and space to answer the relevant query in optimal
O(m + |OccPT [ℓ..r]|) time.

It is clear that the bottleneck in the construction time lies in the preprocessing
of Problem RNV. So any improvement on Theorem 5 would improve Theorem 6
as well. One interesting fact is that, the occurrences in OccPT [ℓ..r] as output by
our algorithm will always remain sorted according to their position in T , which
in many applications may turn out to be useful.

6 Conclusion

In this paper, we have considered the problem of pattern matching in given
intervals and focused on building index data structure to handle different ver-
sions of this problem efficiently. We first handled the more general problem
PMI and presented an efficient data structure requiring O(n log3 n) time and
O(n log2 n) space with a query time of O(m+log log n+ |OccPT [ℓ..r],π|) per query.

We then solved Problem PMGI optimally (O(n) time and O(n log n)-bits space
data structure and O(m+ |OccPT ,π|) query time). Finally, we improved the query

time of [21] for Problem PMQI to optimal i.e. O(m + |OccPT [ℓ..r]|) per query,

although, at the expense of a more costly data structure requiring O(n2) time
and space. It would be interesting to improve the preprocessing time of both
Problem PMI and PMQI and also the query time of the former. Of particular
interest is the improvement of the O(n2) data structure of PMQI without sacri-
ficing the optimal query time. Furthermore, we believe that Problem RNV is of
independent interest and could be investigated further.
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