N

N

A basis of tiling motifs for generating repeated patterns
and its complexity for higher quorum

Nadia Pisanti, Maxime Crochemore, Roberto Grossi, Marie-France Sagot

» To cite this version:

Nadia Pisanti, Maxime Crochemore, Roberto Grossi, Marie-France Sagot. A basis of tiling motifs
for generating repeated patterns and its complexity for higher quorum. International Symposium on
Mathematical Foundations of Computer Science 2003, Aug 2003, Bratislava, Slovakia. pp.622-632,
10.1007/978-3-540-45138-9_ 56 . hal-00620116

HAL Id: hal-00620116
https://hal.science/hal-00620116
Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00620116
https://hal.archives-ouvertes.fr

A Basis of Tiling Motifs for Generating
Repeated Patterns and its Complexity for
Higher Quorum*

N. Pisanti', M. Crochemore?® **/ R. Grossi', and M.-F. Sagot*3 ***

! Dipartimento di Informatica, Universitd di Pisa, Italy
{pisanti,grossi}@di.unipi.it
2 Institut Gaspard-Monge, University of Marne-la-Vallée, France
Maxime.Crochemore@univ-mlv.fr
® INRIA Rhéne Alpes, France Marie-France.Sagot@inria.fr
* King’s College London, UK

Abstract. We investigate the problem of determining the basis of motifs
(a form of repeated patterns with don’t cares) in an input string. We give
new upper and lower bounds on the problem, introducing a new notion of
basis that is provably smaller than (and contained in) previously defined
ones. Our basis can be computed in less time and space, and is still able to
generate the same set of motifs. We also prove that the number of motifs
in all these bases grows expomnentially with the quorum, the minimal
number of times a motif must appear. We show that a polynomial-time
algorithm exists only for fixed quorum.

1 Introduction

Identifying repeated patterns in strings is a computationally-demanding task
on the large data sets available in computational biology, data mining, textual
document processing, system security, and other areas; for instance, see [6]. We
consider patterns with don’t cares in a given string s of n symbols drawn over an
alphabet X. The don’t care is a special symbol ‘o’ matching any symbol of X;
for example, pattern ToE matches both TTE and TEE inside s = COMMITTEE (note
that a pattern cannot have a don’t care at the beginning or at the end, as this
is not considered informative). Contrarily to string matching with don’t cares,
the pattern ToE is not given in advance for searching s. Instead, the patterns
with don’t cares appearing in s are unknown and, as such, have to be discovered
and extracted by processing s efficiently. In our example, ToE and MooToE are
among the patterns appearing repeated in COMMITTEE. In this paper we focus
on finding the patterns called motifs, which appear at least ¢ times in s for an

* The full version of this paper is available in [11] as technical report TR-03-02.
** Supported by CNRS action AlBio, NATO Sc. Prog. PST.CLG.977017, and Wellcome
Trust Foundation.
*** Supported by CNRS-INRIA-INRA-INSERM action Biolnformatique and Well-
come Trust Foundation.

input parameter ¢ > 2 called the quorum. Different formulations in the known
literature address the problem of detecting motifs in several contexts, revealing
its algorithmic relevance. Unfortunately, the complexity of the algorithms for
motif discovery may easily become exponential due to the explosive growth of
the motifs in strings, such as in the artificial string A---ATA--- A (same number
of As on both sides of T) generating many motifs with As intermixed with don’t
cares, and in other “real” strings over a small alphabet occurring in practice,
e.g., DNA sequences. Some heuristics try to alleviate this drawback by reducing
the number of interesting motifs to make feasible any further processing of them,
but they cannot guarantee sub-exponential bounds in the worst case [7].

In this paper, we explore the algorithmic ideas behind motif discovery while
getting some insight into their combinatorial complexity and their connections
with string algorithmics. Given a motif = for a string s of length n, we denote the
set of positions on s at which the occurrences of x start by £, C[0..n—1], where
|£.| > q holds for the given quorum ¢ >2. We single out the mazimal motifs z,
informally characterized as satisfying |L,| # |£,| for any other motif y more
specific than z, i.e., obtained from z by adding don’t cares and alphabet letters
or by replacing one or more don’t cares with alphabet letters. In other words,
x appears in y but x occurs in s more times than y does, which is considered
informative for discovering the repetitions in s. For example, MooToE is maximal
in COMMITTEE for ¢ = 2 while MooooE and ToE are not maximal since MooToE
is more specific with the same number of occurrences. Maximality provides an
intuitive notion of relevance as each maximal motif x indirectly represents all
non-maximal motifs z that are less specific than it. Unfortunately, this prop-
erty does not bound significantly the number of maximal motifs. For example,
A---ATA---A contains an exponential number of them for ¢ = 2 (see Section 2).
A further requirement on the maximal motifs is the notion of irredundant motifs
([7])- A maximal motif z is redundant if there exist maximal motifs y, ...,y # x
such that the set of occurrences of z satisfies £, = £, U... U L,,; it is irre-
dundant otherwise. The set of occurrences of a redundant motif can be covered
by other sets of occurrences while that of an irredundant motif is not the union
of the sets of occurrences of other maximal motifs. The basis of the irredundant
motifs of string s with quorum ¢ is the set of irredundant motifs in s. Informally
speaking, a basis can generate all the motifs by simple rules and can be ex-
pressed mathematically in the algebraic sense of the term. According to Parida
et al. [7], what makes interesting the irredundant motifs is that their number is
always upper bounded by 3n independently of any chosen g > 2; moreover, they
can be found in O(n3logn) time by this bound, notwithstanding the possibly
exponential number of maximal motifs that are candidates for the basis.

Our results: We study the complexity of finding the basis of motifs with
novel algorithms to represent all motifs succinctly. We show that, in the worst
case, there is an infinite family of strings for which the basis contains 2(n?)
irredundant motifs for ¢ = 2 (see Section 2). This contradicts the upper bound
of 3n for any ¢ > 2 given in [7] as shown (in the Appendix of [11] we give a
counterexample to its charging scheme, which crucially relies on a lemma that

is not valid). As a result, the bound of O(n®logn) time in [7] for any ¢ does
not hold since it relies on the upper bound of 3n, thus leaving open the problem
of discovering a basis in polynomial time for any g. We also introduce a new
definition called basis of the tiling motifs of string s with quorum ¢. The condition
for tiling motifs is stronger than that of irredundancy. A maximal motif x is tiled
if there exist maximal motifs y1,...,yr 7 = such that the set of occurrences
of z satisfies L, = (Ly, +d1)U...U(Ly, + di) for some integers di,...,d; it
is tiling otherwise. Note that the motifs yq,...,y, are not necessarily distinct
and the union of their occurrences is taken after displacing them by dy, ..., dg,
respectively. Since a redundant motif is also tiled with dy = --- = dj, = 0, a tiling
motif is surely irredundant. Hence the basis for the tiling motifs is included in
the basis for irredundant motifs while both of them are able to generate the same
set of motifs with mechanical rules. Although the definition of tiling motifs is
derived from that of irredundant ones, the difference is much more substantial
than it may appear. The basis of tiling motifs is symmetric, namely, the tiling
motifs of § (the string s in reversed order) are the reversed tiling motifs of s
whereas the irredundant motifs for strings s and s are apparently unrelated,
unlike the entropy and other properties related to the repetitions in strings.
Moreover, the number of tiling motifs can be provably upper bounded in the
worst case by n — 1 for ¢ = 2 and they occur in s for a total of 2n times at most,
whereas we demonstrate that there can be 2(n?) irredundant motifs. We give
more details in Section 3, and we also discuss in the full paper [11] how to find
the longest motifs with a limited number of don’t cares. Finally, in Section 4,
we reveal an ezponential dependency on the quorum ¢ for the number of motifs,
both for the basis of irredundant motifs and for the basis of tiling motifs, which
was unnoticed in previous work. We prove that there is an infinite family of

strings for which the basis contains at least (Til) = Q(L (Z:i)) tiling (hence,

— q
irredundant) motifs. Hence, no worst-case poiyrllomial—tin?le algorithm can exist
for finding the basis with arbitrary values of ¢ > 2. Nonetheless, we can prove
that the tiling motifs in our basis are less than (Z:ll) in number and occur
in s a total of q(’;:ll) times at_most. For them there exists a pseudo-polynomial
algorithm taking O §q2 (2:11) time, which shows that the tiling motifs can be
found in polynomial time if arid only if the quorum ¢ satisfies either ¢ = O(1) or
g =n — O(1) (the latter is hardly meaningful in practice). Experimenting with
small strings exhibits a non-constant growth of the basis for increasing values
of ¢ up to O(logn) but larger values of ¢ are possible in the worst case. More
experimental analysis of the implementation can be found in [11]. Proofs of all

results can also be found in [11].

Related work: As previously mentioned, the seminal idea of basis was intro-
duced by Parida et al. [7]. The unpublished manuscript [3] adopted an identical
definition of irredundant motifs in the first part. Very recently, Apostolico [2]
observed that the O(n?)-time algorithm proposed in the second part of [3] con-
tains an implicit definition different from that of the first part. Namely, in a
redundant motif z, the list £, can be “deduced” from the union of the oth-
ers (see also [1]). Note that no formal specification of this alternative definition

is however explicited. Applications of the basis of repeated patterns (with just
g = 2) to data compression are described in [4]. Tiling motifs can be employed
in this context because of their linear number of occurrences in total.

The idea of the basis was also explored by Pelfréne et al. [8, 9], who introduced
the notion of primitive motifs. They gave two alternative definitions claimed to
be equivalent, one definition reported in the two-page abstract accompanying
the poster and the other in the poster itself. The basis defined in the poster
is not symmetric and is a superset of the one presented in this paper. On the
other hand, the definition of primitive motifs given in the two-page abstract is
somehow equivalent to that given in this paper and introduced independently in
our technical report [10]. Because of the lower bounds proved in this paper, the
algorithm in [9] is exponential with respect to g.

The problem of finding a polynomial-size basis for higher values of ¢ remains
unsolved.

2 Irredundant Motifs: The Basis and its Size for ¢ = 2

We consider strings that are finite sequences of letters drawn from an alphabet
X, whose elements are also called solid characters. We introduce an additional
letter (denoted by o and called don’t care) that does not belong to X' and matches
any letter. The length of a string ¢ with don’t cares, denoted by |t|, is the number
of letters in ¢, and ¢[i] indicates the letter at position i in ¢ for 0 < i < |¢| —1
(hence, t = t[0]¢[1] - - - ¢[|¢t| — 1] also noted ¢[0..|t| — 1]). A pattern is a string in
YUX(XU{e})* X, that is, it starts and ends with a solid character. The pattern
occurrences are related to the specificity relation <. For individual characters
01,09 € XU {0}, we have 01 < 02 if 01 = o or 67 = 03. Relation < extends
to strings in (X' U {o})* under the convention that each string ¢ is implicitly
surrounded by don’t cares, namely, letter ¢[j] is o when j < 0 or j > |¢|. In this
way, v is more specific than u (shortly, u < v) if u[j] < v[j] for any integer j.
We also say that u occurs at position € in v if u[j] < v[{ + j], for 0 < j <
|u| — 1. Equivalently, we say that u matches v[f]---v[¢ 4+ |u| — 1]. For the input
string s € X* with n = |s|, we consider the occurrences of arbitrary patterns x
in s. The location list L, C [0..n — 1] denotes the set of all the positions on s
at which x occurs. For example, the location list of £ = ToE in s = COMMITTEE
is £, = {5,6}.

Definition 1 (motif). Given a parameter ¢ > 2 called quorum, we say that
pattern ¢ is a motif according to s and q if |L,] > q.

Given any location list £, and any integer d, we adopt the notation £, + d =
{+d| e L,} for indicating the occurrences in £, “displaced” by the offset d.

Definition 2 (maximality). A motif z is maximal if any other motif y such
that © occurs in y satisfies L, # L, + d for some integer d.

Making a maximal motif z more specific (thus obtaining y) reduces the number
of its occurrences in s. Definition 2 is equivalent to that in [7] stating that z is

maximal if there exist no other motif y and no integer d > 0 verifying £, = £, +d,
such that y[j +d] S z[j] for 0 < j <|z|— 1.

Definition 3 (irredundant motif). A mazimal motif = is irredundant if, for
any mazimal motifs y1, y2, ..., Y such that L, = U¥_ L,., motif x must be one
of the y;’s. Vice versa, if all the y;’s are different from x, pattern x is said to be
covered by motifs y;, Y2, ..., Yk-

The basis of irredundant motifs for string s is the set of all irredundant motifs
in s, useful as a generator for all maximal motifs in s (see [7]). The size of the
basis is the number of irredundant motifs contained in it. We now show the
existence of an infinite family of strings s, (k > 5) for which there are £2(n?)
irredundant motifs in the basis already for quorum ¢ = 2, where n = |sg|. In this
way, we disprove the upper bound of 3n which is based on an incorrect lemma
(see also [11]). Each string sy is the suitable extension of #; = A*TAF, where A*
denotes the letter A repeated k times (our argument works also for zFwz¥, where
|z| = |w| and z is a string not sharing any common character with w). String ¢,
has an exponential number of maximal motifs, including those having the form
A{A,0}*F~2A with exactly two don’t cares. To see why, each such motif z occurs
four times in #j: specifically, two occurrences of x match the first and the last &
letters in t; while each distinct don’t care in x matching the letter T in #
contributes to one of the two remaining occurrences. Extending z or replacing a
don’t care with a solid character reduces the number of these occurrences, so « is
maximal. The idea of our proof is to obtain strings s, by prefixing t;, with O(|¢x|)
symbols to transform the above maximal motifs z into irredundant motifs for sy.
Since there are @(k?) of them, and n = |si| = O(|tx|) = O(k), this leads to the
result. In order to define s on the alphabet {A,T,u,v,w,x,y,2,2a1,a,...,25_2},
we introduce a few notations. Let @ be the reversal of u, and let evy, ody, ug, v
be

if kiseven : evy = asay - -ap_o, if kisodd : evy, = asay---ag_3,
ody, = ajaz---ag_3, od, = ajaz---ag_2,
U — €V Uevg VW eV, U, = €V uv eV WX eV,
Vp = Odk Xy Odk Z Odk, Vp = odkyodkz Odk.

The strings s, are then defined by s = ugvgty for k > 5.
Lemma 1. The length of ugvy is 3k, and that of sy, is n = 5k + 1.

Proposition 1. For 1 < p < k — 2, any motif of the form AP o AP~ with one
don’t care cannot be mazimal in s;. Also motif A* cannot be mazimal in sy,.

Proposition 2. Each motif of the form A{A, o}*~2A with ezactly two don’t cares
18 irredundant in sy.

Theorem 1. The basis for string si contains 2(n?) irredundant motifs, where
n = |si| and k > 5.

3 Tiling Motifs: The Basis and its Properties

In this section we introduce a natural notion of basis for generating all maximal
motifs occurring in a string s of length n. Analogously to what was done for
maximal motifs in Definition 2, we introduce displacements while defining tiling
motifs for this purpose.

Definition 4 (tiling motif). A mazimal motif x is tiling if, for any mazi-
mal motifs y1, y2, ..., yr and for any integers dy, ds, ..., di such that L, =
U (Ly; + d;), motif x must be one of the y;’s. Vice versa, if all the y;’s are
different from x, pattern x is said to be tiled by motifs y1, y2, ..., Yk.

The notion of tiling is more selective than that of irredundancy in general. For
example, in the string s = FABCXFADCYZEADCEADC, motif #; = AoC is irredundant,
but it is tiled by z2 = FAoC and z3 = ADC according to Definition 4 since its
location list, £,, = {1,6,12,16}, can be obtained from the union of £,, = {0,5}
and L., = {6,12,16} with respective displacements d> = 1 and d3 = 0. A fairly
direct consequence of Definition 4 is that if x is tiled by y1, y2, ..., yr with
associated displacements dy, ds, ..., di, then 2 occurs at position d; in each y;
for 1 <4 < k (hence d; > 0). Note that the y;’s in Definition 4 are not necessarily
distinct and that & > 1 for tiled motifs (it follows from the fact that £, = £, +d1
with 2 # y; would contradict the maximality of both z and ;). As a result, a
maximal motif z occurring exactly ¢ times in s is tiling as it cannot be tiled by
any other motifs (we need at least two of them, which is impossible). The basis of
tiling motifs is the complete set of all tiling motifs for s, and the size of the basis is
the number of these motifs. For example, the basis B for FABCXFADCYZEADCEADC
containg FAoC, EADC, and ADC as tiling motifs. Although Definition 4 is derived
from that of irredundant motifs given in Definition 3, the difference is much
more substantial than it may appear. The basis of tiling motifs relies on the fact
that tiling motifs are considered as invariant by displacement as for maximality.
Consequently, our definition of basis is symmetric, that is, each tiling motif in the
basis for the reverse string s is the reverse of a tiling motif in the basis of s. This
follows from the symmetry in Definition 4 and from the fact that maximality is
also symmetric in Definition 2. It is a sine qua non condition for having a notion
of basis invariant by the left-to-right or right-to-left order of the symbols in s
(like the entropy of s), while this property does not hold for the irredundant
motifs. The basis of tiling motifs has further interesting properties. Later in this
section, we show that our basis is linear for quorum ¢ = 2 (i.e., its size is at
most n — 1) and that the total size of the location lists for the tiling motifs is less
than 2n, describing how to find the basis in O(n? lognlog|X|) time. In the full
paper [11], we discuss some applications such as generating all maximal motifs
with the basis and finding motifs with a constraint on the number of don’t cares.

Given a string s of length n, let B denote its basis of tiling motifs for quo-
rum ¢ = 2. Although the number of maximal motifs may be exponential and
the basis of irredundant motifs may be at least quadratic (see Section 2), we
show that the size of B is always less than n. For this, we introduce an oper-
ator @ between the symbols of X' to define merges, which are at the heart of

the properties on B. Given two letters 01,02 € X with o1 # 03, the operator
satisfies 01 ® 03 = o and o1 @ 01 = o1. The operator applies to any pair of
strings z,y € X*, so that u = z @y satisfies u[j] = z[j] ® y[j] for all integers j. A
merge is the motif resulting from applying the operator @ to s and to its suffix
at position k.

Definition 5 (Merge). For 1 <k <n—1, let sy, be the string whose character
at position i is sg[i] = s[i] ® s[i + k]. If si contains at least one solid charac-
ter, Merge, denotes the motif obtained by removing all the leading and trailing
don’t cares in s (i.e., those appearing before the leftmost solid character and
after the rightmost solid character).

For example, FABCXFADCYZEADCEADC has Merge, = EADC, Merge; = FAoC, Merges; =
Merge,, = ADC and Merge,, = Merge,5; = AoC. The latter is the only merge that
is not a tiling motif.

Lemma 2. If Merge,, exists, it must be a mazimal motif.

Lemma 3. For each tiling motif x in the basis B, there is at least one k for
which Merge, = x.

Theorem 2. Given a string s of length n and the quorum q = 2, let M be the
set of Merge,,, for 1 < k <n —1 such that Merge,, exists. The basis B of tiling
motifs for s satisfies B C M, and therefore the size of B is at most n — 1.

A simple consequence of Theorem 2 implies a tight bound on the number of
tiling motifs for periodic strings. If s = w® for a string w repeated e > 1 times,
then s has at most |w| tiling motifs.

Corollary 1. The number of tiling motifs for s is < p, the smallest period of s.

The bound in Corollary 1 is not valid for irredundant motifs. String s = ATATATATA
has period p = 2 and only one tiling motif ATATATA, while its irredundant motifs
are A, ATA, ATATA and ATATATA.

We describe how to compute the basis B for string s when ¢ = 2. A brute-
force algorithm generating first all maximal motifs of s takes exponential time
in the worst case. Theorem 2 plays a crucial role in that we first compute the
motifs in M and then discard those being tiled. Since B C M, what remains is
exactly B. To appreciate this approach, it is worth noting that we are left with
the problem of selecting B from n — 1 maximal motifs in M at most, rather than
selecting B among all the maximal motifs in s, which may be exponential in
number. Our simple algorithm takes O(n? lognlog|X|) time and is faster than
previous (and more complicated) methods.

Step 1. Compute the multiset M' of merges. Letting si[i] be the leftmost solid
character of string s in Definition 5, we define occ, = {i,i + k} to be the
positions of the two occurrences of x whose superposition generates x = Merge,,.
For k =1,2,...,n—1, we compute string s in O(n—k) time. If s;, contains some
solid characters, we compute x = Merge,;, and occ, in the same time complexity.
As a result, we compute the multiset M’ of merges in O(n?) time. Each merge =
in M’ is identified by a triplet (i,i + k, |z|), from which we can recover the jth
symbol of = in constant time by simple arithmetic operations and comparisons.

Step 2. Transform the multiset M’ into the set M of merges. Since there can be
two or more merges in M’ that are identical and correspond to the same merge
in M, we put together all identical merges in M’ by performing radix sorting on
the triplets representing them. The total cost of this step is dominated by radix
sorting, giving O(n?log|X|) time. As byproduct, we produce the temporary
location list T = |J,/—, . »reap 0cCer for each distinct © € M thus obtained.

Lemma 4. FEach motif x € B satisfies Ty, = L.

Step 3. Select M* C M, where M* = {x € M : T, = L,}. In order to build M*,
we employ the Fischer-Paterson algorithm based on convolution [5] for string
matching with don’t cares to compute the whole list of occurrences £, for each
merge € M. Its cost is O((Jz| + n)lognlog|X|) time for each merge x. Since
|z| < n and there are at most n — 1 motifs * € M, we obtain O(n?lognlog|X|)
time to construct all lists £,. We can compute M* by discarding the merges = €
M such that T, # L, in additional O(n?) time.

Lemma 5. The set M* satisfy the conditions B C M* and)\ |Lz| < 2n.

The property of M* in Lemma 5 is crucial in that Y ., |L.| = ©(n?) when
many lists contain ©(n) entries. For example, s = A™ has n — 1 distinct merges,
each of the form # = A? for 1 <i <n —1, and so |£;| = n — i + 1. This would
be a sharp drawback in Step 4 when removing tiled motifs as it may turn into
an ©(n?) algorithm. Using M* instead, we are guaranteed that Y. .. [Lo| =
O(n); we may still have some tiled motifs in M*, but their total number of
occurrences is O(n).

Step 4. Discard the tiled motifs in M*. We can now check for tiling motifs
in O(n?) time. Given two distinct motifs z,y € M*, we want to test whether
Ly +d C L, for some integer d and, in that case, we want to mark the entries
in £, that are also in £, + d. At the end of this task, the lists having all entries
marked are tiled (see Definition 4). By removing their corresponding motifs from
M*, we eventually obtain the basis B by Lemma 5. Since the meaningful values
of d are equal to the individual entries of £,, we have only |, | possible values to
check. For a given value of d, we avoid to merge £, and £, in O(|L;|+|L,|) time
to perform the test, as it would contribute to a total of @(n?) time. Instead, we
exploit the fact that each list has values ranging from 1 to n, and use a couple
of bit-vectors of size n to perform the above check in O(|L,| % |£,|) time for all
values of d. This gives O(3_, >, [La| X [Ly]) = O, 1Ly] X 32, [La]) = O(n?)
by Lemma 5. We therefore detail how to perform the above check with £, and
Ly in O(|Ly] % |L£y]) time. We use two bit-vectors Vi and V> initially set to all
zeros. Given y € M*, we set Vi[i] = 1 if i € £,. For each x € M* — {y} and
for each d € L, we then perform the following test. If all j € £, + d satisfy
Vilj] = 1, we set Va[j] = 1 for all such j. Otherwise, we take the next value of d,
or the next motif if there are no more values of d, and we repeat the test. After
examining all x € M* — {y}, we check whether V;[i] = V5[] for all i € £,,. If so,

y is tiled as its list is covered by possibly shifted location lists of other motifs.
We then reset the ones in both vectors in O(]L£,]) time.

Summing up Steps 1-4, the dominant cost is that of Step 3, leading to the
following result.

Theorem 3. Given an input string s of length n over the alphabet X, the basis
of tiling motifs with quorum q = 2 can be computed in O(n>lognlog|X|) time.
The total number of motifs in the basis is less than n, and the total number of
their occurrences in s is less than 2n.

4 q > 2: Pseudo-Polynomial Bases for Higher Quorum

We now discuss the general case of quorum ¢ > 2 for finding the basis of a string
of length n. Differently from previous work claiming a polynomial-time algorithm
for any arbitrary value of ¢, we show in Section 4 that no such polynomial-time
algorithm can exist in the worst case, both for the basis of irredundant motifs
and for the basis of tiling motifs. The size of these bases provably depends
exponentially on suitable values of ¢ > 2, i.e., we give a lower bound of !)(_ .
In practice, this size has an exponentlal growth for increasing values of g up
to O(logn), but larger values of ¢ are theoretically possible in the worst case.
Fixing ¢ = (n — 1)/4 + 1 in our lower bound, we get a size of £2(2(*~1)/4) motifs
in the bases. On the average ¢ = O(log| 5 n) by extending the argument after
Theorem 3. We show a further property for the basis of tiling motifs in Section 4,
giving an upper bound of (’;:i) on its size with a simple proof. Since we can
find an algorithm taking time proportional to the square of that size, we can
conclude that a polynomial-time algorithm for finding the basis of tiling motifs
exists in the worst case if and only if the quorum ¢ satisfies either ¢ = O(1) or
g =n — O(1) (the latter condition is hardly meaningful in practice).

n_We now show the existence of a family of strings for which there are at least
(?) tiling motifs for a quorum g¢. Since a tiling motif is also irredundant,
this gives a lower bound for the irredundant motifs to be combined with that in
Section 2 (the latter lower bound still gives £2(n?) for ¢ > 2). The strings are this
time t;, = A¥TA* (k > 5) themselves, without the left extension used in the bound
of Section 2. The proof proceeds by exhibiting (~1) motifs that are maximal
and have each exactly ¢ occurrences, from whence it follows immediately that

they are tiling (indeed the remark made after Definition 4 holds for any ¢ > 2).

Proposition 3. For2 < ¢<kandl < p < k—q+1, any motif AP o {A,0}F~P~1 o AP
with ezactly q don’t cares is tiling (and so irredundant) in ty.

Theorem 4. String ty has (?;1) = Q(Qiq (Z:ll)) tiling (and irredundant) mo-
tifs, where n = |ti| and k > 2.

We now prove that (” i) is, instead, an upper bound for the size of a basis

of tiling motifs for a strlng s and quorum ¢q > 2. Let us denote as before such
a basis by B. To prove the upper bound, we use again the notion of a merge
except that it involves ¢ strings. The operator & between the elements of X' is

the same as before. Let k be an array of ¢ — 1 positive values ki, ..., k;—1 with
1<ki<kj<n-—1lforall<i<j<g—1 A mergeisthe (non empty)
pattern that results from applying the operator @ to the string s and to s itself
q — 1 times, at each time shifted by k; positions to the right for 1 <i <g¢q —1.

Lemma 6. If Merge,, exists for quorum q, it must be a maximal motif.

Lemma 7. For each tiling motif x in the basis B with quorum q, there is at
least one k for which Merge;, = x.

Theorem 5. Given a string s of length n and a quorum q, let M be the set of

Merge,,, for any of the (Z:ll) possible choices of k for which Merge,, exists. The

basis B of tiling motifs satisfies B C M, and therefore |B| < (Z:ll)

The tiling motifs in our basis appear in s for a total of q(’;:i) times at most.
A generalization of the algorithm given in Section 3 gives a pseudo-polynomial

time complexity of O (¢* (Z:ll)

References

1. A. Apostolico. Pattern discovery and the algorithmics of surprise. In NATO ASTI on
Artificial Intelligence and Heuristic Methods for Bioinformatics. IOS press, 2003.

2. A. Apostolico. Personal communication, May 2003.

3. A. Apostolico and L. Parida. Incremental paradigms of motif discovery. unpub-
lished, 2002.

4. A. Apostolico and L. Parida. Compression and the wheel of fortune. In IEEE Data
Compression Conference (DCC’2008), pages 143-152, 2003.

5. M. Fischer and M. Paterson. String matching and other products. In R. Karp,
editor, SIAM AMS Complexity of Computation, pages 113-125, 1974.

6. H. Mannila. Local and global methods in data mining: basic techniques and open
problems. In P. et al., editor, International Colloquium on Automata, Languages,
and Programming, volume 2380 of LNCS, pages 57-68. Springer-Verlag, 2002.

7. L. Parida, I. Rigoutsos, A. Floratos, D. Platt, and Y. Gao. Pattern Discovery on
Character Sets and Real-valued Data: Linear Bound on Irredundant Motifs and Ef-
ficient Polynomial Time Algorithm. In STAM Symposium on Discrete Algorithms,
2000.

8. J. Pelfréne, S. Abdeddaim, and J. Alexandre. Un algorithme d’indexation de motifs
approchés. In Journée Ouvertes Biologie Informatique Mathématiques (JOBIM),
pages 263-264, 2002.

9. J. Pelfréne, S. Abdeddaim, and J. Alexandre. Extracting approximare patterns.
In Combinatorial Pattern Matching, 2003. to appear.

10. N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot. A basis for repeated motifs
in pattern discovery and text mining. Technical Report IGM 2002-10, Institut
Gaspard-Monge, University of Marne-la-Vallée, July 2002.

11. N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot. Bases of motifs for generat-
ing repeated patterns with don’t cares. Technical Report TR-03-02, Dipartimento
di Informatica, University of Pisa, January 2003.

10

