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A Basis of Tiling Motifs for GeneratingRepeated Patterns and its Complexity forHigher Quorum?N. Pisanti1, M. Cro
hemore2;3 ??, R. Grossi1, and M.-F. Sagot4;3 ? ? ?1 Dipartimento di Informati
a, Universit�a di Pisa, Italyfpisanti,grossig�di.unipi.it2 Institut Gaspard-Monge, University of Marne-la-Vall�ee, Fran
eMaxime.Cro
hemore�univ-mlv.fr3 INRIA Rhône Alpes, Fran
e Marie-Fran
e.Sagot�inria.fr4 King's College London, UKAbstra
t. We investigate the problem of determining the basis of motifs(a form of repeated patterns with don't 
ares) in an input string. We givenew upper and lower bounds on the problem, introdu
ing a new notion ofbasis that is provably smaller than (and 
ontained in) previously de�nedones. Our basis 
an be 
omputed in less time and spa
e, and is still able togenerate the same set of motifs. We also prove that the number of motifsin all these bases grows exponentially with the quorum, the minimalnumber of times a motif must appear. We show that a polynomial-timealgorithm exists only for �xed quorum.1 Introdu
tionIdentifying repeated patterns in strings is a 
omputationally-demanding taskon the large data sets available in 
omputational biology, data mining, textualdo
ument pro
essing, system se
urity, and other areas; for instan
e, see [6℄. We
onsider patterns with don't 
ares in a given string s of n symbols drawn over analphabet �. The don't 
are is a spe
ial symbol `Æ' mat
hing any symbol of �;for example, pattern TÆE mat
hes both TTE and TEE inside s = COMMITTEE (notethat a pattern 
annot have a don't 
are at the beginning or at the end, as thisis not 
onsidered informative). Contrarily to string mat
hing with don't 
ares,the pattern TÆE is not given in advan
e for sear
hing s. Instead, the patternswith don't 
ares appearing in s are unknown and, as su
h, have to be dis
overedand extra
ted by pro
essing s eÆ
iently. In our example, TÆE and MÆÆTÆE areamong the patterns appearing repeated in COMMITTEE. In this paper we fo
uson �nding the patterns 
alled motifs, whi
h appear at least q times in s for an? The full version of this paper is available in [11℄ as te
hni
al report TR-03-02.?? Supported by CNRS a
tion AlBio, NATO S
. Prog. PST.CLG.977017, and Well
omeTrust Foundation.? ? ? Supported by CNRS-INRIA-INRA-INSERM a
tion BioInformatique and Well-
ome Trust Foundation. 1



input parameter q � 2 
alled the quorum. Di�erent formulations in the knownliterature address the problem of dete
ting motifs in several 
ontexts, revealingits algorithmi
 relevan
e. Unfortunately, the 
omplexity of the algorithms formotif dis
overy may easily be
ome exponential due to the explosive growth ofthe motifs in strings, su
h as in the arti�
ial string A � � �ATA � � �A (same numberof As on both sides of T) generating many motifs with As intermixed with don't
ares, and in other \real" strings over a small alphabet o

urring in pra
ti
e,e.g., DNA sequen
es. Some heuristi
s try to alleviate this drawba
k by redu
ingthe number of interesting motifs to make feasible any further pro
essing of them,but they 
annot guarantee sub-exponential bounds in the worst 
ase [7℄.In this paper, we explore the algorithmi
 ideas behind motif dis
overy whilegetting some insight into their 
ombinatorial 
omplexity and their 
onne
tionswith string algorithmi
s. Given a motif x for a string s of length n, we denote theset of positions on s at whi
h the o

urren
es of x start by Lx� [0: :n�1℄, wherejLxj� q holds for the given quorum q�2. We single out the maximal motifs x,informally 
hara
terized as satisfying jLxj 6= jLyj for any other motif y morespe
i�
 than x, i.e., obtained from x by adding don't 
ares and alphabet lettersor by repla
ing one or more don't 
ares with alphabet letters. In other words,x appears in y but x o

urs in s more times than y does, whi
h is 
onsideredinformative for dis
overing the repetitions in s. For example, MÆÆTÆE is maximalin COMMITTEE for q = 2 while MÆÆÆÆE and TÆE are not maximal sin
e MÆÆTÆEis more spe
i�
 with the same number of o

urren
es. Maximality provides anintuitive notion of relevan
e as ea
h maximal motif x indire
tly represents allnon-maximal motifs z that are less spe
i�
 than it. Unfortunately, this prop-erty does not bound signi�
antly the number of maximal motifs. For example,A � � �ATA � � �A 
ontains an exponential number of them for q = 2 (see Se
tion 2).A further requirement on the maximal motifs is the notion of irredundant motifs([7℄). A maximal motif x is redundant if there exist maximal motifs y1; : : : ; yk 6= xsu
h that the set of o

urren
es of x satis�es Lx = Ly1 [ : : : [ Lyk ; it is irre-dundant otherwise. The set of o

urren
es of a redundant motif 
an be 
overedby other sets of o

urren
es while that of an irredundant motif is not the unionof the sets of o

urren
es of other maximal motifs. The basis of the irredundantmotifs of string s with quorum q is the set of irredundant motifs in s. Informallyspeaking, a basis 
an generate all the motifs by simple rules and 
an be ex-pressed mathemati
ally in the algebrai
 sense of the term. A

ording to Paridaet al. [7℄, what makes interesting the irredundant motifs is that their number isalways upper bounded by 3n independently of any 
hosen q � 2; moreover, they
an be found in O(n3 logn) time by this bound, notwithstanding the possiblyexponential number of maximal motifs that are 
andidates for the basis.Our results: We study the 
omplexity of �nding the basis of motifs withnovel algorithms to represent all motifs su

in
tly. We show that, in the worst
ase, there is an in�nite family of strings for whi
h the basis 
ontains 
(n2)irredundant motifs for q = 2 (see Se
tion 2). This 
ontradi
ts the upper boundof 3n for any q � 2 given in [7℄ as shown (in the Appendix of [11℄ we give a
ounterexample to its 
harging s
heme, whi
h 
ru
ially relies on a lemma that2



is not valid). As a result, the bound of O(n3 logn) time in [7℄ for any q doesnot hold sin
e it relies on the upper bound of 3n, thus leaving open the problemof dis
overing a basis in polynomial time for any q. We also introdu
e a newde�nition 
alled basis of the tiling motifs of string s with quorum q. The 
onditionfor tiling motifs is stronger than that of irredundan
y. A maximal motif x is tiledif there exist maximal motifs y1; : : : ; yk 6= x su
h that the set of o

urren
esof x satis�es Lx = (Ly1 + d1) [ : : : [ (Lyk + dk) for some integers d1; : : : ; dk; itis tiling otherwise. Note that the motifs y1; : : : ; yk are not ne
essarily distin
tand the union of their o

urren
es is taken after displa
ing them by d1; : : : ; dk,respe
tively. Sin
e a redundant motif is also tiled with d1 = � � � = dk = 0, a tilingmotif is surely irredundant. Hen
e the basis for the tiling motifs is in
luded inthe basis for irredundant motifs while both of them are able to generate the sameset of motifs with me
hani
al rules. Although the de�nition of tiling motifs isderived from that of irredundant ones, the di�eren
e is mu
h more substantialthan it may appear. The basis of tiling motifs is symmetri
, namely, the tilingmotifs of es (the string s in reversed order) are the reversed tiling motifs of swhereas the irredundant motifs for strings s and es are apparently unrelated,unlike the entropy and other properties related to the repetitions in strings.Moreover, the number of tiling motifs 
an be provably upper bounded in theworst 
ase by n�1 for q = 2 and they o

ur in s for a total of 2n times at most,whereas we demonstrate that there 
an be 
(n2) irredundant motifs. We givemore details in Se
tion 3, and we also dis
uss in the full paper [11℄ how to �ndthe longest motifs with a limited number of don't 
ares. Finally, in Se
tion 4,we reveal an exponential dependen
y on the quorum q for the number of motifs,both for the basis of irredundant motifs and for the basis of tiling motifs, whi
hwas unnoti
ed in previous work. We prove that there is an in�nite family ofstrings for whi
h the basis 
ontains at least �n�12 �1q�1 � = 
� 12q �n�1q�1�� tiling (hen
e,irredundant) motifs. Hen
e, no worst-
ase polynomial-time algorithm 
an existfor �nding the basis with arbitrary values of q � 2. Nonetheless, we 
an provethat the tiling motifs in our basis are less than �n�1q�1� in number and o

urin s a total of q�n�1q�1� times at most. For them there exists a pseudo-polynomialalgorithm taking O �q2�n�1q�1�2� time, whi
h shows that the tiling motifs 
an befound in polynomial time if and only if the quorum q satis�es either q = O(1) orq = n �O(1) (the latter is hardly meaningful in pra
ti
e). Experimenting withsmall strings exhibits a non-
onstant growth of the basis for in
reasing valuesof q up to O(log n) but larger values of q are possible in the worst 
ase. Moreexperimental analysis of the implementation 
an be found in [11℄. Proofs of allresults 
an also be found in [11℄.Related work: As previously mentioned, the seminal idea of basis was intro-du
ed by Parida et al. [7℄. The unpublished manus
ript [3℄ adopted an identi
alde�nition of irredundant motifs in the �rst part. Very re
ently, Apostoli
o [2℄observed that the O(n3)-time algorithm proposed in the se
ond part of [3℄ 
on-tains an impli
it de�nition di�erent from that of the �rst part. Namely, in aredundant motif x, the list Lx 
an be \dedu
ed" from the union of the oth-ers (see also [1℄). Note that no formal spe
i�
ation of this alternative de�nition3



is however expli
ited. Appli
ations of the basis of repeated patterns (with justq = 2) to data 
ompression are des
ribed in [4℄. Tiling motifs 
an be employedin this 
ontext be
ause of their linear number of o

urren
es in total.The idea of the basis was also explored by Pelfrêne et al. [8, 9℄, who introdu
edthe notion of primitive motifs. They gave two alternative de�nitions 
laimed tobe equivalent, one de�nition reported in the two-page abstra
t a

ompanyingthe poster and the other in the poster itself. The basis de�ned in the posteris not symmetri
 and is a superset of the one presented in this paper. On theother hand, the de�nition of primitive motifs given in the two-page abstra
t issomehow equivalent to that given in this paper and introdu
ed independently inour te
hni
al report [10℄. Be
ause of the lower bounds proved in this paper, thealgorithm in [9℄ is exponential with respe
t to q.The problem of �nding a polynomial-size basis for higher values of q remainsunsolved.2 Irredundant Motifs: The Basis and its Size for q = 2We 
onsider strings that are �nite sequen
es of letters drawn from an alphabet�, whose elements are also 
alled solid 
hara
ters. We introdu
e an additionalletter (denoted by Æ and 
alled don't 
are) that does not belong to � and mat
hesany letter. The length of a string t with don't 
ares, denoted by jtj, is the numberof letters in t, and t[i℄ indi
ates the letter at position i in t for 0 � i � jtj � 1(hen
e, t = t[0℄t[1℄ � � � t[jtj � 1℄ also noted t[0 : : jtj � 1℄). A pattern is a string in�[�(�[fÆg)��, that is, it starts and ends with a solid 
hara
ter. The patterno

urren
es are related to the spe
i�
ity relation �. For individual 
hara
ters�1; �2 2 � [ fÆg, we have �1 � �2 if �1 = Æ or �1 = �2. Relation � extendsto strings in (� [ fÆg)� under the 
onvention that ea
h string t is impli
itlysurrounded by don't 
ares, namely, letter t[j℄ is Æ when j < 0 or j � jtj. In thisway, v is more spe
i�
 than u (shortly, u � v) if u[j℄ � v[j℄ for any integer j.We also say that u o

urs at position ` in v if u[j℄ � v[` + j℄, for 0 � j �juj � 1. Equivalently, we say that u mat
hes v[`℄ � � � v[`+ juj � 1℄. For the inputstring s 2 �� with n = jsj, we 
onsider the o

urren
es of arbitrary patterns xin s. The lo
ation list Lx � [0 : : n� 1℄ denotes the set of all the positions on sat whi
h x o

urs. For example, the lo
ation list of x = TÆE in s = COMMITTEEis Lx = f5; 6g.De�nition 1 (motif). Given a parameter q � 2 
alled quorum, we say thatpattern x is a motif a

ording to s and q if jLxj � q.Given any lo
ation list Lx and any integer d, we adopt the notation Lx + d =f`+ d j ` 2 Lxg for indi
ating the o

urren
es in Lx \displa
ed" by the o�set d.De�nition 2 (maximality). A motif x is maximal if any other motif y su
hthat x o

urs in y satis�es Ly 6= Lx + d for some integer d.Making a maximal motif x more spe
i�
 (thus obtaining y) redu
es the numberof its o

urren
es in s. De�nition 2 is equivalent to that in [7℄ stating that x is4



maximal if there exist no other motif y and no integer d � 0 verifying Lx = Ly+d,su
h that y[j + d℄ � x[j℄ for 0 � j � jxj � 1.De�nition 3 (irredundant motif). A maximal motif x is irredundant if, forany maximal motifs y1, y2, . . . , yk su
h that Lx = [ki=1Lyi , motif x must be oneof the yi's. Vi
e versa, if all the yi's are di�erent from x, pattern x is said to be
overed by motifs yi, y2, . . . , yk.The basis of irredundant motifs for string s is the set of all irredundant motifsin s, useful as a generator for all maximal motifs in s (see [7℄). The size of thebasis is the number of irredundant motifs 
ontained in it. We now show theexisten
e of an in�nite family of strings sk (k � 5) for whi
h there are 
(n2)irredundant motifs in the basis already for quorum q = 2, where n = jskj. In thisway, we disprove the upper bound of 3n whi
h is based on an in
orre
t lemma(see also [11℄). Ea
h string sk is the suitable extension of tk = AkTAk, where Akdenotes the letter A repeated k times (our argument works also for zkwzk, wherejzj = jwj and z is a string not sharing any 
ommon 
hara
ter with w). String tkhas an exponential number of maximal motifs, in
luding those having the formAfA; Ægk�2A with exa
tly two don't 
ares. To see why, ea
h su
h motif x o

ursfour times in tk: spe
i�
ally, two o

urren
es of x mat
h the �rst and the last kletters in tk while ea
h distin
t don't 
are in x mat
hing the letter T in tk
ontributes to one of the two remaining o

urren
es. Extending x or repla
ing adon't 
are with a solid 
hara
ter redu
es the number of these o

urren
es, so x ismaximal. The idea of our proof is to obtain strings sk by pre�xing tk with O(jtk j)symbols to transform the above maximal motifs x into irredundant motifs for sk.Sin
e there are �(k2) of them, and n = jskj = O(jtk j) = O(k), this leads to theresult. In order to de�ne sk on the alphabet fA; T; u; v; w; x; y; z; a1; a2; : : : ; ak�2g,we introdu
e a few notations. Let eu be the reversal of u, and let evk; odk; uk; vkbeif k is even : evk = a2a4 � � �ak�2; if k is odd : evk = a2a4 � � �ak�3;odk = a1a3 � � �ak�3; odk = a1a3 � � �ak�2;uk = evk ugevk vw evk; uk = evk uvgevk wx evk;vk = odk xygodk z odk; vk = odk ygodk z odk:The strings sk are then de�ned by sk = ukvktk for k � 5.Lemma 1. The length of ukvk is 3k, and that of sk is n = 5k + 1.Proposition 1. For 1 � p � k� 2, any motif of the form Ap Æ Ak�p�1 with onedon't 
are 
annot be maximal in sk. Also motif Ak 
annot be maximal in sk.Proposition 2. Ea
h motif of the form AfA; Ægk�2A with exa
tly two don't 
aresis irredundant in sk.Theorem 1. The basis for string sk 
ontains 
(n2) irredundant motifs, wheren = jskj and k � 5. 5



3 Tiling Motifs: The Basis and its PropertiesIn this se
tion we introdu
e a natural notion of basis for generating all maximalmotifs o

urring in a string s of length n. Analogously to what was done formaximal motifs in De�nition 2, we introdu
e displa
ements while de�ning tilingmotifs for this purpose.De�nition 4 (tiling motif). A maximal motif x is tiling if, for any maxi-mal motifs y1, y2, . . . , yk and for any integers d1, d2, . . . , dk su
h that Lx =[ki=1(Lyi + di), motif x must be one of the yi's. Vi
e versa, if all the yi's aredi�erent from x, pattern x is said to be tiled by motifs y1, y2, . . . , yk.The notion of tiling is more sele
tive than that of irredundan
y in general. Forexample, in the string s = FABCXFADCYZEADCEADC, motif x1 = AÆC is irredundantbut it is tiled by x2 = FAÆC and x3 = ADC a

ording to De�nition 4 sin
e itslo
ation list, Lx1 = f1; 6; 12; 16g, 
an be obtained from the union of Lx2 = f0; 5gand Lx3 = f6; 12; 16g with respe
tive displa
ements d2 = 1 and d3 = 0. A fairlydire
t 
onsequen
e of De�nition 4 is that if x is tiled by y1, y2, . . . , yk withasso
iated displa
ements d1, d2, . . . , dk, then x o

urs at position di in ea
h yifor 1 � i � k (hen
e di � 0). Note that the yi's in De�nition 4 are not ne
essarilydistin
t and that k > 1 for tiled motifs (it follows from the fa
t that Lx = Ly1+d1with x 6= y1 would 
ontradi
t the maximality of both x and y1). As a result, amaximal motif x o

urring exa
tly q times in s is tiling as it 
annot be tiled byany other motifs (we need at least two of them, whi
h is impossible). The basis oftiling motifs is the 
omplete set of all tiling motifs for s, and the size of the basis isthe number of these motifs. For example, the basis B for FABCXFADCYZEADCEADC
ontains FAÆC, EADC, and ADC as tiling motifs. Although De�nition 4 is derivedfrom that of irredundant motifs given in De�nition 3, the di�eren
e is mu
hmore substantial than it may appear. The basis of tiling motifs relies on the fa
tthat tiling motifs are 
onsidered as invariant by displa
ement as for maximality.Consequently, our de�nition of basis is symmetri
, that is, ea
h tiling motif in thebasis for the reverse string es is the reverse of a tiling motif in the basis of s. Thisfollows from the symmetry in De�nition 4 and from the fa
t that maximality isalso symmetri
 in De�nition 2. It is a sine qua non 
ondition for having a notionof basis invariant by the left-to-right or right-to-left order of the symbols in s(like the entropy of s), while this property does not hold for the irredundantmotifs. The basis of tiling motifs has further interesting properties. Later in thisse
tion, we show that our basis is linear for quorum q = 2 (i.e., its size is atmost n�1) and that the total size of the lo
ation lists for the tiling motifs is lessthan 2n, des
ribing how to �nd the basis in O(n2 logn log j�j) time. In the fullpaper [11℄, we dis
uss some appli
ations su
h as generating all maximal motifswith the basis and �nding motifs with a 
onstraint on the number of don't 
ares.Given a string s of length n, let B denote its basis of tiling motifs for quo-rum q = 2. Although the number of maximal motifs may be exponential andthe basis of irredundant motifs may be at least quadrati
 (see Se
tion 2), weshow that the size of B is always less than n. For this, we introdu
e an oper-ator � between the symbols of � to de�ne merges, whi
h are at the heart of6



the properties on B. Given two letters �1; �2 2 � with �1 6= �2, the operatorsatis�es �1 � �2 = Æ and �1 � �1 = �1. The operator applies to any pair ofstrings x; y 2 ��, so that u = x�y satis�es u[j℄ = x[j℄�y[j℄ for all integers j. Amerge is the motif resulting from applying the operator � to s and to its suÆxat position k.De�nition 5 (Merge). For 1 � k � n�1, let sk be the string whose 
hara
terat position i is sk[i℄ = s[i℄ � s[i + k℄. If sk 
ontains at least one solid 
hara
-ter, Mergek denotes the motif obtained by removing all the leading and trailingdon't 
ares in sk (i.e., those appearing before the leftmost solid 
hara
ter andafter the rightmost solid 
hara
ter).For example, FABCXFADCYZEADCEADChasMerge4 = EADC,Merge5 = FAÆC,Merge6 =Merge10 = ADC and Merge11 = Merge15 = AÆC. The latter is the only merge thatis not a tiling motif.Lemma 2. If Mergek exists, it must be a maximal motif.Lemma 3. For ea
h tiling motif x in the basis B, there is at least one k forwhi
h Mergek = x.Theorem 2. Given a string s of length n and the quorum q = 2, let M be theset of Mergek, for 1 � k � n� 1 su
h that Mergek exists. The basis B of tilingmotifs for s satis�es B �M, and therefore the size of B is at most n� 1.A simple 
onsequen
e of Theorem 2 implies a tight bound on the number oftiling motifs for periodi
 strings. If s = we for a string w repeated e > 1 times,then s has at most jwj tiling motifs.Corollary 1. The number of tiling motifs for s is � p, the smallest period of s.The bound in Corollary 1 is not valid for irredundant motifs. String s = ATATATATAhas period p = 2 and only one tiling motif ATATATA, while its irredundant motifsare A, ATA, ATATA and ATATATA.We des
ribe how to 
ompute the basis B for string s when q = 2. A brute-for
e algorithm generating �rst all maximal motifs of s takes exponential timein the worst 
ase. Theorem 2 plays a 
ru
ial role in that we �rst 
ompute themotifs in M and then dis
ard those being tiled. Sin
e B �M, what remains isexa
tly B. To appre
iate this approa
h, it is worth noting that we are left withthe problem of sele
ting B from n�1 maximal motifs inM at most, rather thansele
ting B among all the maximal motifs in s, whi
h may be exponential innumber. Our simple algorithm takes O(n2 logn log j�j) time and is faster thanprevious (and more 
ompli
ated) methods.Step 1. Compute the multiset M0 of merges. Letting sk[i℄ be the leftmost solid
hara
ter of string sk in De�nition 5, we de�ne o

x = fi; i + kg to be thepositions of the two o

urren
es of x whose superposition generates x = Mergek.For k = 1; 2; : : : ; n�1, we 
ompute string sk in O(n�k) time. If sk 
ontains somesolid 
hara
ters, we 
ompute x = Mergek and o

x in the same time 
omplexity.As a result, we 
ompute the multisetM0 of merges in O(n2) time. Ea
h merge xin M0 is identi�ed by a triplet hi; i+ k; jxji, from whi
h we 
an re
over the jthsymbol of x in 
onstant time by simple arithmeti
 operations and 
omparisons.7



Step 2. Transform the multiset M0 into the set M of merges. Sin
e there 
an betwo or more merges in M0 that are identi
al and 
orrespond to the same mergeinM, we put together all identi
al merges inM0 by performing radix sorting onthe triplets representing them. The total 
ost of this step is dominated by radixsorting, giving O(n2 log j�j) time. As byprodu
t, we produ
e the temporarylo
ation list Tx = Sx0=x :x02M0 o

x0 for ea
h distin
t x 2 M thus obtained.Lemma 4. Ea
h motif x 2 B satis�es Tx = Lx.Step 3. Sele
tM� �M, whereM� = fx 2M : Tx = Lxg. In order to buildM�,we employ the Fis
her-Paterson algorithm based on 
onvolution [5℄ for stringmat
hing with don't 
ares to 
ompute the whole list of o

urren
es Lx for ea
hmerge x 2 M. Its 
ost is O((jxj + n) logn log j�j) time for ea
h merge x. Sin
ejxj < n and there are at most n� 1 motifs x 2 M, we obtain O(n2 logn log j�j)time to 
onstru
t all lists Lx. We 
an 
omputeM� by dis
arding the merges x 2M su
h that Tx 6= Lx in additional O(n2) time.Lemma 5. The set M� satisfy the 
onditions B �M� and Px2M� jLxj < 2n:The property of M� in Lemma 5 is 
ru
ial in that Px2M jLxj = �(n2) whenmany lists 
ontain �(n) entries. For example, s = An has n� 1 distin
t merges,ea
h of the form x = Ai for 1 � i � n� 1, and so jLxj = n� i+ 1. This wouldbe a sharp drawba
k in Step 4 when removing tiled motifs as it may turn intoan �(n3) algorithm. Using M� instead, we are guaranteed that Px2M� jLxj =O(n); we may still have some tiled motifs in M�, but their total number ofo

urren
es is O(n).Step 4. Dis
ard the tiled motifs in M�. We 
an now 
he
k for tiling motifsin O(n2) time. Given two distin
t motifs x; y 2 M�, we want to test whetherLx + d � Ly for some integer d and, in that 
ase, we want to mark the entriesin Ly that are also in Lx+ d. At the end of this task, the lists having all entriesmarked are tiled (see De�nition 4). By removing their 
orresponding motifs fromM�, we eventually obtain the basis B by Lemma 5. Sin
e the meaningful valuesof d are equal to the individual entries of Ly, we have only jLy j possible values to
he
k. For a given value of d, we avoid to merge Lx and Ly in O(jLxj+ jLyj) timeto perform the test, as it would 
ontribute to a total of �(n3) time. Instead, weexploit the fa
t that ea
h list has values ranging from 1 to n, and use a 
oupleof bit-ve
tors of size n to perform the above 
he
k in O(jLxj � jLyj) time for allvalues of d. This gives O(PyPx jLxj � jLyj) = O(Py jLyj �Px jLxj) = O(n2)by Lemma 5. We therefore detail how to perform the above 
he
k with Lx andLy in O(jLxj � jLy j) time. We use two bit-ve
tors V1 and V2 initially set to allzeros. Given y 2 M�, we set V1[i℄ = 1 if i 2 Ly. For ea
h x 2 M� � fyg andfor ea
h d 2 Ly, we then perform the following test. If all j 2 Lx + d satisfyV1[j℄ = 1, we set V2[j℄ = 1 for all su
h j. Otherwise, we take the next value of d,or the next motif if there are no more values of d, and we repeat the test. Afterexamining all x 2M� �fyg, we 
he
k whether V1[i℄ = V2[i℄ for all i 2 Ly. If so,8



y is tiled as its list is 
overed by possibly shifted lo
ation lists of other motifs.We then reset the ones in both ve
tors in O(jLy j) time.Summing up Steps 1{4, the dominant 
ost is that of Step 3, leading to thefollowing result.Theorem 3. Given an input string s of length n over the alphabet �, the basisof tiling motifs with quorum q = 2 
an be 
omputed in O(n2 logn log j�j) time.The total number of motifs in the basis is less than n, and the total number oftheir o

urren
es in s is less than 2n.4 q > 2: Pseudo-Polynomial Bases for Higher QuorumWe now dis
uss the general 
ase of quorum q � 2 for �nding the basis of a stringof length n. Di�erently from previous work 
laiming a polynomial-time algorithmfor any arbitrary value of q, we show in Se
tion 4 that no su
h polynomial-timealgorithm 
an exist in the worst 
ase, both for the basis of irredundant motifsand for the basis of tiling motifs. The size of these bases provably dependsexponentially on suitable values of q � 2, i.e., we give a lower bound of 
�n�12 �1q�1 �.In pra
ti
e, this size has an exponential growth for in
reasing values of q upto O(log n), but larger values of q are theoreti
ally possible in the worst 
ase.Fixing q = (n� 1)=4+1 in our lower bound, we get a size of 
(2(n�1)=4) motifsin the bases. On the average q = O(logj�j n) by extending the argument afterTheorem 3. We show a further property for the basis of tiling motifs in Se
tion 4,giving an upper bound of �n�1q�1� on its size with a simple proof. Sin
e we 
an�nd an algorithm taking time proportional to the square of that size, we 
an
on
lude that a polynomial-time algorithm for �nding the basis of tiling motifsexists in the worst 
ase if and only if the quorum q satis�es either q = O(1) orq = n�O(1) (the latter 
ondition is hardly meaningful in pra
ti
e).We now show the existen
e of a family of strings for whi
h there are at least�n�12 �1q�1 � tiling motifs for a quorum q. Sin
e a tiling motif is also irredundant,this gives a lower bound for the irredundant motifs to be 
ombined with that inSe
tion 2 (the latter lower bound still gives 
(n2) for q � 2). The strings are thistime tk = AkTAk (k � 5) themselves, without the left extension used in the boundof Se
tion 2. The proof pro
eeds by exhibiting �k�1q�1� motifs that are maximaland have ea
h exa
tly q o

urren
es, from when
e it follows immediately thatthey are tiling (indeed the remark made after De�nition 4 holds for any q � 2).Proposition 3. For 2 � q � k and 1 � p � k�q+1, any motif Ap Æ fA; Ægk�p�1 ÆApwith exa
tly q don't 
ares is tiling (and so irredundant) in tk.Theorem 4. String tk has �n�12 �1q�1 � = 
� 12q �n�1q�1�� tiling (and irredundant) mo-tifs, where n = jtkj and k � 2.We now prove that �n�1q�1� is, instead, an upper bound for the size of a basisof tiling motifs for a string s and quorum q � 2. Let us denote as before su
ha basis by B. To prove the upper bound, we use again the notion of a mergeex
ept that it involves q strings. The operator � between the elements of � is9



the same as before. Let k be an array of q � 1 positive values k1; : : : ; kq�1 with1 � ki < kj � n � 1 for all 1 � i < j � q � 1. A merge is the (non empty)pattern that results from applying the operator � to the string s and to s itselfq � 1 times, at ea
h time shifted by ki positions to the right for 1 � i � q � 1.Lemma 6. If Mergek exists for quorum q, it must be a maximal motif.Lemma 7. For ea
h tiling motif x in the basis B with quorum q, there is atleast one k for whi
h Mergek = x.Theorem 5. Given a string s of length n and a quorum q, let M be the set ofMergek, for any of the �n�1q�1� possible 
hoi
es of k for whi
h Mergek exists. Thebasis B of tiling motifs satis�es B �M, and therefore jBj � �n�1q�1�.The tiling motifs in our basis appear in s for a total of q�n�1q�1� times at most.A generalization of the algorithm given in Se
tion 3 gives a pseudo-polynomialtime 
omplexity of O �q2�n�1q�1�2�.Referen
es1. A. Apostoli
o. Pattern dis
overy and the algorithmi
s of surprise. In NATO ASI onArti�
ial Intelligen
e and Heuristi
 Methods for Bioinformati
s. IOS press, 2003.2. A. Apostoli
o. Personal 
ommuni
ation, May 2003.3. A. Apostoli
o and L. Parida. In
remental paradigms of motif dis
overy. unpub-lished, 2002.4. A. Apostoli
o and L. Parida. Compression and the wheel of fortune. In IEEE DataCompression Conferen
e (DCC'2003), pages 143{152, 2003.5. M. Fis
her and M. Paterson. String mat
hing and other produ
ts. In R. Karp,editor, SIAM AMS Complexity of Computation, pages 113{125, 1974.6. H. Mannila. Lo
al and global methods in data mining: basi
 te
hniques and openproblems. In P. et al., editor, International Colloquium on Automata, Languages,and Programming, volume 2380 of LNCS, pages 57{68. Springer-Verlag, 2002.7. L. Parida, I. Rigoutsos, A. Floratos, D. Platt, and Y. Gao. Pattern Dis
overy onChara
ter Sets and Real-valued Data: Linear Bound on Irredundant Motifs and Ef-�
ient Polynomial Time Algorithm. In SIAM Symposium on Dis
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