N

N

Boyer-Moore strategy to efficient approximate string
matching

Nadia El Mabrouk, Maxime Crochemore

» To cite this version:

Nadia El Mabrouk, Maxime Crochemore. Boyer-Moore strategy to efficient approximate string match-
ing. Combinatorial Pattern Matching (Labuna Beach, California, 1996), 1996, France. pp.24-38.
hal-00620020

HAL Id: hal-00620020
https://hal.science/hal-00620020
Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00620020
https://hal.archives-ouvertes.fr

Boyer-Moore strategy to efficient approximate
string matching

Nadia El-Mabrouk and Maxime Crochemore

IGM, Université Marne la Vallée,
2 rue de la Butte Verte, 93166 Noisy Le Grand Cedex

Abstract. We propose a simple but efficient algorithm for searching all
occurrences of a pattern or a class of patterns (length m) in a text (length
n) with at most k mismatches.

This algorithm relies on the Shift-Add algorithm of Baeza-Yates and
Gonnet [6], which involves representing by a bit number the current
state of the search and uses the ability of programming languages to
handle bit words. State representation should not, therefore, exceeds the
word size w, that is, m([log,(k + 1)] + 1) < w. This algorithm consists
in a preprocessing step and a searching step. It is linear and performs 3n
operations during the searching step.

Notions of shift and character skip found in the Boyer-Moore (BM) [9]
approach, are introduced in this algorithm. Provided that the considered
alphabet is large enough (compared to the Pattern length), the average
number of operations performed by our algorithm during the searching
step becomes n(2 + £+4),

m—k

1 Introduction

Our purpose is approximate matching of a pattern or a class of patterns in a text,
all sequences of characters or classes of characters from a finite alphabet X'. Er-
rors considered here are mismatches. A class of patterns, is a set of patterns with
don’t care symbols, patterns containing the complementary of a character or any
other class of characters. Such a problem has a lot of applications, in particular
in molecular biology for predicting potential nuclear gene-coding sequences in
genomic DNA sequences. In fact, exact string matching is not sufficient since
gene-coding sequences are in general only partially and approximately specified.

Concerning exact string matching, algorithms based on the Boyer-Moore
(BM) [9, 13] approach are the fastest in practice. Such algorithms are linear
and may even have a sublinear behaviour, in the sense that every character in
the text need not be checked. In certain cases, text characters can be “skipped”
without missing a pattern occurrence. The larger the alphabet and the longer
the pattern, the faster the algorithm works.

Various algorithms have been developed for searching with & mismatches all
occurrences of a pattern (length m) in a text (length n), both defined over an
alphabet ¥ (length ¢). Running times have ranged from O(mn) for the naive
algorithm, to O(kn) [15, 11] or O(nlogm) [12]. The first two algorithms consist
in a preprocessing step and a searching step. Grossi and Luccio algorithm [12]

uses the suffix tree. Other algorithms have used the BM approach in approximate
string matching [4, 18]. Running times are O(kn) for Baeza-Yates and Gonnet [4]
and O(kn(—1 + £)) for Tarhio and Ukkonen [18]. The problem of approximate
matching of a class of patterns was also studied [2, 1, 5], especially in the case
of patterns with don’t care symbols [10, 17, 16, 3, 8, 14]. Fisher et Paterson
[10] developed an O(nlog clog® mloglogm) time algorithm based on the linear
product. Abrahamson [1] extended this method for generalized string pattern.
Pinter [17] has used the Aho and Corasick automaton [2] for searching a set
of patterns. Other algorithms have considered the problem of exact matching
of patterns with variable length don’t cares [16, 8, 14]. As for Akutsu [3], he
developed an O(vkm nlogc log? 7 loglog 7t) time algorithm for searching a
pattern with don’t cares in a text with don’t cares.

In 1992, several new algorithms for approximate string matching were pub-
lished [6, 19, 7]. They combine both speed and programming practicality, in
contrast with older results, most of which being mainly of theoretical interest.
Moreover, they are flexible enough to allow searching for a class of patterns.
These algorithms consist in a pattern preprocessing step and a searching step.
They are all based on the same approach, consisting in finding, at a given posi-
tion in the text, all approximate pattern prefixes ending at this position. Speed
is increased by representing the state of the search as a bit number [6, 19] or
an array [7], and by using the ability of programming languages to handle bit
words.

Nevertheless, these algorithms are based on a naive approach and process
each character of the text. Our goal is to speed up searching by using a BM
strategy and including notions of shift and character skip.

We have chosen to consider such an improvement in the case of the Shift-
Add algorithm of Baeza-Yates and Gonnet [6]. The main idea of Shift-Add is
to represent the state of the search as a bit number, and perform a few simple
arithmetic and logical operations. Provided that representations don’t exceed
the word size w, that is m([log,(k + 1)] + 1) < w, each search step does exactly
a shift, a test and an addition. Therefore, this algorithm runs in O(n) time and
the searching step does 3n operations. We developed an algorithm combining the
practicality of the Shift-Add method and the speed of the BM approach. Provided
that the considered alphabet is large enough compared to m, our new algorithm
k+4

performs on average n(2 + k) operations during the searching step.

The paper is organized as follows. Section 2 summarises the algorithm Shift-
Add, in the case of exact or approximate matching of a pattern or a class of
patterns. Section 3 develops the adaptation of the BM approach to the Shift-
Add method. An improvement of this last algorithm is given in Section 4. Finally,
section 5 gives experimental results obtained with both algorithms.

2 Shift-Add Algorithm

Let P = p; ---py, be apattern and ¢t = ¢ - - - t,, be a text over a finite alphabet Y.
The problem is to find in ¢ all occurrences of P with at most k£ mismatches (0 <

k < m). In other words, the distance between two patterns of the same length
will be defined as the number of their mismatching characters (the Hamming
distance). An equivalent problem is then to find in ¢ all substrings of length m
such that the Hamming distance between these substrings and P is at most k,
that is to find all j positions in the text such that, for 1 <4 <m, p; = tj_myi,
except for at most k indices.

The main idea is to represent the state of the search as a vector of size
m. Thus, S; denotes the state vector given a current position j in the text.
S; contains individual states of the search between each prefix of P and the
corresponding substring of ¢. Namely, for 1 < i < m, S;[i] is the number of
mismatches between p; ---p; and t;_;11 - - ;.

P matches at j if and only if S;[m] < k + 1.

When ¢;41 is read, the number of mismatches for each prefix of P needs to
be completed. Values of boolean expressions ¢;1; = p;, for 1 < i < m, can be
computed during a preprocessing step. For each character a in X', a vector T, of
size m is constructed such that :

Fori, 1<i<m, To[i]= (1) gtﬁejwlzge

(1)

(it is sufficient to construct the 7' arrays only for characters appearing in the
pattern).
Finally, Sjy1[i] = Sj[i — 1] + T3, [d].

In order to obtain S;4; from S; by simple arithmetic and logical operations,
vectors are considered as numbers and represented in base 2°, where b is the bit
number needed to represent each vector component.

m m
Thus, S; =Y S;[i207 D and T, = Y Tu[i]2 1",
i=1 i=1
Representations should not exceed the word size w, namely, mb < w.
It is easy now to verify that the transition from S; to S;41 amounts to no
more than a left shift (denoted by <<) of b bits and an addition :

Sjr1=(S; << b) + Ty, (2)

Initial state is Sp = 0. P matches at j if and only if S; < (k + 1)2(m~1®.

Possible values of the vector state components are 1,---,m. Thus, to rep-
resent each component, b = [log,(m + 1)] bits are required. However, since we
need only to compare the number of mismatches with k, it is enough to represent,
values from 1 to k. In this case, one more bit is needed for carrying over addi-
tions. The improved algorithm uses b = [log,(k + 1)] + 1 bits. At each position
J in the text, the overflow bits are recorded in an overflow state R; and the
overflow bits of S; are reset.

The Shift-Add algorithm works in O(n) time, and the searching step (disre-
garding the overflow state) performs 3n operations. In fact, at each step, that is
for each position j, three operations are performed: one shift, one addition and
one test to determine whether P matches at position j.

2.1 Exact string matching

In the case of exact string matching, it is only necessary to know whether a
given prefix of P matches exactly the considered substring of {. We define S; as
follows:

Forl<is<m, Sj[l] - {1 otherwisé m !

When ¢4 is read, we need to determine whether ¢;1; can extend any of the
partial matches. Thus, in order to have a match of p; ---p; at position j + 1,
both S;[i — 1] = 0 and t;4+1 = p; should be satisfied. Here, b = 1, and in formula
(2) the + symbol should be replaced by an OR operation. The algorithm based
on this new formula is called Shift-Or.

2.2 Extensions

Flexibility is one of the principal advantages of the Shift-Add method. It can
be easily adapted to a class of patterns. A class of patterns is a set of patterns,
defined by a string in which each position is a set of characters. A set of characters
is for example a subset of X' or the complementary of a subset of X'. A pattern
class defined by a string in which each position is either a single character or the
whole alphabet is called pattern with don’t care symbols.

To take into account such classes, only the definition of the T array needs
changing: for a position ¢ in P and a character a in X, T,[i] will contain 0
if a belongs to the set of characters corresponding to that position in P, and 1
otherwise. Thus, the T" array computed during the preprocessing step contains all
needed information about the pattern. Then, the searching step is not modified.

3 Boyer-Moore Approach to Shift-Add method

Here, we consider the problem of searching all occurrences of a pattern string
P =p; - ppinatext stringt =t - - - t, with at most £ mismatches, 1 < k < m.
The problem of exact string matching can be solved by substituting the OR
operation to the add operation. In the case of string matching with classes, the
T array is modified as in section (2.2).

For some position j, the state S; is a bit number (represented in base 2%)
defined as previously: each individual state S;[i], for 1 < i < m, contains the
number of mismatches between p; - - - p; and ¢j_y,41 - - - t;. Here, the introduction
of the overflow state is ignored.

3.1 Shift

Our goal is to avoid processing each character of the text, in other words, avoid
computing S; for every position j. It is easy to see that if for some prefix of
length 4 of P, S;[i] > k, then since Sj(m_s[m] > S;[i], P will not occur at
position j + (m — i). The following proposition can be deduced:

Proposition 1. For some position j in t, let | be the largest index i, 1 < i <
m—1, such that S;[i] < k, if such an index exists and 0 otherwise. Let d = m—1.
Then, the next position after j where P is likely to occur is jpest = j+d. In
other words, Sj[m] > k, for every j' such that j < j' < jpext-
d is the next shift and 1 < d <m — k.

Consider now the transition between S; and Sjiq.

The number of mismatches between the prefix p; - - - p; of P, for d+1 < i < m,
and the substring ¢;1g—;11 - tj4q of ¢, i.e. Sjyq[i], is the sum of the number of
mismatches between py ---p;—q and ¢4 q—iy1 - - - t;, i.e. S;j[i —d], and the number
of mismatches between p;_441---p; and 41 -~ tj4q.

The T array defined in (1) contains the information about the occurrence of
a given character a at a given position in the pattern.

Consequently:

d—1
Sili—dl+> Ty, li—-r]ifd<i<m
Py (3)

Sjrali] = i1
Z Tt 44, [t — r] otherwise
r=0

In order to obtain S;4 as a sum of numbers in base 2°, the next definition
is needed:

Definition 2. D denotes the | X| X m matrix such that, element D[a][m — r] for
each a € ¥ and 0 <r <m — 1, is denoted by D, ,_, and defined as follows:

m

Dom—r = Z To[i — 2090
i=r+1

Intuitively, Do m—, denotes positions in p; - --pm—, containing character a.
For a fixed r, Dg n—r is obtained by a left shift of T}, of rb positions.
Sj+a can then be represented as follows:

d—1

Siva=(S; << bd) + > Di\yrmr -
r=0

Initial values are Sop = 0 and d = m.

Practically, in order to determine the shift d, S; is shifted b bits at a time,
until the obtained number is below k2(m—1)? S; will have finally been shifted d
times to obtain S; << bd. Therefore, shifts are not grouped.

Example 1: Let ¥ = {a,b,¢,d}, P = abbac and k = 1.
The D matrix is :

a b c d
00000 10000 10000 10000
10000 01000 11000 11000
11000 00100 11100 11100
01100 10010 1111011110
1011011001 01111 11111

a s 0N =

Successive states and shifts when searching P in ¢ with at most £ mismatches:

Positions| 0 1 2 3 4 5 6 7 8 9 10 11
t a b d a b b a b b a c

S; 00000 24201 13201 03311
d 5 3 3 3

Remark: Introduction of shifts does not improve the complexity of the
Shift-Add algorithm . It only has the effect of grouping additions and
tests. However, shifts are essential to introduce the notion of characters
skip which will finally speed up the algorithm.

3.2 Character skip

The Boyer-Moore (BM) algorithm is an efficient exact string matching algorithm.
It is fast since it is possible, in certain conditions, to skip substrings of the text,
that is not process them, without loss of information. At each step, characters
of the text are processed from right to left.

In this section, we try to find conditions in which parts of the text can be
avoided without missing occurrences of the pattern.

Assume j is the last position scanned in the text and d is the next shift.
The substring of the text still to be scanned at this step of the search is then
tj+1 - -tjrq. This substring is processed from right to left, that is beginning with
tj+aq, and the processing stops when ¢;, is reached, or when the information for
all prefixes of P ending at position j + d is obtained.

Practically, in order to compute state S;;4, S; should first be shifted on the
left of bd bits. Let S;jy4,0 = S; << bd be the obtained number. Then, each of the
d characters tj;4—p41, with 1 < r < d, should be processed. Let S;;4,, be the
partial state obtained after processing characters ¢;44,---,tj4+d—r4+1 Of t. Then,
Sj+d,r = Sj+d7r71 + Dt]‘+d_7-+1,m77’+1 and we have Sj+d = Sj+d,d-

For given indexes r, 1 <r <d, and i, 1 <i < m:

(a) If Sjtq,r[¢] > k, then without processing the remaining characters t;j;q—r,- -, ¢j41,
we know that the prefix of length i of P does not occur at position j + d.

(b) If Sjtq,r[{] <k and no more comparisons have to be performed for the prefix
of length i of P, then this prefix matches at position j + d.

Therefore, instead of computing the number of mismatches with the corre-
sponding substring of ¢, for each prefix of P, i.e. the terminal state, the com-
putation stops at the first partial state giving enough information for further
processing. Let S} be this partial state. Differences between S; and S} are lo-
cated only in individual states exceeding k + 1.

Algorithm We suppose that the D matrix has been computed during a pre-
processing step. For a given position j in the text, an index r and a pre-
fix of length ¢ of P, State denotes the bit number consisting in individual
states of partial state S, for prefixes with length from 1 to i. More precisely,
State = S; r[i]---S;r[1]0---0.

Algorithm1: BM approach to approximate string matching
0. j:=m;d:=m; State := 0;

1. lim:= (k+1) << (m —1);

2. While j <n do

3. (0) i:=m;r:=0;

4. (1) If State > lim then

S. State := State << b;

6. i:=1i—1; Go to (1);

7. (2) Else :

8. (2.1) IfMIN(d,i) > r then

9. r:=r+1;

10. State := State + D¢, . m—r; Go to (1).
11. (2.2) Else:

12. (2.2.1) Ifi =m then

13. “Occurrence of P at position j”;
14. State := State << b;

15. i:=1—1; Go to (1);

16. (2.2.2) Else :

17. d:=m —1;

18. ji=7j+d;

19. End of While.

Proposition 3. Algorithm1 finds all occurrences of the pattern P in the text t
with at most k mismatches.

PROOF :

Step (1) of the algorithm corresponds to situation (a), that is when the
partial number S; ,[i] of mismatches found at this step of the search for the
prefix i of P, exceeds k+ 1. In this case, this prefix is ignored and the next prefix
i — 1 of P is considered.

Step (2.1) corresponds to the situation where there is not enough information
to stop comparing. In fact, for the prefix i of P, the number S; ,[i] of mismatches

obtained at this step of the search is less than k+ 1, but a number of comparisons
remain to be done for this prefix.

Step (2.2) corresponds to situation (b), that is when S, [i] < k + 1 for the
prefix ¢, no more comparisons have to be performed for this prefix. In this case,
if # = m, then position 7 matches and the search for the next shift goes on. If
i < m, then the next shift is equal to m — i. In fact, ¢ corresponds to the length
of the longest prefix of P matching the corresponding substring of ¢ e

Example 2: Let X, P, t and k be those defined in example 1.
Shifts are the same as for examplel and only state Sy is not the terminal state.

Positionsf 0 1 2 3 4 5 6 7 8 9 10 11
t a b d a b b a b b a ¢

S; 100000 23201 13201 03311
d 5 3 3 3

Complexity Our goal is to evaluate the average number of operations per-
formed by Algorithm1. Operations are of three kinds: shifts, additions and tests.

Recall that the scanning of ¢ by the Shift-Add algorithm needs 3n operations,
since each search step does exactly a shift, an addition and a test. It is not difficult
to see that our algorithm does the same number of shifts (n) and less additions.
In fact, one addition is performed for each character processed in the text, and
not all characters are examined. However, the number of tests increases, since
in addition to those considered by the Shift-Add algorithm, those which make
transitions between partial states should be considered.

Let t be a random text and |X| = ¢. The probability of a given character to
occur at a given position in the text is then %

Let X be a random variable denoting the length of the shift in Algorithm1
when searching pattern P in the random text ¢ with at most & mismatches. The
following lemma gives the average shift d,,, that is the expected value < X >
of the random variable X.

Lemma 1 Provided c is large enough compared to m, the average shift d,, ob-
tained by Algorithml exceeds d' , with:

m?’

s (ptrn (-3 7) ()

Now, we analyze the average number M}, of characters processed at a given
position j + d,, of the text, where j is the last position scanned in the text.
This number of characters is the length of the smallest substring of ¢ ending at
position j + d,, and mismatching all substrings of P which are not prefixes. The
maximum number of characters to be processed at this step is d,,.

From the last remarks, we can deduce the following lemma:

Lemma 2 Provided c is large enough compared to m, Mj ~ k + 2.
We are able now to evaluate the complexity of AlgorithmI.

Proposition 4. The average number O Py, of operations performed by Algorithm1
18 n(2 + Mgﬂ) When the considered alphabet is large enough, this number be-

3k+8
comes OP, ~ n(2 + m)

PROOF :

Let OP;,, 1 be the average number of operations performed by Algorithml
at each step of the search. Thus, OP;, = ﬁOPdmk.

At each step of the search, operations performed by Algorithm1 are: My ad-
ditions (one addition per character), d,, shifts (lines 5. and 14. of the algorithm)
and at most d,,, + 2 + 2Mj, tests. In fact, note first that condition 4 (State > lim,
step (1)) is true at most d,,, times and in that case we do not proceed to step (2).
Thus exactly d,, tests are performed in these cases. Moreover, in order to know
the next shift, we should go once through step (2.2.2) and then do tests 4. and
8. (test 12. could be avoided by changing the algorithm such that case i = m is
examined at a previous step). Finally, since there are exactly My additions, we
should go through line 10. exactly M}, times and at each time do tests 4. and 8.
The average number of tests is therefore Ty, 1 = dp, + 2 + 2Mj,.

80, 0P, & = 2y +2 + 3My and OP, = n (2 + 2:42),
The case of a large alphabet is deduced from lemmas 1 and 2 e

4 Improvement

In order to speed up the algorithm, it is obvious that a way should be found to
perform less tests. Our idea is to process a certain number of characters at each
step of the search, that is, do a certain number of additions before beginning
tests.

Algorithm?2

Let j be the current position in the text and d be the last shift obtained. We
denote by Cy the following number: Cy = min (d, k + 2).

Cy is the average number M}, (lemma 2) of characters processed at each step
by Algorithm1, provided this number does not exceed the maximum number of
characters to be processed at this step, that is d.

Thus, before going through steps (1)-(2), our improved algorithm (Algo-
rithm2) will process first the Cj characters t;_c,+1 - - - t; and compute the partial
state Sj c,, that is do Cy additions.

Algorithm?2 is hence obtained by adding a preliminary step (0’) before step
(0) in AlgorithmI .

Ci—1
(0°) State :=State + » Dy, m—i ;
=0
r:=r+ Cg;

Obviously, Algorithm2 finds the same results, the same shifts and so the same
average shift d,,, that AlgorithmI.

Proposition 5. Provided the alphabet is large enough, the average number of
operations performed by Algorithm2 is OP, ~ n (2 + %)

PROOF :
Our goal is to evaluate the average number OF;,, ;. of operations performed
by Algorithm2 at any search step.

First, M; characters are processed and M} additions are performed. Two
cases are then encountered:

1. The partial state holds enough information, so no more characters are pro-
cessed at this step. In this case, d,, + 2 tests and d,,, shifts are performed.

2. The partial state does not hold enough information. In this case, the max-
imum number of characters still to be performed is d,,, — M. The number
of shifts is the same as that of the previous state and there are 2(d,, — My)
more tests.

Let Py be the probability of the second case. Then, OFy, = My + 2d,, +
2+ Py (3(dp — My))

and

My + 2 Py (d,, — M,

dm

When the considered alphabet is large enough, d,,, ~ m —k (Lemmal), M;, ~
k + 2 (Lemma2) and we can prove that P, ~ 0. Thus, OP; ~n (2 + %)

5 Experiments

Our goal is to find out under which conditions Algorithm?2 is fastest than algo-
rithm Shift-Add.

Algorithm3: Exact string matching

0. j:=m;d:=m; State := 0;

1. lim:= (k + 1) << (m — 1); initial::lmblmb,l s]_;
2. While j <n do

3. t:=m;r:=0;

4. While State # initial and r < d do

5. State := State OR Dy, _ . m—r;
6. r:=r+1;

7. End of While.

8. If State = initial then

9. State := 0;

10. d:=m;

11. Else

12. If State < lim then

13. “Occurrence of P at position j”;
14. State := State << b;

15. While State > lim

16. State := State << b;
17. =1 —1;

18. End of While.

19. d:=m —1;

20.7:=j+d;

21. End of While.

5.1 Exact string matching

In this case, the considered algorithm is Shift-Or (2.1). Baeza-Yates and Gonnet
have introduced the following improvement: if at a given position j in ¢, S; =
Ty lmp—1 - -+ 1, that is all prefixes of P mismatch at position j, then the next
character processed in the text is py (if such a character exists). In fact, the state
remains the same for all other characters.

We improve Algorithm?2 as well: at a given step of the search, characters are
processed until the partial state is equal to 1,,p1mp—1 - -+ 1 (Algorithms3).

We have experimented algorithms Shifi-Or and Algorithm3 on a 4,000,000
character text (the french version of the Bible). Figurel shows the execution
time while searching 100 random patterns from the Bible. The first column of
the table shows the lengths of the considered patterns.

We can see that the longest the pattern, the fastest Algorithm3 works. More-
over, for patterns of lengths up to 3, Algorithm3 is faster than Shift-Or.

m Shift-Or Algorithm3
3 76.97 79.32
4 77.95 71.85
6 79.27 63.07
8 78.15 56.98
10 78.72 50.30
12 78.85 44.48
14 77.52 39.32
16 78.35 37.02
20 77.43 31.42
30 77.84 25.44

Figure 1: Experimental results (in seconds)
for exact searching 100 random patterns in
the Bible. First column gives the lengths of
the considered patterns.

5.2 Approximate string matching

Figure2 shows experimental results for Algorithm2 and Shift-Add, while search-
ing 100 random patterns in the Bible (5MO) with at most 1 or 2 mismatches.
When m is large enough compared to k, Algorithm2 is faster than Shift-Add: for
k =1, m should be larger than 7 and for & = 2 larger than 9. Since mb should
not exceed the word size w, large values of m cannot be considered. For w = 32,
the efficiency of Algorithm2 is then limited to &k < 2.

For longer patterns, we need to use more than a word per number. It is
not difficult to extend the algorithm for this case. Baeza-Yates and Gonnet have
noticed that Shift-Add is still a good practical algorithm for string matching with
mismatches and classes, provided the number of words per number is small.

Figure3 shows results in the case of two bit words per number. Notice that
they extend the results in Figure2.

6 Conclusion

We have developed an algorithm combining both the programming practicality of
the Shift-Add method and the speed of the BM approach. Flexibility is another
advantage of this algorithm . In fact, it can be easily adapted to classes of
patterns.

Nevertheless, as for the BM algorithm, the larger the alphabet and the longer
the pattern, the faster our algorithm works. For a large alphabet (ASCII code),
the searching step does on average n(2 + %) operations.

In some cases, it is necessary to consider small alphabets. In particular,
in molecular biology when detecting potential gene-coding sequences in ge-
nomic DNA sequences. The considered alphabet consists in the four nucleotides

k=1 k=2

m | Shift-Add | Algorithm2 | Shift-Add | Algorithm?2
6 157.56 178.05 157.24 215.77
7 155.83 161.88 156.25 195.68
8 156.01 154.05 155.64 175.67
9 155.57 148.13 156.33 161.02
10 155.10 145.85 155.63 150.72
11 155.76 141.67

12 154.66 135.80

13 155.02 129.40

14 155.45 125.28

15 154.94 121.08

16 155.73 117.21

Figure 2: Experimental results (in seconds) for searching
100 random patterns in the Bible with at most 1 or 2
mismatches. For k = 2 and m > 10, more than one word
per number is needed.

k=1 k=2 k=3

m | Shift-Add | Algorithme2 | Shift-Add | Algorithme2 | Shift-Add | Algorithme2
12 281.56 275.96 282.38 308.53
14 281.27 266.48 281.75 278.75
16 281.17 250.82 281.25 265.46
18 280.54 219.24 280.78 238.18 281.12 256.98
20 282.25 211.78 281.85 227.57 281.65 246.60
22 280.48 205.70

26 281.38 198.13

28 280.85 194.20

32 280.93 188.52

Figure 3: Complementary results when mb > 32. Two bit words per number are used.

{A,C,G,T}. For such alphabets, our algorithm does n(2 + €) operations, with
€ < 1, provided that the length m of the pattern is very large compared to k.

In order to consider large patterns, one solution is to use more than a bit
word per number. Moreover, Baeza-Yates and Perleberg (BYP) [7] have devel-
oped an algorithm for approximate string matching, based on the same naive
method than for the Shift-Add algorithm, but using arrays instead of numbers.
In this case, there is no condition on the length of the searched pattern, however
the algorithm is slower. The main difference is that BYP considers the number
of matches instead of the number of mismatches. The BYP algorithm can be
adapted from BM in the same way the Shift-Add was and it is then possible to
consider long patterns.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

K. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039—
1051, December 1987.

. A. Aho and M. Corasick. Efficient string matching: an aid to bibliographic search.

Commun. ACM, 18:333-340, 1975.

T. Akutsu. Approximate string matching with don’t care characters. In
M. Crochemore and D. Gusfield, editors, Lecture Notes in Computer Science, vol-
ume 807 of Combinatorial Pattern Matching (5”’ Annual Symposium, CPM94),
pages 229-242. Springer-Verlag, 1994.

R. Baeza-Yates and G.H.Gonnet. Fast string matching with k mismatches. Tech-
nical Report CS-88-36, Data Structuring Group, September 1988.

R. Baeza-Yates and G. Gonnet. Efficient text searching of regular expressions.
16th International colloquium on Automata, Languages and Programming. Stresa,
Italy, July 19809.

R. Baeza-Yates and G. Gonnet. A new approach to text searching. Commun.
ACM, 35(10):74-82, October 1992.

R. Baeza-Yates and C. Perleberg. Fast and practical approximate string match-
ing. In Lecture Notes in Computer Science, volume 644 of Combinatorial Pattern
Matching (3" Annual Symposium, CPM92), pages 185-191. Springer-Verlag, 1992.
A. Bertossiand and F. Logi. Parallel string matching with variable length don’t
cares. Journal of parallel and distributed computing, 22:229-234, 1994.

R. Boyer and J. Moore. A fast string searching algorithm. Commun. ACM,
20(10):762-772, October 1977.

M. Fischer and M. Paterson. String-matching and other products. In R. Karp,
editor, Complezity of Computation (SIAM-AMS Proceedings 7), volume 7, pages
113-125. American Mathematical Society, Providence, R.I., 1974.

Z. Galil and R. Giancarlo. Improved string matching with k mismatches. SIGACT
News, 17:52-54, 1986.

R. Grossi and F. Luccio. Simple and efficient string matching with & mismatches.
Inf. Proc. Letters, 3(33):113-120, November 1989.

D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM J.
Comput., 6:323-350, June 1977.

G. Kucherov and M. Rusinowitch. Matching a set of strings with variable length
don’t cares. In Z. Galil and E. Ukkonen, editors, Lecture Notes in Computer Sci-
ence, volume 937 of 6th annual symposium, CPM95, pages 230-247. Espoo,Finland,
Springer-Verlag, July 1995.

G. Landau and U. Vishkin. Efficient string matching with k£ mismatches. Theoret.
Comput. Sci., (43):239-249, 1986.

U. Manber and R. Baeza-Yates. An algorithm for string matching with a sequence
of don’t cares. Information Proceeding Letters, 37:133-136, 1991.

R. Pinter. Efficient string matching whith don’t-care patterns. In A. Apostolico
and Z. Galil, editors, Combinatorial Algorithms on Words, volume F12, pages 11—
29. Springer-Verlag, 1985.

J. Tarhio and E. Ukkonen. Boyer-moore approach to approximate string matching.
In J. R. Gilbert and R. G. Karlsson, editors, Lecture Notes in Computer Science,
volume 447 of 2nd Scandinavian Workshop in Algorithmic Theory, SWAT’90, pages
348-359. Bergen, Norway, Springer-Verlag, July 1990.

S. Wu and U. Manber. Fast text searching allowing errors. Commun. ACM,
35(10):83-91, October 1992.

This article was processed using the BTEX macro package with LLNCS style

