
HAL Id: hal-00619988
https://hal.science/hal-00619988

Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for computing evolutionary chains in
molecular and musical sequences

Maxime Crochemore, Costas S. Iliopoulos, Hiafeng Yu

To cite this version:
Maxime Crochemore, Costas S. Iliopoulos, Hiafeng Yu. Algorithms for computing evolutionary chains
in molecular and musical sequences. Proceedings of the ninth Australian Workshop on Combinatorial
Algorithms AWOCA’98 (Perth, 1998), 1998, France. pp.172-184. �hal-00619988�

https://hal.science/hal-00619988
https://hal.archives-ouvertes.fr

Algorithms for Computing Evolutionary Chainsin Molecular and Musical SequencesMaxime Crochemore1?, Costas S. Iliopoulos2??, andHiafeng Yu31 Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Cit�e Descartes, 5 BdDescartes, Champs-sur-Marne, F-77454 Marne-la-Vall�ee CEDEX 2, France.mac@univ-mlv.frWWW home page http://www-igm.univ-mlv.fr/~mac2 Dept. Computer Science, King's College London, London WC2R 2LS, England,and School of Computing, Curtin University of Technology, GPO Box 1987 U, WA.csi@dcs.kcl.ac.uk,WWW home page http://www.dcs.kcl.ac.uk/staff/csi3 Dept. Computer Science, King's College London, London WC2R 2LS, England.yuh@dcs.kcl.ac.ukWWW home page http://www.dcs.kcl.ac.uk/pg/yuhAbstract. The problem of �nding evolutionary chains is de�ned as fol-lows: given a string t (\the text") and a pattern p (the \motif"), �ndwhether there exists a sequence u1 = p; u2; : : : ; ul occurring in the text tsuch that ui+1 occurs to the right of ui in t and ui and ui+1 are \similar"(i.e. the di�er by a certain number of symbols). Here we consider sev-eral variants of the evolutionary chain problem and we present e�cientalgorithms for solving them.Keywords: String algorithms, approximate string matching, dynamic program-ming, molecular sequences, music analysis.1 IntroductionThis paper is focused on a set of string pattern-matching problems which arise inmusic analysis, musical information retrieval and molecular sequence analysis. Amusical score can be viewed as a string: at a very rudimentary level, the alphabetcould simply be the set of notes in the chromatic or diatonic notation, or at amore complex level, we could use the GPIR representation of Cambouropoulos[3,4] as the basis of an alphabet. Approximate repetitions in musical entities playa crucial role in �nding musical similarities amongst di�erent musical entities,as well as playing a part in de�ning the \characteristic signature" (see [7]). Suchalgorithms can be used for melody identi�cation and music retrieval e.g. audioapplications on Internet systems.? Partially supported by the C.N.R.S. Program \G�enomes"?? Partially supported by the EPSRC grant GR/J 17844.

Furthermore, e�cient algorithms for computing the approximate repetitionsare also directly applicable to molecular biology (see [10, 15, 18] and in particularin DNA sequencing by hybridization ([24]), reconstruction of DNA sequencesfrom known DNA fragments (see [25,26]), in human organ and bone marrowtransplantation as well as the determination of evolutionary trees among distinctspecies ([25]).Exact repetitions have been studied extensively. The repetitions can be eitherconcatenated with the original substring or they may overlap or they may not.Algorithms for �nding non-overlapping repetitions in a given string can be foundin [1, 8, 14, 19, 18, 23] and algorithms for computing overlapping repetitionscan be found in [2, 12, 13, 22]. A natural extension of the repetitions problemis to allow the presence of errors; that is, the identi�cation of substrings thatare duplicated to within a certain tolerance k (usually edit distance or Hammingdistance). Moreover, the repeated substring may be subject to other constraints:it may be required to be of at least a certain length, and certain positions in itmay be required to be invariant.The problem of �nding evolutionary chains is de�ned as follows: given astring t (\the text") and a pattern p (the \motif"), �nd whether there exists asequence u1 = p; u2; : : : ; ul occurring in the text t such that ui+1 occurs to theright of ui in t and ui and ui+1 are \similar" (i.e. the di�er by a certain numberof symbols).
a) Original d) replacement

(= deletion + insertion)
c) deletionb) insertion

[]

[]Figure 1Local approximations in search pattern, trace gradualchange (`evolution') in a motif. See Music Example in AppendixThere is no speci�c algorithm for the evolutionary chain problem in theliterature. Landau and Vishkin [16,17] gave an algorithm (LV Algorithm) forthe string searching with k-di�erences problem: given a text of length n, and aninteger k and a pattern of length m, �nd all occurrences of the pattern in thetext with at most k-di�erences; the LV algorithm requires O(n(logm+ log j�j))time, where � is the alphabet used. A naive way to solve this problem is torepeatedly apply the LV algorithm to the text using ui as the pattern, for i =1; 2; :::, giving a worst-case O(n2(logm+log j�j)) running time. Here we presenta straightforward O(nm) algorithm for computing non-overlapping evolutionarychains with k-di�erences. We also present an O(n(logm+log j�j)) algorithm forthe same problem that makes use of su�x trees; this algorithm require O(kn)time for �xed alphabets. Furthermore we present O(n2) algorithms for severalvariants of the computing overlapping evolutionary chains with k di�erences,where n is the size of the input string.

Here we study the computation of the longest evolutionary chain as well asthe chain with least number of errors in total. Several variants to the evolutionarychain problem are still open. The choice of suitable similarity criteria in musicand biology is still under investigation. The use of penalty tables may be moresuitable than the k-di�erences criterion in certain applications. Additionally,further investigation whether methods such as [11, 17] can be adapted to solvethe above problems is needed.The paper is organised as follows. In the next section we present some ba-sic de�nitions for strings and background notions for pattern-matching withk-di�erences. In Section 3 we describe the algorithms for non-overlapping evo-lutionary chains. In Section 4 we describe the algorithms for several variants ofoverlapping evolutionary chains. Finally in Section 6 we present our conclusionsand open problems.2 Background and basic string de�nitionsA string is a sequence of zero or more symbols from an alphabet �; the stringwith zero symbols is denoted by �. The set of all strings over the alphabet � isdenoted by ��. A string x of length n is represented by x1 : : : xn, where xi 2 �for 1 � i � n. A string w is a substring of x if x = uwv for u; v 2 ��; weequivalently say that the string w occurs at position juj+1 of the string x. Theposition jwj + 1 is said to be the starting position of u in x and the positionjwj + juj the end position of u in x. A string w is a pre�x of x if x = wu foru 2 ��. Similarly, w is a su�x of x if x = uw for u 2 ��.The string xy is a concatenation of two strings x and y. The concatenationsof k copies of x is denoted by xk . For two strings x = x1 : : : xn and y = y1 : : : ymsuch that xn�i+1 : : : xn = y1 : : : yi for some i � 1, the string x1 : : : xnyi+1 : : : ymis a superposition of x and y. We say that x and y overlapLet x be a string of length n. A pre�x x1 : : : xp, 1 � p < n, of x is a periodof x if xi = xi+p for all 1 � i � n � p. The period of a string x is the shortestperiod of x. A string b is a border of x if b is a pre�x and a su�x of x.Consider the sequences �1�2:::�l and �1�2:::�l with �i; �i 2 � [f�g , i 2 f1::lg.If �i 6= �i, then we say that �i di�ers to �i. We distinguish among the followingthree types of di�erences:1. A symbol of the �rst sequence corresponds to a di�erent symbol of the secondone, then we say that we have a mismatch between the two characters, i.e.,�i 6= � and �i 6= �.2. A symbol of the �rst sequence corresponds to \no symbol" of the secondsequence, that is �i 6= � and �i = �. This type of di�erence is called adeletion.3. A symbol of the second sequence corresponds to \no symbol" of the �rstsequence, that is �i = � and �i 6= �. This type of di�erence is called aninsertion.As an example, let the text be abcdefghi and the pattern be bxdyegh (seeFigure 2). In positions 1 and 3 of t and p we have no di�erences (the symbols

\match") but in position 2 we have a mismatch. In position 4 we have a \dele-tion" and in position 5 we have a \match". In position 6 we have an \insertion"and in positions 7 and 8 we have \matches". Another way of seeing this di�er-ence is that one can transform the � sequence to � by performing insertions,deletions and replacements of the mismatched symbols.1 2 3 4 5 6 7 8� b x d y e g h� b c d e f g hFigure 2Types of di�erences: mismatch, insertion, deletion.Let t = t1t2 : : : tn and p = p1p2 : : : pm with m < n. We say that p occursat position q of t with at most k-di�erences if there are a sequences a1; :::; ar,b1; :::; br such that1. There is a subsequence of the sequence a such thatas1 ; as2 ; :::; asr = tq; tq+1; :::tq+r�1 with s1 < s2 < ::: < srand ai = � for all i 2 f1::rg � fs1; s2; :::srg.2. There is a subsequence of the sequence b such thatbv1 ; bv2 ; :::bvr = p1; p2; :::pm with v1 < v2 < ::: < vrand bi = � for all i 2 f1::rg � fv1; v2; :::vrg .3. The number of di�erences between the sequence a and b is at most k.4. There are no sequences that satisfy 1 and 2 and have less than k di�erences.The problem of string searching with k-di�erences is de�ned as follows: givena text t = t1t2 : : : tn, a pattern p = p1p2 : : : pm and an integer k, �nd all occur-rences of the pattern p in the text t with at most k di�erences.1 2 3 4 5 6 7 8 9 10 11 13 14 15 16t x b c b b x d y e g h x y bp b c d e f g hp b c d e f g hp b c d e f g hFigure 3String searching with k-di�erences.Let the text be t = abcdefghi and the pattern be p = bxdyegh (see Figure 3).The pattern p occurs at position 4 of x with at most 3 di�erences. The patternp also occurs in position 2 with at most 5 di�erences and the pattern p occursin position 5 with at most 3 di�erences.

3 Computing Non-overlapping Evolutionary ChainsThe problem of non-overlapping evolutionary chains (abbreviated NOEC) is asfollows: given a text t, an integer k and a pattern p, �nd whether the strings ofthe a sequence u1 = p; u2; : : : ; ul occur in the text t such that:1. The number of di�erences between any two consecutive strings ui and ui+1in the evolutionary chain is at most k, for all i 2 f1::lg.2. The starting position of the string ui+1 in t is nearest one to the right of theend position of ui for all i 2 f1::lg.The �rst condition ensures that the strings in the evolutionary chain haveerrors within some tolerance and the second condition enforces the strings in thechain not to overlap.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23c a b c d e a b d e a b d a b b b b c a a b ba b c d a b d a b d b b b ba b bFigure 4The non-overlapping evolutionary chain for p = abcd with at most one di�erence.The pattern p �rst occurs in position 2. The �rst re-occurrence of the patternto the right of position 5 with at most 1-di�erence is at position 7. Consider thepattern abb in position 14. The nearest re-occurrence of abb with at most onedi�erence is at position 15 (i.e. the string bb) but it is not part of the chainbecause it overlaps with abb; the �rst re-occurrence with at most one di�erencethat is part of the chain is in position 17. The non-overlapping evolutionarychain is fabcd; abd; adb; abb; bb; bbg.3.1 The modi�ed dynamic programming AlgorithmFirst we consider an O(nm) algorithm for computing the non-overlapping evo-lutionary chain of a text of length n and a pattern of lenght m. The algorithmNOEC presented below is based on the Dynamic-Programming procedurepresented in [16,17]. The main idea is to construct a matrix D[1::m; 1::n], whereDi;j is the minimum number of di�erences between the pre�x of the patternp1:::pi and any contiguous substring of the text ending at tj . The Dynamic-programming procedure below terminates when it �nds the �rst occurrence ofthe pattern with at most k di�erences.

G G G T C T AG 0 0 0 1 1 1 1G 1 0 0 1 2 2 2G 2 1 0 1 2 3 3T 3 2 1 0 1 2 3Figure 5The matrix Di;j for p = GGGT and t = GGGTCTAProcedure Dynamic-Programming(t; p; k)beginn jtj; m jpj;Di;j 0; 0 � i � m; 0 � j � n;Di;0 i; 0 � i � m ;for i := 1 to m dofor j := 1 to n doif p[i] = t[j] thenDi;j = minfDi�1;j + 1; Di;j�1 + 1; Di�1;j�1gelseDi;j = minfDi�1;j + 1; Di;j�1 + 1; Di�1;j�1 + 1gif Di;j � k then return i; ucomment u is the su�x of t1:::ti is the one that achieves the score Di;j .ododendNext, the algorithm NOEC makes repeated applications of the Dynamic-programming procedure; every time that an occurrence of the pattern is foundending at position i of the text, then we re-apply the Dynamic-programmingprocedure to the su�x ti+1:::tn.Algorithm NOEC(t; p; k)beginwhile i < n do(i; p) Dynamic-Programming(t; p; k)t ti+1:::tn;endTheorem 1. Algorithm NOEC computes the non-overlapping evolutionary chainin O(nm) time and O(nm) space, where n is the length of the input text and mis the length of the pattern.3.2 A fast dynamic programming algorithmThe matrix D computed by the Dynamic-Programming procedure above con-tains a lot of redundant data which are not of used by algorithm NOEC. In fact

it will su�ce to �nd the index of the largest row of each diagonal of the matrixD, which has an entry less than k. This computation can be done in linear timewith the aid of su�x trees (see [1]) . The alternative dynamic programming al-gorithm given in [17] can be modi�ed as above and it will lead to the followingtheorem (for details and proofs see [17]).Theorem 2. There exists an algorithm that computes the non-overlapping evo-lutionary chain in O(kn) time for �xed alphabets, where n is the length of theinput text and k the is maximum number of di�erences allowed between consec-utive members of the chain.Theorem 3. There exits an algorithm that computes the non-overlapping evo-lutionary chain in O(n(logm + log j�j)) time for a general alphabet �, wheren is the length of the input text , m is the length of the pattern and k is themaximum number of di�erences allowed consecutive members of the chain.4 Computing Overlapping Evolutionary ChainsThe problem of overlapping evolutionary chains (abbreviated OEC) is de�nedas follows: given a text t, a pattern p and an integer k < jpj=2, �nd whether thestrings of the a sequence u1 = p; u2; : : : ; ul occur in t and satisfy the followingconditions:1. The number of di�erences between ui and ui+1 is at most k, for all i 2 f1::lg.2. Let si he starting position of string ui in t for all i 2 f1::lg. The startingposition of ui+1 for all i 2 f1::lg is to the right of si + juij=2.In this case we allow the strings of the evolutionary chain to overlap. Thesestrings have been constrained the overlap at most jpj=2 symbols. Without suchconstraint, we can obtain trivial chains such as ui = ti:::tm�1, where ui and ui+1have at most one di�erence.First we present a method for �nding all possible members of an overlappingevolutionary chain Let Di;j be as in section 3 but the pattern is identical to thetext, i.e. p = t; thus D is an n � n matrix. In order to e�ciently compute thematrix Di;j with both i; j 2 f1::ng; we need to evaluate the following matrix M;we mark Mi;j := p if there is the alignment of p1:::pi with t1:::tj with the leastnumber of di�erences requires that p1 matching tl for some l; otherwise we markMi;j := �. G G G T C T AG p p p � � � �G � p p p � � �G � � p p p � �T � � � p p p pFigure 6

The matrix Mi;j for t = GGGTCTAThe computation of matrix M can easily be done using the matrix D. Con-sider two consecutive entries in a column of D, say Di;j and Di+1;j . We have toconsider two cases:1. The case pi+1 6= tj . If Di+1;j � Di;j , then the only way that we can alignpi:::pi+1 and t1:::tj and achieveDi+1;j di�erences is by aligning and matchingp1 with tl for some l; hence Mi+1;j = p. Otherwise Mi+1;j = �.2. The case pi+1 = tj . We have the following subcases:{ Di+1;j = Di;j+1 + 1. In this case one can see that Mi+1;j = Mi;j+1.{ Di+1;j = Di;j�1 + 1. In this case one can see that Mi+1;j = Mi;j�1.{ Di+1;j = Di�1;j�1. In this case one can see that Mi+1;j = Mi�1;j�1.{ i = 1. One can see that Mi+1;j = �.If more than one of the above subcases hold, then we opt for the one thatleads to Mi+1;j = �. Thus the computation M can easily done in parallelwith the computation of D. In order to simplify the exposition the compu-tation of M is omitted in the pseudocode below.G G G T C T AG 0 0 0 1 1 1 1G 1 0 0 1 2 2 2G 2 1 0 1 2 3 3T 3 2 1 0 1 2 3C 3 2 2 1 0 1 2Figure 7The matrix Di;j for t = GGGTCTA using Mi;j with m = 3Let's consider Figure 7. We compute the rows 1,2,3, and 4 of the matrix Das in section 3 for the pattern p = GGGT . We also compute the matrix M asabove. We will now proceed to compute approximate matches of GGTC witht1:::ti for all i. Lets consider the evaluation of D5;2; its value depends on thevalues of D5;1; D4;1 and D4;2. If we were to use D5;1, then we have to increase itsvalue by 1 for the mismatch of p5 = C and t2 = G and decrease it by 1 becauseM4;1 = �; note p1 is no longer taking part in this alignment. If were to use D4;1,then we have to increase its value by 1 for the mismatch of p5 = C and t2 = Gand decrease it by 1 because M4;1 = �. If were to use D4;2, then we have toincrease its value by 1 for the mismatch of p5 = C and t2 = G and decrease itby 1 because M4;1 = �. Whenever there is a match then we only use the threeneighbouring values unaltered (see Figure 6). The correctness proof will appearin the full paper. The pseudocode for the procedure is outlined below.Procedure Dynamic-Programming-II(t; p; k)beginn jtj; m jpj;Di;j 0; 0 � l � n; 0 � i � m;

Di;0 i; 0 � i � m;for i := 1 to n dofor j := 1 to n doif Mi�1;j = p OR i < m then q = 0;else q = 1;if p[i] = t[j] thenDi;j = minfDi�1;j + 1� q;Di;j�1 + 1� q;Di�1;j�1gelseDi;j = minfDi�1;j + 1� q;Di;j�1 + 1� q;Di�1;j�1 + 1� qgif Di;j � k then return i; uendendAlgorithm OEC(t; p; k)beginwhile i < n do(i; p) Dynamic-Programming-II(t; p; k)t ti+1:::tn;endTheorem 4. Algorithm OEC computes the all possible overlapping chains inO(n2) time, where n is the length of the input text.The de�nition of the problem OEC does not specify which of the overlap-ping patterns is chosen as members of the overlapping evolutionary chain. Thefollowing variants of the OEC problem give three choices with di�erent criteria.4.1 Computing the nearest-neighbour evolutionary chain.The problem of nearest-neighbour overlapping evolutionary chains (abbreviatedNNOEC) is de�ned as follows: given a text t, a pattern p and an integer k < jpj=2,�nd whether the strings of the sequence u1 = p; u2; : : : ; ul occur in t and satisfythe conditions for the OEC problem and the string ui+1 is the nearest one tothe right of si + juij=2 that has at most k di�erences with ui for all i 2 f1::lg.Next, the algorithm NNOEC makes repeated applications of the Dynamic-programming procedure; every time that an occurrence of the pattern is foundending at position i of the text, then we re-apply the Dynamic-programmingprocedure to the su�x ti+1:::tn.Algorithm NNOEC(t; p; k)beginwhile i < n do(i; p) Dynamic-Programming(t; p; k)t ti+juij=2+1:::tn;end

Theorem 5. Algorithm NNOEC computes the nearest neighbour evolutionarychain in O(nm) time, where n is the length of the input text and m is the sizeof the input pattern.The NNOEC algorithm can be speeded up in a similar manner to the proce-dure Dynamic-Programming (see Theorems 2 & 3). The details will be shownin the full paper. Hence, we have the following theorems:Theorem 6. There exists an algorithm that computes the nearest neighbour evo-lutionary chain in O(kn) time over �xed alphabets, where n is the length of theinput text and k is the maximum number of di�erences allowed between consec-utive members of the chain.Theorem 7. There exists an algorithm that computes the nearest neighbour evo-lutionary chain in O(n(logm+ log(j�j)) time over an alphabet j�j, where n isthe length of the input text , m is the length of the pattern and k is maximumnumber of di�erences allowed between consecutive members of the chain.4.2 Computing the maximal length evolutionary chain.The problem of computing longest overlapping evolutionary chains (abbreviatedLOEC) is de�ned as follows: given a text t, a pattern p and an integer k < jpj=2,�nd whether the strings of the a sequence u1 = p; u2; : : : ; ul occur in t and satisfythe conditions as in the OEC problem and maximizes l. The computation of themaximal chain requires the full matrix D as is computed in Theorem 4 and theevaluation of the following recursionlmax = � lj ; if di;j < k and di;r > k 8rmaxrfli+j and di;r > kg; otherwise.where i+ jpj=2 < r � jpj.4.3 Computing the minimal weight evolutionary chainThe problem of computing minimal-weight overlapping evolutionary chains (ab-breviated WOEC) is de�ned as follows: given a text t, a pattern p and an integerk < jpj, �nd whether the strings of the a sequence u1 = p; u2; : : : ; ul occur in tand satisfy the conditions as in the OEC problem and minimized = lXi=1 �i +
iwhere �i is the sum of the di�erences between ui and ui+1 and
i = f(si+1 �si � juij), where f is a penalty table.The computation of the maximal chain requires the full matrix D as com-puted in Theorem 4 and the evaluation of the following recursion

wmin(i) = � j � i� jpj+ wj ; if di;j < k and di;r > k 8rminrfwi+j and di;r > kg; otherwise.where i+ jpj=2 < r � jpj.5 Conclusions and Open problemsOur primary goal is to identify e�cient algorithms for computational problemswhich arise in computer-assisted analysis of music, and to also formalise theirrelation to well known string pattern-matching problems. The major obstacle toapplying computational and mathematical techniques developed in the context ofstring pattern-matching problems to problems of computer-assisted music anal-ysis appears to be the di�culty of communication and mutual comprehensionbetween computer scientists and musicologists.The primary direction of this research is towards a formal de�nition of mu-sical similarity between musical entities (i.e. complete pieces of music or mean-ingful subsets of pieces, e.g. `themes' or `motifs') (See [5,6,7] for details). Inparticular we are aiming at producing a quantitative measure or 'characteristicsignature' of a musical entity. This measure is essential for melodic recognitionand it will have many uses including, for example, data retrieval from musicaldatabases.Here we presented the practical algorithms NOEC and OEC for the com-putation of non-overlapping and overlapping evolutionary chains. Furthermore,we presented theoretical algorithms for the same problems with improved upperbounds on their time complexity. Additionally we presented two variants of theOEC problem, the maximal evolutionary chains and minimum-weight evolution-ary chains, both of which are of practical importance.The problems presented here need to be further investigated under a varietyof similarity or distance rules (see [7,21]). For example, Hamming distance oftwo strings u and v is de�ned to be the number of substitutions necessary to getu from v (u and v have the same length).Finally comparisons of the empirical results obtained (to be presented in thefull paper) and to those that can be obtained from software library on stringalgorithms (see [9]) should be drawn.References1. A. Apostolico, The myriad virtues of the Su�x Trees, in A. Apostolico andZ. Galil, eds, Combinatorial Algorithms on Words, Springer Verlag, NATO ASISeries, 1985. Theoretical Computer Science 22 (1983), pp. 297{315.2. O. Berkman, C. Iliopoulos and K. Park, String covering, Information and Com-putation 123 (1996), pp. 127{137.3. E. Cambouropoulos, A General Pitch Interval Representation: Theory and Ap-plications, Journal of New Music Research 25 (1996), pp. 231{251.

4. E. Cambouropoulos, A formal theory for the discovery of local boundaries ina melodic surface, in Proceedings of the III Journees d' Informatique Musicale,Caen, France, 1996.5. E. Cambouropoulos, The role of similarity in categorisation: Music as a casestudy. In Proceedings of the Third Triennial Conference of the European Societyfor the Cognitive Sciences of Music (ESCOM), Uppsala, 1997.6. E. Cambouropoulos and A. Smaill, A Computational Theory for the Discoveryof Parallel Melodic Passages, in Proceedings of the XI Colloquio di InformaticaMusicale, Bologna, Italy, 1995.7. T. Crawford, C. S. Iliopoulos, R. Raman, String Matching Techniques for MusicalSimilarity and Melodic Recognition, to appear in Computing in Musicology.8. M. Crochemore, An optimal algorithm for computing the repetitions in a word,Information Processing Letters 12 (1981), pp. 244{250.9. A. Czumaj, P. Ferragina, L. Gasieniec, S. Muthukrishnan and J. Trae�, The ar-chitecture of a software library for string processing, to be presented at Workshopon Algorithm Engineering, Venice, September 1997.10. V. Fischetti, G. Landau, J.Schmidt and P. Sellers, Identifying periodic occurencesof a template with applications to protein structure, Proc. 3rd CombinatorialPattern Matching, Lecture Notes in Computer Science, vol. 644, 1992, pp. 111{120.11. Z. Galil and K. Park, An improved algorithm for approximate string matching,SIAM Journal on Computing, 19 (1990), pp. 989{999.12. C. S. Iliopoulos and L. Mouchard, Fast local covers, (Submitted).13. C. S. Iliopoulos, D. W. G. Moore and K. Park, Covering a string, Algorithmica16 (1996), pp. 288{297.14. C. S. Iliopoulos, D. W. G. Moore and W. F. Smyth, A linear algorithm for com-puting the squares of a Fibonacci string, in P. Eades and M. Moule, eds. Pro-ceedings CATS'96, \Computing: Australasian Theory Symposium," University ofMelbourne, pp. 55{63, 1996.15. S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung, E�cients algorithms formolecular sequences analysis, Proc. Natl. Acad. Sci., USA (1988) 85:841{84516. G.M. Landau and U. Vishkin, Introducing e�cient parallelism into approximatestring matching and a new serial algorithm, in Proc. Annual ACM Symposiumon Theory of Computing, ACM Press, pp. 220{230, 1986.17. G.M. Landau and U. Vishkin, Fast string matching with k di�erences, Journal ofComputer and Systems Sciences, 37 (1988), pp. 63{78.18. G. M. Landau and J. P. Schmidt, An algorithm for approximate tandem repeats,in Proc. Fourth Symposium on Combinatorial Pattern Matching, Springer-VerlagLecture Notes in Computer Science 648, pp. 120{133, 1993.19. G. Main and R. Lorentz, An O(n log n) algorithm for �nding all repetitions in astring, Journal of Algorithms 5 (1984), pp. 422{432.20. A. Milosavljevic and J. Jurka, Discovering simple DNA sequences by the algo-rithmic signi�cance method, Comput. Appl. Biosci. (1993) 9:407{41121. M. Mongeau and D. Sanko�, Comparison of Musical Sequences, Computers andthe Humanities 24 (1990), pp. 161{175.22. D. W. G. Moore and W. F. Smyth, Computing the covers of a string in lineartime, in Proc. 5th ACM-SIAM Symposium on Discrete Algorithms, pp. 511{515,1994.23. E. Myers and S. Kannan, An algorithm for locating non-overlapping regions ofmaximum alignment score, in Proc. Fourth Symposium on Combinatorial PatternMatching, Springer-Verlag Lecture Notes in Computer Science 648, 1993.

24. Pavel A. Pevzner & W. Feldman, Gray Code Masks for DNA Sequencing byHybridization, Genomics, 23, 233-235 (1993).25. Jeanette P. Schmidt, All shortest paths in weighted grid graphs and its applica-tion to �nding all approximate repeats in strings, in Proc. of the Fifth Symposiumon Combinatorial Pattern Matching CPM'94, Lecture Notes in Computer Science(1994).26. Steven S. Skiena & Gopalakrishnan Sundaram, Reconstructing strings from sub-strings, J. Computational Biol. 2 (1995) 333-353.Appendix: Music Example

A

B

C

D

E

< >

< >

b) ‘Evolution’ of diatonic-pitch pattern

< > Deletion Insertion Replacement

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

a) Selected entries (in their original sequence):

A (meas. 4) & ♭ ♭ w w w . ú ú ú m

B (meas. 7) ? ♭ ♭ w w w . ú w w ú ú m

C (meas. 19) ? ♭ ♭ w w w ú . Ï w w w ♯ú w ·

D (meas. 25) & ♭ ♭ w w . Ï Ï ú ú ú w w m♯

E (meas. 28) ? ♭ ♭ ú ú ú w w w ·

Music Example Francesco da Milano, monothematiclute recercar (Cavalcanti Lutebook, f. 71v)The �ve successive entries, A-E, are audibly related and can be treated asstages in the 'evolution' of a diatonic motif by a series of alterations of editdistance 2 (where the deletion, insertion, replacement and time-displacementoperations each have weight 1). Thr example was taken from Cavalcanti Lute-book, Brussels, Belgium, Biblioth�eque Royale (B-Br), MS II 275.

