N
N

N

HAL

open science

Algorithms for computing evolutionary chains in
molecular and musical sequences

Maxime Crochemore, Costas S. Iliopoulos, Hiafeng Yu

» To cite this version:

Maxime Crochemore, Costas S. Iliopoulos, Hiafeng Yu. Algorithms for computing evolutionary chains
in molecular and musical sequences. Proceedings of the ninth Australian Workshop on Combinatorial

Algorithms AWOCA’98 (Perth, 1998), 1998, France. pp.172-184. hal-00619988

HAL Id: hal-00619988
https://hal.science/hal-00619988
Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00619988
https://hal.archives-ouvertes.fr

Algorithms for Computing Evolutionary Chains
in Molecular and Musical Sequences

2%%

Maxime Crochemore'*, Costas S. Iliopoulos®**, and

Hiafeng Yu?

! Institut Gaspard-Monge, Université de Marne-la-Vallée, Cité Descartes, 5 Bd
Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée CEDEX 2, France.
macQuniv-mlv.fr
WWW home page http://wwu-igm.univ-mlv.fr/“mac
2 Dept. Computer Science, King’s College London, London WC2R 2LS, England,
and School of Computing, Curtin University of Technology, GPO Box 1987 U, WA.
csi@dcs.kcl.ac.uk,

WWW home page http://www.dcs.kcl.ac.uk/staff/csi
3 Dept. Computer Science, King’s College London, London WC2R 2LS, England.
yuh@dcs.kcl.ac.uk
WWW home page http://www.dcs.kcl.ac.uk/pg/yuh

Abstract. The problem of finding evolutionary chains is defined as fol-
lows: given a string ¢ (“the text”) and a pattern p ( the “motif”), find
whether there exists a sequence u1 = p,us,...,u; occurring in the text ¢
such that ;41 occurs to the right of u; in ¢t and u; and u;41 are “similar”
(i.e. the differ by a certain number of symbols). Here we consider sev-
eral variants of the evolutionary chain problem and we present efficient
algorithms for solving them.

Keywords: String algorithms, approximate string matching, dynamic program-
ming, molecular sequences, music analysis.

1 Introduction

This paper is focused on a set of string pattern-matching problems which arise in
music analysis, musical information retrieval and molecular sequence analysis. A
musical score can be viewed as a string: at a very rudimentary level, the alphabet
could simply be the set of notes in the chromatic or diatonic notation, or at a
more complex level, we could use the GPIR representation of Cambouropoulos
[3,4] as the basis of an alphabet. Approximate repetitions in musical entities play
a crucial role in finding musical similarities amongst different musical entities,
as well as playing a part in defining the “characteristic signature” (see [7]). Such
algorithms can be used for melody identification and music retrieval e.g. audio
applications on Internet systems.

* Partially supported by the C.N.R.S. Program “Génomes”
** Partially supported by the EPSRC grant GR/J 17844.



Furthermore, efficient algorithms for computing the approximate repetitions
are also directly applicable to molecular biology (see [10, 15, 18] and in particular
in DNA sequencing by hybridization ([24]), reconstruction of DNA sequences
from known DNA fragments (see [25,26]), in human organ and bone marrow
transplantation as well as the determination of evolutionary trees among distinct
species ([25]).

Exact repetitions have been studied extensively. The repetitions can be either
concatenated with the original substring or they may overlap or they may not.
Algorithms for finding non-overlapping repetitions in a given string can be found
in [1, 8, 14, 19, 18, 23] and algorithms for computing overlapping repetitions
can be found in [2, 12, 13, 22]. A natural extension of the repetitions problem
is to allow the presence of errors; that is, the identification of substrings that
are duplicated to within a certain tolerance k (usually edit distance or Hamming
distance). Moreover, the repeated substring may be subject to other constraints:
it may be required to be of at least a certain length, and certain positions in it
may be required to be invariant.

The problem of finding evolutionary chains is defined as follows: given a
string ¢ (“the text”) and a pattern p ( the “motif”), find whether there exists a
sequence u; = p,us,...,u; occurring in the text ¢ such that u;; occurs to the
right of u; in ¢t and w; and ;4 are “similar” (i.e. the differ by a certain number
of symbols).

a) Original b) insertion c) deletion d) replacement
l (= deletion + insertion)
o @ ) o [ L °
Na” N\ N N\, N N
.\./ o e .\./ o\./ L LN /e —> o .\./ °

) W/
Figure 1

Local approximations in search pattern, trace gradual
change (‘evolution’) in a motif. See Music Example in Appendix

There is no specific algorithm for the evolutionary chain problem in the
literature. Landau and Vishkin [16,17] gave an algorithm (LV Algorithm) for
the string searching with k-differences problem: given a text of length n, and an
integer k and a pattern of length m, find all occurrences of the pattern in the
text with at most k-differences; the LV algorithm requires O(n(logm + log | X))
time, where X' is the alphabet used. A naive way to solve this problem is to
repeatedly apply the LV algorithm to the text using u; as the pattern, for i =
1,2,..., giving a worst-case O(n?(logm +log | X)) running time. Here we present
a straightforward O(nm) algorithm for computing non-overlapping evolutionary
chains with k-differences. We also present an O(n(log m+log|X|)) algorithm for
the same problem that makes use of suffix trees; this algorithm require O(kn)
time for fixed alphabets. Furthermore we present O(n?) algorithms for several
variants of the computing overlapping evolutionary chains with k differences,
where n is the size of the input string.



Here we study the computation of the longest evolutionary chain as well as
the chain with least number of errors in total. Several variants to the evolutionary
chain problem are still open. The choice of suitable similarity criteria in music
and biology is still under investigation. The use of penalty tables may be more
suitable than the k-differences criterion in certain applications. Additionally,
further investigation whether methods such as [11, 17] can be adapted to solve
the above problems is needed.

The paper is organised as follows. In the next section we present some ba-
sic definitions for strings and background notions for pattern-matching with
k-differences. In Section 3 we describe the algorithms for non-overlapping evo-
lutionary chains. In Section 4 we describe the algorithms for several variants of
overlapping evolutionary chains. Finally in Section 6 we present our conclusions
and open problems.

2 Background and basic string definitions

A string is a sequence of zero or more symbols from an alphabet X; the string
with zero symbols is denoted by e. The set of all strings over the alphabet X' is
denoted by X*. A string z of length n is represented by z; ...x,, where z; € X
for 1 < i < n. A string w is a substring of z if z = uwwv for u,v € X*; we
equivalently say that the string w occurs at position |u| + 1 of the string . The
position |w| + 1 is said to be the starting position of u in x and the position
|w| + |u| the end position of u in z. A string w is a prefix of z if x = wu for
w € X*. Similarly, w is a suffix of z if = uw for u € X*.

The string zy is a concatenation of two strings # and y. The concatenations
of k copies of x is denoted by z*. For two strings = z1 ...z, and y = y1 ... ym
such that xp_;41...25 = y1...y; for some ¢ > 1, the string 1 ... TpYit1 .- Ym
is a superposition of z and y. We say that = and y overlap

Let x be a string of length n. A prefix z;...2,, 1 <p < n, of z is a period
of z if ; = x;4p for all 1 < ¢ < n —p. The period of a string x is the shortest
period of z. A string b is a border of z if b is a prefix and a suffix of z.

Consider the sequences 1y 7»...7; and py pa...p; with 7, p; € X U {e} , i € {1..1}.
If 7; # p;, then we say that 7; differs to p;. We distinguish among the following
three types of differences:

1. A symbol of the first sequence corresponds to a different symbol of the second
one, then we say that we have a mismatch between the two characters, i.e.,
T; # € and p; # €.

2. A symbol of the first sequence corresponds to “no symbol” of the second
sequence, that is 7; # € and p; = e. This type of difference is called a
deletion.

3. A symbol of the second sequence corresponds to “no symbol” of the first
sequence, that is 7; = € and p; # €. This type of difference is called an
insertion.

As an example, let the text be abedefghi and the pattern be bzdyegh (see
Figure 2). In positions 1 and 3 of ¢ and p we have no differences (the symbols



“match”) but in position 2 we have a mismatch. In position 4 we have a “dele-
tion” and in position 5 we have a “match”. In position 6 we have an “insertion”
and in positions 7 and 8 we have “matches”. Another way of seeing this differ-
ence is that one can transform the 7 sequence to p by performing insertions,
deletions and replacements of the mismatched symbols.

12345678
T bxdye gh
p becd efgh

Figure 2
Types of differences: mismatch, insertion, deletion.

Let t = t1ts...t, and p = p1p2...pm with m < n. We say that p occurs
at position g of ¢t with at most k-differences if there are a sequences aq,...,a,,
b1, ..., b. such that

1. There is a subsequence of the sequence a such that
QsyyQgyyoeny Qs =L, tgt1, - otgrr—1 With s1 <89 < .o < sy

and a; = e for all i € {1..r} — {s1, s2,...5-}.
2. There is a subsequence of the sequence b such that

by, s bugy by, = D1,D2, ... pm With v1 < wve < ... < vy

and b; = e for all i € {1.r} — {v1,v2,..00} .
. The number of differences between the sequence a and b is at most k.
4. There are no sequences that satisfy 1 and 2 and have less than & differences.

w

The problem of string searching with k-differences is defined as follows: given
a text t = tyts...t,, a pattern p = py1ps ...py and an integer k, find all occur-
rences of the pattern p in the text ¢ with at most k differences.

123456789101113141516
t xbcbbxdye g h x y b

p bec d ef gh

p bec d ef gh

P bcd ef g h
Figure 3

String searching with k-differences.

Let the text be t = abede f ghi and the pattern be p = bzdyegh (see Figure 3).
The pattern p occurs at position 4 of z with at most 3 differences. The pattern
p also occurs in position 2 with at most 5 differences and the pattern p occurs
in position 5 with at most 3 differences.



3 Computing Non-overlapping Evolutionary Chains

The problem of non-overlapping evolutionary chains (abbreviated NOEC) is as
follows: given a text ¢, an integer k and a pattern p, find whether the strings of
the a sequence u; = p,us,...,u; occur in the text ¢ such that:

1. The number of differences between any two consecutive strings u; and ;41
in the evolutionary chain is at most k, for all ¢ € {1..[}.

2. The starting position of the string u;y; in ¢ is nearest one to the right of the
end position of u; for all 7 € {1..1}.

The first condition ensures that the strings in the evolutionary chain have
errors within some tolerance and the second condition enforces the strings in the
chain not to overlap.

123456789101112131415161718 192021 2223

cabcdeabde abdabbbbocaabhb

abcd abd abd b b b b
a b b

Figure 4
The non-overlapping evolutionary chain for p = abed with at most one difference.

The pattern p first occurs in position 2. The first re-occurrence of the pattern
to the right of position 5 with at most 1-difference is at position 7. Consider the
pattern abb in position 14. The nearest re-occurrence of abb with at most one
difference is at position 15 (i.e. the string bb) but it is not part of the chain
because it overlaps with abb; the first re-occurrence with at most one difference
that is part of the chain is in position 17. The non-overlapping evolutionary
chain is {abed, abd, adb, abb, bb, bb}.

3.1 The modified dynamic programming Algorithm

First we consider an O(nm) algorithm for computing the non-overlapping evo-
lutionary chain of a text of length n and a pattern of lenght m. The algorithm
NOEC presented below is based on the DYNAMIC-PROGRAMMING procedure
presented in [16,17]. The main idea is to construct a matrix D[1..m, 1..n], where
D;; is the minimum number of differences between the prefix of the pattern
pi1...p; and any contiguous substring of the text ending at t;. The DyNAMIC-
PROGRAMMING procedure below terminates when it finds the first occurrence of
the pattern with at most k differences.



G|G|G|T|C|T|A
G|0|0|0f1|1|1|1
G[1]0]|0(1]2]2]|2
G|2(1|0|1|2(3|3
T(3(2]1|0]1|2|3

Figure 5

The matrix D; ; for p= GGGT and t = GGGTCT A

Procedure DYNAMIC-PROGRAMMING(t, p, k)
begin
ne |t m < |l
Dij+0,0<i<m, 0<j<n;
Dig i, 0<i<m;
for 1 :=1tom do
for j:=1ton do
if p[i] = t[j] then
Di7j = min{Di_Lj + 1, Di7j—1 + 1, Di—l,j—l}
else
Di’j = min{Di,l,j +1, Di’jfl +1, Difl,jfl + ].}
if D; ; <k then return i,u
comment v is the suffix of ¢;...¢; is the one that achieves the score D; ;.
od
od
end

Next, the algorithm NOEC makes repeated applications of the DyYNAMIC-
PROGRAMMING procedure; every time that an occurrence of the pattern is found
ending at position i of the text, then we re-apply the DYNAMIC-PROGRAMMING
procedure to the suffix ¢;y1...t,.

Algorithm NOEC(t, p, k)
begin
while i < n do
(i,p) < DYNAMIC-PROGRAMMING(t, p, k)
t <+ ti+1...tn;
end

Theorem 1. Algorithm NOEC computes the non-overlapping evolutionary chain
in O(nm) time and O(nm) space, where n is the length of the input text and m
is the length of the pattern.

3.2 A fast dynamic programming algorithm

The matrix D computed by the DYNAMIC-PROGRAMMING procedure above con-
tains a lot of redundant data which are not of used by algorithm NOEC. In fact



it will suffice to find the index of the largest row of each diagonal of the matrix
D, which has an entry less than k. This computation can be done in linear time
with the aid of suffix trees (see [1]) . The alternative dynamic programming al-
gorithm given in [17] can be modified as above and it will lead to the following
theorem (for details and proofs see [17]).

Theorem 2. There exists an algorithm that computes the non-overlapping evo-
lutionary chain in O(kn) time for fized alphabets, where n is the length of the
input text and k the is mazimum number of differences allowed between consec-
utive members of the chain.

Theorem 3. There exits an algorithm that computes the non-overlapping evo-
lutionary chain in O(n(logm + log|X|)) time for a general alphabet X, where
n is the length of the input text , m is the length of the pattern and k is the
mazimum number of differences allowed consecutive members of the chain.

4 Computing Overlapping Evolutionary Chains

The problem of overlapping evolutionary chains (abbreviated OEC) is defined
as follows: given a text ¢, a pattern p and an integer k < |p|/2, find whether the
strings of the a sequence u; = p,us,...,u; occur in ¢ and satisfy the following
conditions:

1. The number of differences between u; and w;44 is at most k, for all i € {1..1}.
2. Let s; he starting position of string u; in ¢ for all ¢ € {1..}. The starting
position of u;1 for all 4 € {1..1} is to the right of s; + |u;|/2.

In this case we allow the strings of the evolutionary chain to overlap. These
strings have been constrained the overlap at most |p|/2 symbols. Without such
constraint, we can obtain trivial chains such as u; = t;...t;,,—1, where u; and u;41
have at most one difference.

First we present a method for finding all possible members of an overlapping
evolutionary chain Let D; ; be as in section 3 but the pattern is identical to the
text, i.e. p = t; thus D is an n X n matrix. In order to efficiently compute the
matrix D; ; with both i, j € {1..n}, we need to evaluate the following matrix M;
we mark M; ; =/ if there is the alignment of p;...p; with #;...t; with the least
number of differences requires that p; matching ¢; for some [/; otherwise we mark
Mi,j = X.

G|G|G|T|C|T|A
GIV[VIV| x| x| x]|x
G| x|V x| x|x
G| x| X [/[V|V] x| x
T|x|x|x||V|VIV

Figure 6



The matrix M; ; for t = GGGTCT A

The computation of matrix M can easily be done using the matrix D. Con-
sider two consecutive entries in a column of D, say D; ; and D;; ;. We have to
consider two cases:

1. The case p;y1 # tj. If Dijp1,; < D; j;, then the only way that we can align
Di...pi+1 and t1...t; and achieve D; 1, ; differences is by aligning and matching
p1 with ; for some [; hence M; 41 ; = /. Otherwise M; 4, ; = X.

2. The case p;+1 = t;. We have the following subcases:

— Djt1,j = Dj j41 + 1. In this case one can see that M;y1,; = M; j41.

— Diy1,; = D;j—1 + 1. In this case one can see that M; 1 ; = M; ;.

— Diy1,; = D;_1,j—1. In this case one can see that M; 1 ; = M;_q ;1.

— ¢ = 1. One can see that M;1 ; = X.
If more than one of the above subcases hold, then we opt for the one that
leads to M;11,; = x. Thus the computation M can easily done in parallel
with the computation of D. In order to simplify the exposition the compu-
tation of M is omitted in the pseudocode below.

G|G|G|T|C|T|A
G|0|0|0f1|1|1|1
G|1]|0]|0(1]2]|2|2
G|2|1|0(1{2|3|3
T(3(2]1|0]1(2|3
C|3]2]2|1|0|1|2

Figure 7

The matrix D; ; for t = GGGTCT A using M; ; with m =3

Let’s consider Figure 7. We compute the rows 1,2,3, and 4 of the matrix D
as in section 3 for the pattern p = GGGT. We also compute the matrix M as
above. We will now proceed to compute approximate matches of GGTC with
t1...t; for all 7. Lets consider the evaluation of Dso; its value depends on the
values of D5 1, D41 and Dy 5. If we were to use Dj 1, then we have to increase its
value by 1 for the mismatch of ps = C and ¢t = G and decrease it by 1 because
My 1 = x;note p; is no longer taking part in this alignment. If were to use Dy 1,
then we have to increase its value by 1 for the mismatch of p5 = C' and t» = G
and decrease it by 1 because My, = x. If were to use Dy, then we have to
increase its value by 1 for the mismatch of p; = C' and {2 = G and decrease it
by 1 because My,; = x. Whenever there is a match then we only use the three
neighbouring values unaltered (see Figure 6). The correctness proof will appear
in the full paper. The pseudocode for the procedure is outlined below.
Procedure DYNAMIC-PROGRAMMING-II(, p, k)

begin
n |t m < |pl;
D;;i+0,0<I<n, 0<i<m



Di,O —1,0<1<my;
for i :=1 ton do
for j:=1ton do
if M;_1;=+/OR i < m then q = 0;
else ¢ = 1;
if p[i] = t[j] then
Dij=min{D;_1;+1-¢q,Dij-1+1-¢q,Di—1-1}
else
Dij=min{D; 1;+1-¢,Dij1+1-¢,Di-1;-1+1—q}
if D; ; < k then return i,u
end
end

Algorithm OEC(t, p, k)
begin
while ¢ < n do
(i,p) < DyNAMIC-PROGRAMMING-II(t, p, k)
t = tiggotn;
end

Theorem 4. Algorithm OEC computes the all possible overlapping chains in
O(n?) time, where n is the length of the input text.

The definition of the problem OEC does not specify which of the overlap-
ping patterns is chosen as members of the overlapping evolutionary chain. The
following variants of the OEC problem give three choices with different criteria.

4.1 Computing the nearest-neighbour evolutionary chain.

The problem of nearest-neighbour overlapping evolutionary chains (abbreviated
NNOEC) is defined as follows: given a text ¢, a pattern p and an integer k < |p|/2,
find whether the strings of the sequence u; = p,us, ..., u; occur in ¢ and satisfy
the conditions for the OEC problem and the string ;41 is the nearest one to
the right of s; + |u;|/2 that has at most k differences with w; for all ¢ € {1..1}.

Next, the algorithm NNOEC makes repeated applications of the DYNAMIC-
PROGRAMMING procedure; every time that an occurrence of the pattern is found
ending at position ¢ of the text, then we re-apply the DYNAMIC-PROGRAMMING
procedure to the suffix ¢;y1...t,.

Algorithm NNOEC(¢,p, k)
begin
while ¢ < n do
(i,p) « DYNAMIC-PROGRAMMING(t, p, k)
t tz—&-‘ul‘/z-&-ltn;
end



Theorem 5. Algorithm NNOEC computes the nearest neighbour evolutionary
chain in O(nm) time, where n is the length of the input text and m is the size
of the input pattern.

The NNOEC algorithm can be speeded up in a similar manner to the proce-
dure DYNAMIC-PROGRAMMING (see Theorems 2 & 3). The details will be shown
in the full paper. Hence, we have the following theorems:

Theorem 6. There exists an algorithm that computes the nearest neighbour evo-
lutionary chain in O(kn) time over fized alphabets, where n is the length of the
input text and k is the mazimum number of differences allowed between consec-
utive members of the chain.

Theorem 7. There exists an algorithm that computes the nearest neighbour evo-
lutionary chain in O(n(logm + log(|X|)) time over an alphabet |X|, where n is
the length of the input text , m is the length of the pattern and k is mazimum
number of differences allowed between consecutive members of the chain.

4.2 Computing the maximal length evolutionary chain.

The problem of computing longest overlapping evolutionary chains (abbreviated
LOEC) is defined as follows: given a text ¢, a pattern p and an integer k < |p|/2,
find whether the strings of the a sequence u; = p, us, ..., u; occur in ¢t and satisfy
the conditions as in the OEC problem and maximizes [. The computation of the
maximal chain requires the full matrix D as is computed in Theorem 4 and the
evaluation of the following recursion

] | ifd;; <kandd;, >k Vr
maz max,{liy; and d; , > k}, otherwise.

where i + |p|/2 <1 < |p|.

4.3 Computing the minimal weight evolutionary chain

The problem of computing minimal-weight overlapping evolutionary chains (ab-
breviated WOEC) is defined as follows: given a text ¢, a pattern p and an integer
k < |p|, find whether the strings of the a sequence u; = p,us,...,u; occur in ¢
and satisfy the conditions as in the OEC problem and minimize

!
d=Z5i+’Yi
i=1

where 0; is the sum of the differences between u; and w;11 and v; = f(siy1 —
s; — |u;|), where f is a penalty table.

The computation of the maximal chain requires the full matrix D as com-
puted in Theorem 4 and the evaluation of the following recursion



w (Z)_ j—i—|p|+wj, ifdm-<kanddi,r>k vr
AT | min, {w;4; and d;» > k}, otherwise.

where i + |p|/2 <1 < |p|.

5 Conclusions and Open problems

Our primary goal is to identify efficient algorithms for computational problems
which arise in computer-assisted analysis of music, and to also formalise their
relation to well known string pattern-matching problems. The major obstacle to
applying computational and mathematical techniques developed in the context of
string pattern-matching problems to problems of computer-assisted music anal-
ysis appears to be the difficulty of communication and mutual comprehension
between computer scientists and musicologists.

The primary direction of this research is towards a formal definition of mu-
sical similarity between musical entities (i.e. complete pieces of music or mean-
ingful subsets of pieces, e.g. ‘themes’ or ‘motifs’) (See [5,6,7] for details). In
particular we are aiming at producing a quantitative measure or ’characteristic
signature’ of a musical entity. This measure is essential for melodic recognition
and it will have many uses including, for example, data retrieval from musical
databases.

Here we presented the practical algorithms NOEC and OEC for the com-
putation of non-overlapping and overlapping evolutionary chains. Furthermore,
we presented theoretical algorithms for the same problems with improved upper
bounds on their time complexity. Additionally we presented two variants of the
OEC problem, the maximal evolutionary chains and minimum-weight evolution-
ary chains, both of which are of practical importance.

The problems presented here need to be further investigated under a variety
of similarity or distance rules (see [7,21]). For example, Hamming distance of
two strings u and v is defined to be the number of substitutions necessary to get
u from v (u and v have the same length).

Finally comparisons of the empirical results obtained (to be presented in the
full paper) and to those that can be obtained from software library on string
algorithms (see [9]) should be drawn.

References

1. A. Apostolico, The myriad virtues of the Suffix Trees, in A. Apostolico and
Z. Galil, eds, Combinatorial Algorithms on Words, Springer Verlag, NATO ASI
Series, 1985. Theoretical Computer Science 22 (1983), pp. 297-315.

2. O. Berkman, C. Iliopoulos and K. Park, String covering, Information and Com-
putation 123 (1996), pp. 127-137.

3. E. Cambouropoulos, A General Pitch Interval Representation: Theory and Ap-
plications, Journal of New Music Research 25 (1996), pp. 231-251.



10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. E. Cambouropoulos, A formal theory for the discovery of local boundaries in

a melodic surface, in Proceedings of the III Journees d’ Informatique Musicale,
Caen, France, 1996.

E. Cambouropoulos, The role of similarity in categorisation: Music as a case
study. In Proceedings of the Third Triennial Conference of the European Society
for the Cognitive Sciences of Music (ESCOM), Uppsala, 1997.

E. Cambouropoulos and A. Smaill, A Computational Theory for the Discovery
of Parallel Melodic Passages, in Proceedings of the XI Colloquio di Informatica
Musicale, Bologna, Italy, 1995.

T. Crawford, C. S. Iliopoulos, R. Raman, String Matching Techniques for Musical
Similarity and Melodic Recognition, to appear in Computing in Musicology.

M. Crochemore, An optimal algorithm for computing the repetitions in a word,
Information Processing Letters 12 (1981), pp. 244-250.

A. Czumayj, P. Ferragina, L. Gasieniec, S. Muthukrishnan and J. Traeff, The ar-
chitecture of a software library for string processing, to be presented at Workshop
on Algorithm Engineering, Venice, September 1997.

V. Fischetti, G. Landau, J.Schmidt and P. Sellers, Identifying periodic occurences
of a template with applications to protein structure, Proc. 3rd Combinatorial
Pattern Matching, Lecture Notes in Computer Science, vol. 644, 1992, pp. 111-
120.

Z. Galil and K. Park, An improved algorithm for approximate string matching,
SIAM Journal on Computing, 19 (1990), pp. 989-999.

C. S. Iliopoulos and L. Mouchard, Fast local covers, (Submitted).

C. S. Hiopoulos, D. W. G. Moore and K. Park, Covering a string, Algorithmica
16 (1996), pp. 288-297.

C. S. Iliopoulos, D. W. G. Moore and W. F. Smyth, A linear algorithm for com-
puting the squares of a Fibonacci string, in P. Eades and M. Moule, eds. Pro-
ceedings CATS’96, “Computing: Australasian Theory Symposium,” University of
Melbourne, pp. 55—63, 1996.

S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung, Efficients algorithms for
molecular sequences analysis, Proc. Natl. Acad. Sci., USA (1988) 85:841-845
G.M. Landau and U. Vishkin, Introducing efficient parallelism into approximate
string matching and a new serial algorithm, in Proc. Annual ACM Symposium
on Theory of Computing, ACM Press, pp. 220230, 1986.

G.M. Landau and U. Vishkin, Fast string matching with k differences, Journal of
Computer and Systems Sciences, 37 (1988), pp. 63-78.

G. M. Landau and J. P. Schmidt, An algorithm for approximate tandem repeats,
in Proc. Fourth Symposium on Combinatorial Pattern Matching, Springer-Verlag
Lecture Notes in Computer Science 648, pp. 120-133, 1993.

G. Main and R. Lorentz, An O(nlogn) algorithm for finding all repetitions in a
string, Journal of Algorithms 5 (1984), pp. 422-432.

A. Milosavljevic and J. Jurka, Discovering simple DNA sequences by the algo-
rithmic significance method, Comput. Appl. Biosci. (1993) 9:407-411

M. Mongeau and D. Sankoff, Comparison of Musical Sequences, Computers and
the Humanities 24 (1990), pp. 161-175.

D. W. G. Moore and W. F. Smyth, Computing the covers of a string in linear
time, in Proc. 5th ACM-SIAM Symposium on Discrete Algorithms, pp. 511-515,
1994.

E. Myers and S. Kannan, An algorithm for locating non-overlapping regions of
maximum alignment score, in Proc. Fourth Symposium on Combinatorial Pattern
Matching, Springer-Verlag Lecture Notes in Computer Science 648, 1993.



24. Pavel A. Pevzner & W. Feldman, Gray Code Masks for DNA Sequencing by
Hybridization, Genomics, 23, 233-235 (1993).

25. Jeanette P. Schmidt, All shortest paths in weighted grid graphs and its applica-
tion to finding all approximate repeats in strings, in Proc. of the Fifth Symposium
on Combinatorial Pattern Matching CPM’94, Lecture Notes in Computer Science
(1994).

26. Steven S. Skiena & Gopalakrishnan Sundaram, Reconstructing strings from sub-
strings, J. Computational Biol. 2 (1995) 333-353.

Appendix: Music Example

a) Selected entries (in their original sequenc

A |
" o

. -
A (meas. 4) b s
T T
|
B (meas. 7) “FLr o 5> o —
f =
9 i, — ~ !'o & 3 £4]
C (meas. 195F T2 — L=
oy — —+
D (meas. 25 —o " i e 3 T
T L
|
E (meas. 28y Fr—» —

b) ‘Evolution’ of diatonic-pitch pattern

m«~— O «<— 0 < © <~ >
N
N
]

<>Deletion O Insertion [] Replacement

Music Example Francesco da Milano, monothematic
lute recercar (Cavalcanti Lutebook, f. 71v)

The five successive entries, A-FE, are audibly related and can be treated as
stages in the ’evolution’ of a diatonic motif by a series of alterations of edit
distance 2 (where the deletion, insertion, replacement and time-displacement
operations each have weight 1). Thr example was taken from Cawvalcanti Lute-
book, Brussels, Belgium, Bibliotheque Royale (B-Br), MS II 275.



