
HAL Id: hal-00619902
https://hal.science/hal-00619902

Submitted on 25 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Pattern Extraction Algorithm for Abstract Melodic
Representations that Allow Partial Overlapping of

Intervallic Categories
Emilios Cambouropoulos, Maxime Crochemore, Costas S. Iliopoulos, Manal

Mohamed, Marie-France Sagot

To cite this version:
Emilios Cambouropoulos, Maxime Crochemore, Costas S. Iliopoulos, Manal Mohamed, Marie-France
Sagot. A Pattern Extraction Algorithm for Abstract Melodic Representations that Allow Partial
Overlapping of Intervallic Categories. Proceedings of the 6th International Conference on Music
Information Retrieval (ISMIR 2005), 2005, Londres, United Kingdom. pp.167-174. �hal-00619902�

https://hal.science/hal-00619902
https://hal.archives-ouvertes.fr

A PATTERN EXTRACTION ALGORITHM FOR ABSTRACT MELODIC
REPRESENTATIONS THAT ALLOW PARTIAL OVERLAPPING OF

INTERVALLIC CATEGORIES

Emilios Cambouropoulos1, Maxime Crochemore2,3, Costas Iliopoulos3, Manal Mohamed3, Marie-France Sagot4

1 Department of Music Studies, University of Thessaloniki, 540006, Thessaloniki, Greece
emilios@mus.auth.gr

2 Institut Gaspard-Monge, University of Marne-la-Vallée, 77454 Marne-la-Vallée CEDEX 2, France
maxime.crochemore@univ-mlv.fr

3 Department of Computer Science, King’s College London, London WC2R 2LS, England
{mac,csi,manal}@dcs.kcl.ac.uk

4 INRIA Rhône-Alpes, Universit́e Claude Bernard, 43 Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France
Marie-France.Sagot@inria.fr

ABSTRACT

This paper proposes an efficient pattern extraction al-
gorithm that can be applied on melodic sequences that
are represented as strings of abstract intervallic symbols;
the melodic representation introduces special “don’t care”
symbols for intervals that may belong to two partially
overlapping intervallic categories. As a special case the
well established “step-leap” representation is examined.
In the step-leap representation, each melodic diatonic in-
terval is classified as astep(±s), a leap(±l) or aunison
(u). Binary don’t care symbols are introduced to repre-
sent the possible overlapping between the various abstract
categories e.g.∗ = s, ∗ = l and# = −s, # = −l.
For such a sequence, we are interested in finding maximal
repeating pairs and repetitions with a hole (two matching
subsequences separated with an intervening non-matching
symbol). We propose anO(n + d(n − d) + z)-time al-
gorithm for computing all such repetitions in a given se-
quencex = x[1..n] with d binary don’t care symbols,
wherez is the output size.

Keywords: string, don’t care, repetitions, suffix tree,
lowest common ancestor.

1 INTRODUCTION

Recently, there have been different proposals in the liter-
ature to develop an effective music information retrieval
system. The goal of these proposals is to take advantage
of appropriate computer science techniques. For exam-
ple, representing the musical surface as a string or set of
strings may make it possible in some cases to apply exist-
ing algorithms from the field of stringology. For instance,
in order to discover similarities between different musi-
cal entities or to establish motivic “signatures”, music an-
alysts may use algorithms that extract repetitions from
strings. Such similarities often involve finding approx-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

imate repetitions (Crawford et al., 1998). This requires
developing new approximation measures that meet musi-
cians’ needs.

One commonly used representation for music is the
numeric representation MIDI. For such a representation,
different approximation measures have been developed,
such as,δ-, γ- and{δ, γ}-approximate. For example, in
δ-approximate matching, equal-length strings consisting
of integers match if each corresponding integer differs by
not more thanδ – e.g. a C-major{60, 64, 65, 67} and a C-
minor {60, 63, 65, 67} sequence can be matched if a tol-
eranceδ = 1 is allowed in the matching process. Using
these approximation measures, algorithms for finding ap-
proximate repetitions in musical sequences have been de-
veloped (Iliopoulos et al., 2000; Cambouropoulos et al.,
2002). These algorithms are based on approximate pat-
tern matching techniques. For an overview refer to Clif-
ford and Iliopoulos (2004).

Although MIDI is the most common representation
in the computational domain, it has certain well-known
shortcomings, for instance, many important musical prop-
erties are not explicitly represented (e.g. note durations,
accidentals etc.) and almost all information on musical
structure is lost. Therefore, different representations have
been proposed in the literature. For example, Hawley
(1993) proposed representing the musical signal as a se-
quence of pitch intervals. In order to allow tolerance in
interval matching, Ghias et al. (1995) used the reduced
interval alphabet of the “melodic contour” representation.
Lemstr̈om and Laine (1998) proposed classifying the in-
tervals into seven partially overlapping classes: small,
medium and large, up- or downwards, and prime.

In this paper, we propose an alternative method to
using approximate pattern matching techniques for find-
ing approximate repetitions in a musical string. Our ap-
proach is based on using exact pattern matching tech-
niques to extract repetitions from an abstract level of
a musical sequence. As an abstract representation, we
will use the “refined contour” (orstep-leap) representa-
tion - see, for instance, application of this representation
in <http://www.themefinder.org>. In the step-leap repre-
sentation, intervals are classified into five distinct equiva-
lence classes: up- or downwardsstepand leap, anduni-
son. An interval with magnitudea = 0 is a unison(u),
a < 2 is a step(s), and any other intervala ≥ 2 is a leap
(l); the direction of intervals is preserved – see second

Figure 1: Melodic pattern-matching example (the pitches ofthis example are taken from Bach’s Well-Tempered Clavier,
Book I, Fugue in F# major)

string of symbols in Figure 1.
In the second string of symbols in Figure 1, two re-

peated substrings are found:−s s −l and l −s s s −l
each occurring twice. However, for a listener/musician,
the second half of this string of intervals is an approximate
repetition of the first half (two approximately matching
substrings separated by a “hole” of size one) because in-
tervalsa = 1 anda = 2 are considered similar (i.e. a step
is similar to a small leap). This is not simply some rare ex-
ception in music. It is a rather common phenomenon es-
pecially when themes appear in their dominant form (see,
for instance, the tonal answers of almost half of Bach’s
fugue themes from the two books of the Well-Tempered
Clavier). In Figures 2 and 3 some melodic examples are
presented.

The problem in the step-leap representation is that
the abstract interval classes(u, s, l) have sharp bound-
aries and no diatonic pitch interval instance may belong
to more than one class. In other words, borderline mem-
bers can never be matched to other ‘similar’ members of
other classes (e.g. ana = 2 interval as a member of leap
can never be matched to a ‘similar’a = 1 interval which is
a step), i.e, a small leap can never be considered as a step.
A way to overcome this problem is to allow partial over-
lapping between the various classes (this is also suggested
in Lemstr̈om and Laine (1998)). For instance, an interval
a = 2 may be classified as either step or leap. A special
“binary don’t care” symbol∗ that matches eithers or l is
used (see third string of symbols in Figure 1). Similarly,
another don’t care symbol# that matches both−s and−l
is also used. Note that this idea can be easily extended to
any constant number of partially overlapping classes, such
as those proposed in Lemström and Laine (1998).

A pattern extraction algorithm may find a large num-
ber of repeating patterns. Many of these are not musically
or perceptually important. A mechanism, therefore, for
selecting important patterns is required. A relatively so-
phisticated method for finding beginnings of potentially
salient repetitions is proposed by Cambouropoulos. Fol-
lowing this proposal, for each pattern a prominence value
is calculated based on frequency of occurrence, pattern
length and degree of pattern overlapping; these promi-
nence values contribute to establishing a segmentation
prominence profile for a melody whereby the most likely
positions of important repetitions are highlighted. In this
paper, where the aim is not segmentation but the extraction
of interesting patterns, simpler criteria are set: extraction

of maximal repeating pairs and repetitions with a ‘hole’.
The later involves extracting immediately repeated non-
overlapping melodic patterns - in order that the patterns
do not overlap over one note a ‘hole’ is necessary in the
pitch interval representation (for example, in Figure 1, the
second half of the melody is an approximate repetition of
the first half - in the interval representations beneath the
melody it is necessary to skip one symbol in the middle
so that the repetition is consecutive and non-overlapping
at the note level).

For strings with don’t cares, several string matching
algorithms have been proposed (see (Fischer and Paterson,
1974; Apostolico and Preparata, 1983; Amir et al., 2001)).
Recently, Iliopoulos et al. (2003) presented algorithms for
computing typical regularities in strings with don’t cares.
Here, we consider binary don’t care symbols that each
matches beside itself two additional symbols. For string
x = x[1..n] with d binary don’t cares, we propose an al-
gorithm for computing special kinds of repetition that we
refer to as “maximal-pairs” and “repetitions with a hole”.
The proposed algorithm usesO(n + d(n − d) + z) time,
wherez is the output size.

The paper is organized as follows: in Section 2, we
state the preliminaries used throughout the paper. In Sec-
tion 3, we define all approximate repetitions problem and
describe in general how to find them. In Section 4, we
detail our algorithm. Finally, in Section 5, we analyze the
running time of the algorithm.

2 PRELIMINARIES

Throughout the paper,x = x[1..n] denotes astring of
lengthn over Σ ∪ {∗,#}, whereΣ = {s,−s, l,−l, u}.
The symbols ‘∗’ and ‘#’ are calledbinary don’t caresym-
bols. Each binary don’t care symbolmatchesitself and
two different symbols, that is,∗ = ∗, ∗ = s, ∗ = l,# =
#,# = −s and# = −l.

We usex[i], for i = 1, 2, . . . , n, to denote thei-th
symbol of x, andx[i..j] as a notation for thesubstring
x[i]x[i + 1] · · ·x[j] of x. If x = uv thenx is said to be
theconcatenationof the two stringsu andv. A stringy is
said tooccurin x at positioni if y[j] = x[i + j − 1], for
1 ≤ j ≤ |y|.

A repeating pairin x is represented by(p; i, j) where,
x[i..i+p−1] = x[j..j+p−1] for somei 6= j. The positive
integerp is called theperiodof the repeating pair. Ifx[i−
1] 6= x[j − 1] then(p; i, j) is left-maximal. Respectively,

Opening melody of Beethoven’s Piano Sonata Op.10, No.2.

Upper voice ‘stream’ (theme and tonal answer) from the opening of Bach’s Well-Tempered Clavier, Book I, Fugue in F#
major.

Upper voice ‘stream’ (theme and tonal answer) from the opening of Bach’s Well-Tempered Clavier, Book I, Fugue in C
minor.

Second theme from Shostakovich’s String Quartet No 4 in D major, Op. 83, Mov. 4

Figure 2: Melodic examples where ana = 1 interval (step) and ana = 2 (leap) should be matched (these positions are
indicated by asterisks in the melodic examples). Brackets indicate extracted melodic repetitions

Figure 3: The opening melody of Mussorgsky’s, Pictures froman exhibition, Promenade. Extracted maximal repeating
pairs and repetitions with a ‘hole’ are indicated by brackets

If x[i + p] 6= x[j + p] then(p; i, j) is right-maximal. If
(p; i, j) is both left- and right-maximal then it ismaximal-
pair. A repetition with a holeis a repeating pair(p; i, j)
such thatj = i + p + 1.

Here, we present a method for finding all maximal-
pairs and all repetitions with a hole in a given stringx,
wherex may have occurrences of binary don’t cares. Our
method uses the suffix tree ofx as a fundamental data
structure. A complete description of suffix trees is be-
yond the scope of this paper, and can be found in (Gus-
field, 1997) or (Crochemore and Rytter, 2002). However,
for the sake of completeness, we will briefly review the
notion.

Definition 1 (Suffix tree) A suffix treeT (x) of the string
x$ = x[1..n]$ is a rooted directed tree with exactlyn
leaves numbered 1 ton + 1, where$ /∈ Σ. Each internal
node, other than the root, has at least two children and
each edge is labelled with a non-empty substring ofx. No
two edges out a node can have edge-labels beginning with
the same symbol. The key feature of the suffix tree is that
for any leafi, the concatenation of the edge-labels on the
path from the root to leafi exactly spells outi-th suffix of
x, with n + 1 denotes the empty suffix.

Several algorithms construct the suffix treeT (x) in
Θ(n) time and space, assuming constant size alphabet (see
for example (Crochemore and Rytter, 2002) and (Gus-
field, 1997)). For any nodev, the path-labelof v is the
label of the path from the root ofT (x) to v; it is denoted
by label(v). Thestring-depthof v is the number of sym-
bols inv’s path-label; it is denoted bydepth(v). Theleaf-
list of v is the set of the leaf numbers in the subtree rooted
atv; it is denoted byLL(v).

Our method makes use of the Schieber and Vishkin
(1988)’s Lowest Common Ancestoralgorithm. For a
given rooted treeT , the lowest common ancestor(LCA)
of two nodeu andv is the deepest node inT that is ances-
tor of bothu andv. After a linear amount of preprocessing
of a rooted tree, any two nodes can be specified and their
lowest common ancestor is found in constant time. That
is, a rooted tree withn nodes is first preprocessed inO(n)
time, and thereafter any lowest common ancestor query
takes only a constant time to be solved, independent ofn.

In the context of suffix trees, the situation commonly
arises that bothu andv are leaves inT (x), wherex[i..n]
andx[j..n] are the suffixes represented byu andv respec-
tively, for integersi andj in the range1..n + 1. In this
case, the nodew = LCA(u, v) is the root of the minimum
size subtree containsu andv. Note that the path-label of
w (label(w)) is thelongest common prefixof x[i..n] and
x[j..n]. The ability of finding such longest common prefix
is an important primitive in many string problems.

3 FINDING ALL REPETITIONS
PROBLEM

Here, we study the problem of finding in a given stingx
over Σ ∪ {∗,#}, the following two kinds of repetitions:
all maximal-pairs and all repetitions with a hole, where
each repetition with a hole is a repeating pair (not neces-
sary maximal) in which an intervening symbol separates
the two matching substrings. In fact, there is a very close

relation between these two kinds of repetitions. For exam-
ple, if a given stringx is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13

x =s s l s s # l s ∗ −l l s s

Then the maximal-pair(6; 3, 7) –which represents two
overlapping matching substrings– represents four repeti-
tions with a hole: (3;3,7),(3;4,8), (3;5,9), (3;6,10).

The relation between maximal-pairs and repetitions
with a hole is presented in the following lemma:

Lemma 1 Let(p; i, j) be a maximal-pair inx and letg =
j − i− p.

1. If g = 1 then(p; i, j) is a repetition with a hole.

2. If g ≤ 0 and j 6= i + 1 then(p′; i + k, j + k) are
repetitions with a hole, wherep′ = j − i − 1 and
k = 0..|g|+ 1.

3. If g ≤ 0 andj = i + 1 then some repetitions with a
hole may be found inx[i..j + p− 1].

4. If g > 1 thenx[i..i + p− 1] andx[j..j + p− 1]g are
two matching substrings separated by interveningg
symbols .

In the following we will introduce Gusfield’s algo-
rithm for finding all maximal-pairs in a given string with-
out don’t cares. The basic tool behind Gusfield’s algo-
rithm is the suffix tree. The algorithm starts by construct-
ing the suffix tree for a given string. The algorithm then
uses a bottom-up approach (from leaves to root) to report
for each internal node the maximal-pairs associated with
it. This is accomplished by maintaining the leaf listLL(v)
of each internal nodev as a collection of disjoint sublists
LLα(v), whereα is the symbol preceding the suffix as-
sociated to a leaf in the subtree rooted byv. Thus, each
internal node is attached at most|Σ| sublists. Reporting
the maximal-pairs is accomplished by the cartesian prod-
uct of a leaf-sublist with all the leaf-sublists of its brothers
that correspond to different symbols. The algorithm runs
in O(n + z), wherez is the number of reported maximal-
pairs. Gusfield’s algorithm can be easily modified to find
all repeating pairs (not necessary maximal) inx.

The presence of the binary don’t care symbols inx
complicates the construction of the suffix tree. Hence,
Gusfield’s algorithm cannot be used directly to solve the
problem. The dynamic programming seems to be an ob-
vious solution. The cost of this method is quadratic. For
example, ifx = s s # l l ∗−l s ∗−l l l s. Then using dy-
namic programming, the following maximal-pairs can be
found: (1;1,2), (1;1,6), (6;1,8), (1;1,9), (1;1,13), (2;2,6),
(1;2,8), (1;2,13), (2;4,5), (1;4,6), ..., (1;11,12). Notethat
only (6;1,8), (1;4,6), (1;6,8), (1;9,11) and (1;4,6) are the
only repetitions with a hole inx (see Table 1).

In the next section, we will explain how the suffix tree
can be used to speed up the dynamic programming cal-
culations. Independently of the size of the alphabet, our
algorithm works for any string that have occurrences of
finite number of binary don’t cares.

Table 1: Using dynamic programming to find all rep-
etitions. The bold values represent the lengths of all
maximal-pairs

1 2 3 4 5 6 7 8 9 10 11 12 13
s s # l l ∗ −l s ∗ −l l l s

1 s - 1 0 0 0 1 0 1 1 0 0 0 1
2 s - 0 0 0 1 0 1 2 0 0 0 1
3 # - 0 0 0 2 0 0 3 0 0 0
4 l - 1 1 0 0 1 0 4 1 0
5 l - 2 0 0 1 0 1 5 0
6 ∗ - 0 1 1 0 1 2 6
7 −l - 0 0 2 0 0 0
8 s - 1 0 0 0 1
9 ∗ - 0 1 1 1
10 −l - 0 0 0
11 l - 1 0
12 l - 0
13 s -

4 ALGORITHM

Given a stringx overΣ ∪ {∗,#}, we construct two new
stringsxs andxl. Where stringxs (respectively,xl) is
obtained by substituting each∗ by s and # by −s (re-
spectively, each∗ by l and# by−l). The idea is to con-
struct two strings both overΣ each is a complement of the
other in a sense that for each binary don’t care symbol in
the original string each of the two new constructed strings
contains one of the two possible matching symbols. Note
that the suffix trees of the two constructed strings can be
built in linear time.

Givenxs andxl, each maximal-pair(p; i, j) in x can
be considered as the concatenations ofm right-maximal
repeating pairs:

(p1; i, j), (p2; i+p1, j+p1), ..., (pm; i+

m−1∑

k=0

pk, j+

m−1∑

k=1

pk),

where

1. thestarting-pair(p1; i, j) is a maximal-pair (i.e. left-
and right-maximal) in eitherxs or xl,

2. the collection of these right-maximal repeating pairs
is distributed betweenxs and xl i.e. one right-
maximal repeating pair is inxs and the following re-
peating pair is inxl,

3. p =
∑m

k=1 pk.

The above states the main idea of our algorithm. The
algorithm iterates twice. In the first iteration, all maximal-
pairs in x whose starting-pairs are inxs are calculated.
In the second iteration, all maximal-pairs inx whose
starting-pairs are inxl are calculated.

Recall that the starting-pair needs to be maximal.
Thus, each iteration starts by calculating all maximal-
pairs using the suffix tree (as in Gusfield). Then, each
maximal-pair is extended to the right by a sequence of
right-maximal pairs using a series ofjumpsfrom one suf-
fix tree to another. In each attempt of jump we calculate
the depth of the lowest common ancestor of two nodes.
For example, if the starting-pair(p1; i, j) is a maximal-
pair inxs thenp2 is equal to the depth of lowest common
ancestor of the two leavesi + p1 and j + p1 in T (xl).

Similarly, p3 is the depth of the lowest common ancestor
of leavesi + p1 + p2 andj + p1 + p2 in T (xs) and so on.

For example, ifx = s s # l l ∗ −l s ∗ −l l l s then
xs = s s− s l l s− l s s− l l l s andxl = s s− l l l l−
l s l− l l l s. The suffix trees ofxs andxl are represented
in Figures 4 and 5.

Consider nodeu1 ∈ T (xs). During the bottom-up tra-
versal ofT (xs) and at nodev1, the maximal-pair (2;1,8)
is calculated. To check whether this starting-pair can be
extended to the right, that is whetherx[1 + 2] matches
x[8 + 2]. Since they match, the algorithm jumps toT (xl)
and calculates the lowest common ancestor of leaves 1+2
and 8+2. The lowest common ancestor of these two leaves
is v2. Sincedepth(v2) = 3, the current repeating pair is
extended to the right by the right-maximal repeating pair
(3;3,10). Sincex[3 + 3] matchesx[10 + 3], the algo-
rithm jumps back toT (xs) calculating the lowest com-
mon ancestor of the two leaves 3+3 and 10 +3, that is
v3. Since depth(v3) = 1, the current repeating pair
is extended further to the right by the right-maximal re-
peating pair (1;6,13). Becausex[6 + 1] does not match
x[13 + 1], no more jumps are possible. Then, the algo-
rithm reports (6;1,8) as a maximal-pair inx. Moreover,
sinceg = 8− 1− 6 = 1, then (6;1,8) is a repetition with
a hole inx (Lemma 1).

The details of the algorithm are presented in Figures 6
and 7. For simplicity, algorithmFind-Maximal-Pairsas-
sumes that bothT (xs) andT (xl) are binary suffix trees.
This is always a valid assumption since that any suffix
tree can be transformed into binary one inO(n) time.
The functionReport(p; i, j) reports the given maximal-
pair and checks according to Lemma 1 for all repetitions
with a hole. Note that ifg = j − i− p ≤ 0 andj = i + 1
thenAll-Pairs is used to find all pairs (not necessary max-
imal) in x[i..j + p − 1] . Algorithm All-Pairs is a simple
modification ofAll-Maximal-Pairs.

5 RUNNING TIME

In this section, we analyze the running time ofAll-
Repetitionsalgorithm. Recall that, for constant size alpha-
bet, a suffix tree can be built inO(n)-time. Thus, creating
bothT (xs) andT (xl) costsO(n)-time. Creating the leaf-
lists of all leaves costsO(n)-time. At every internal node,
the algorithm reports the repetitions associated with this
node and constructs the leaf-sublists by concatenating the
leaf-sublists of the children of this node. The total cost for
creating the leaf-lists over all internal node isO(n)-time.

For each possible starting-pair the algorithm performs
series of jumps form one tree to another. Each jump costs
constant time which is the cost of the lowest common an-
cestor (LCA) query (Schieber and Vishkin, 1988). In the
following we will estimate an upper bound for the number
of jumps performed by the algorithm.

Observe that, we jump fromT (xs) to T (xl) to extend
the current repeating pair to the right by a right-maximal
repeating pair inxl. This only possible if and only if the
first two symbols of both two copies of this new right-
maximal repeating pair are either∗ and l or # and−l.
Similarly, we jump back fromT (xl) to T (xs) if and only
if the current repeating pair can be extended to the right by

v3

s

v1

s

1

x
s
[3

..
1
3
]

8

−
l
l
l
s

2

x
s
[3

..
1
3
]

−
l

6

x
s
[8

..
1
3
]

9

ll
s

13

$

3

x s
[3

..
13

]

l
s

5

x
s
[7

..
1
3
]

12

$

ls

4

x
s
[7

..
1
3
]

11

$

−
l

7
x

s
[8

..
1
3
]

10

ll
s

Figure 4: The suffix tree ofxs$

s

1

x
l
[2

..
1
3
]

8

x
l
[9

..
1
3
]

2

x
l
[3

..
1
3
]

13

$

l

12

s l

11

s

4

x
l
[6

..
1
3
]

5

x
l
[7

..
1
3
]

−
l

6

x
l
[8

..
1
3
]

9

ll
s

−
l

7

x
l
[8

..
1
3
]

v2

ll

10

s

3

x
l
[6

..
1
3
]

Figure 5: The suffix tree ofxl$

Algorithm All-Repetitions(x)
Input: A stringx[i..n] overΣ ∪ {∗,#}
Output: All maximal-pairs and all repetitions with a hole

in x
1. for i = 1 to n
2. if x[i] = ‘∗’
3. then xs[i] = ‘s’
4. else ifx[i] = ‘#’
5. then xs[i] = ‘−s’
6. else xs[i] = x[i]
7. for i = 1 to n
8. if x[i] = ‘∗’
9. then xl[i] = ‘l’
10. else ifx[i] = ‘#’
11. then xl[i] = ‘−l’
12. else xl[i] = x[i]
13. Build the suffix treesT (xs) andT (xl)
14. Find-Maximal-Pairs(x, T (xs))
15. Find-Maximal-Pairs(x, T (xl))

Figure 6:All-Repetitionsalgorithm

Algorithm Jump&Report(x, i, j, c, d)
1. length←d
2. while x[i + length] = x[j + length]
3. if c = ‘s’ then c←‘ l’
4. else c←‘s’
5. v←T (xc).LCA(i + length, j + length)
6. length←length + depth(v)
7. Report(length; i, j)

Algorithm Find-Maximal-Pairs(x, T (xc))
1. for each leaf nodeu ∈ T (xc)
2. if u represents theith suffix ofxc

3. then LLx[i−1](u)←{i}
4. for eachα ∈ Σ ∪ {∗,#} andα 6= x[i− 1]
5. LLα(u)←∅
6. for each internal nodeu ∈ (xc) in bottom-up (depth-

first) manner
7. u1, u2 ←the left and the right children ofu
8. for each (i ∈ LLα1

(u1) andj ∈ LLα2
(u2))

whereα1 6= α2

9. if (x[i+depth(u)] = x[j+depth(u)])
10. then Jump&Report(x,i,j,c,depth(u))
11. else Report(depth(u); i, j)
12. for eachα ∈ Σ ∪ {∗,#}
13. LLα(u)←LLα(u1) ∪ LLα(u2)

Figure 7:Jump&ReportandFind-Maximal-Pairssubrou-
tines

a right-maximal repeating pair inxs, where the first two
symbols of both copies of this repeating pair are either∗
ands or # and−s. Thus, the total number of jumps is
O(d(n−d)), whered is the total number of don’t cares in
x. Summing the above gives that the total running time is
as follows:

Theorem 1 Given stringx[1..n] ∈ {Σ ∪ {∗,#}}∗, al-
gorithm All-Repetitions reports all maximal-pairs and
all repetitions with a hole inx in spaceO(n) and time
O(n + z + d(n − d)), wherez is the output size andd is
the total number of binary don’t cares.

Clearly, the algorithm might have a quadratic running
time if the input string hasn/2 binary don’t care sym-
bols. For example, finding all repetitions in stringx =
{sl}n/4∗n/2 will cost O(n2)-time. This is asymptotically
equal to the running time of the dynamic programming.
In practice, we expect our algorithm to have a better per-
formance. Table 2 shows the values in the dynamic pro-
gramming matrix that are calculated usingAll-Repetitions
algorithm to compute all maximal-pairs and all repetitions
with a hole in stringx = s s # l l ∗−l s ∗−l l l s. Note
that, in addition to the 22 reported repetitions, only 4 in-
termediate values have been calculated by our algorithm.

Table 2: The values calculated and reported byAll-
Repetitionsalgorithm. The bold values represent the
lengths of the reported maximal-pairs

1 2 3 4 5 6 7 8 9 10 11 12 13
s s # l l ∗ −l s ∗ −l l l s

1 s - 1 1 1 1
2 s - 1 1 2 1
3 # - 2
4 l - 1 1 1 1
5 l - 2 1 1 5
6 ∗ - 1 1 2 6
7 −l - 2
8 s - 1 1
9 ∗ - 1 1 1
10 −l -
11 l - 1
12 l -
13 s -

6 CONCLUSIONS

In this paper we have presented an algorithm that enables
extraction of melodic patterns from abstract strings of
symbols; this abstract representation allows partial over-
lapping between the various abstract symbolic classes. As
a special case, we have applied the proposed algorithm on
the commonly used “step-leap” interval representation.

In terms of melodic representation, it is suggested that
a more refined representation that comprises of a larger
number of abstract interval classes (e.g. unison, step,
small leap, medium leap, large leap) may actually enable
the extraction of better melodic patterns from the stand-
point of musical analysis or, even, music perception. Ad-
ditionally, the use of rhythmic ‘contour’, in terms of rhyth-
mic abstract classes (e.g. equal, slightly larger, larger,
much larger), may improve results further. Such repre-
sentations have yet to be studied, implemented and tested.

The proposed algorithm requires extensive testing on
pattern extraction tasks, and its performance has yet to be

compared with other similar algorithms. This study, how-
ever, has presented a novel problem in terms of melodic
representation and pattern extraction, and has attempted
to provide an efficient solution to it that can be used for
further testing and evaluation.

ACKNOWLEDGEMENTS

Maxime Crochemore is partially supported by CNRS,
Wellcome Foundation, and Nato grants. Costas S. Iliopou-
los is partially supported by a Marie Curie fellowship,
Wellcome Foundation, Nato and Royal Society grants.
Manal Mohamed is supported by an EPSRC studentship.
Marie-France Sagot is partially supported by French Pro-
gramme BioInformatique Inter EPST, Wellcome Founda-
tion, Royal Society and Nato grants.

REFERENCES

A. Amir, E. Porat, and M. Lewenstein. Approximate
subset matching with don’t cares. InProceedings of
the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 305–306. Society for Industrial and
Applied Mathematics, 2001. ISBN 0-89871-490-7.

A. Apostolico and F. P. Preparata. Optimal off-line detec-
tion of repetitions in a string.Theoret. Comput. Sci., 22:
297–315, 1983.

E. Cambouropoulos. Musical parallelism and melodic
segmentation: A computational approach. music per-
ception.(forthcoming).

E. Cambouropoulos, M. Crochemore, C. Iliopoulos,
L. Mouchard, and Y. Pinzon. Algorithms for comput-
ing approximate repetitions in musical sequences.J.
Computer Mathematics, 79(11):1135–1148, 2002.

R. Clifford and C. Iliopoulos. Approximate string match-
ing for music analusis. Soft Computing - A Fusion
of Foundations, Methodologies and Applications, 8(9),
2004.

T. Crawford, C. Iliopoulos, and R. Raman. String
matching techniques for musical similarity and melodic
recognition. Computing in Musicology, 11:73–100,
1998.

M. Crochemore and W. Rytter.Jewels of Stringology.
World Scientific, 2002.

M. Fischer and M. Paterson. String matching and other
products. In R. Karp, editor,Complexity of Computa-
tion SIAM-AMS Proceedings, pages 113–125, 1974.

A. Ghias, J. Logan, D. Chamberlin, and B. Smith. Query
by humming: Musical information retrieval in an audio
database. InACM Multimedia, pages 231–236, 1995.

D. Gusfield.Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cam-
bridge University Press, 1997.

M. Hawley. Structure of Sound. PhD thesis, MIT, 1993.

C. Iliopoulos, T. Lecroq, L. Mouchard, and Y. Pin-
zon. Computing approximate repetitions in musical se-
quences. InProc. of Prague Stringology Club Work-
shop (PSCW’00), pages 49–59, 2000.

C. S. Iliopoulos, M. Mohamed, L. Mouchard,
K. Perdikuri, W. F. Smyth, and A. Tsakalidis.
String regularities with don’t cares.Nordic Journal of
Computing, 10(1):40–51, 2003.

K. Lemstr̈om and P. Laine. Musical information retrieval
using musical parameters. InProc. International Com-
puter Music Conference (ICMC ’98), pages 341–348,
1998.

B. Schieber and U. Vishkin. On finding lowest common
ancestors: Simplification and parallelization.SIAM
Journal on Computing, 17(6):1253–1262, 1988.

