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The synta
ti
 graph of a so�
 shiftis invariant under shift equivalen
eMarie-Pierre B�eal� Fran
es
a Fiorenzi�Dominique Perrin�Abstra
tWe de�ne a new invariant for shift equivalen
e of so�
 shifts. Thisinvariant, that we 
all the synta
ti
 graph of a so�
 shift, is the dire
teda
y
li
 graph of 
hara
teristi
 groups of the non null regular D-
lasses ofthe synta
ti
 semigroup of the shift.Keywords: Automata and formal languages, symboli
 dynami
s.1 Introdu
tionSo�
 shifts [22℄ are sets of bi-in�nite labels in a labeled graph. If the graph
an be 
hosen strongly 
onne
ted, the so�
 shift is said to be irredu
ible. Aparti
ular sub
lass of so�
 shifts is the 
lass of shifts of �nite type, de�ned by a�nite set of forbidden blo
ks. Two so�
 shifts X and Y are 
onjugate if there is abije
tive blo
k map fromX onto Y . It is an open question to de
ide whether twoso�
 shifts are 
onjugate, even in the parti
ular 
ase of irredu
ible shifts of �nitetype. There is a notion weaker than 
onjuga
y, 
alled shift equivalen
e (see [18,Se
tion 7.3℄). Therefore, invariants for shift equivalen
e are also invariants for
onjuga
y.There are many invariants for 
onjuga
y of shifts, algebrai
 or 
ombinatorial,see [18, Chapter 7℄, [7℄, [17℄, [3℄. For instan
e the entropy is a 
ombinatorialinvariant whi
h gives the 
omplexity of allowed blo
ks in a shift. The zetafun
tion is another invariant whi
h 
ounts the number of periodi
 orbits in ashift.In this paper, we de�ne a new invariant for shift equivalen
e of irredu
ibleso�
 shifts. This invariant is based on the stru
ture of the synta
ti
 semigroupof the language of �nite blo
ks of the shift. An irredu
ible so�
 shift has aunique (up to isomorphisms of automata) minimal deterministi
 presentation,
alled its right Fis
her 
over. The synta
ti
 semigroup S(X) of an irredu
ibleso�
 shift X is the transition semigroup of its right Fis
her 
over.�Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, 77454 Marne-la-Vall�ee Cedex 2,Fran
e. fbeal,fiorenzi,perring�univ-mlv.fr1



In general, the stru
ture of a �nite semigroup is determined by the Green'srelations (denoted R, L, H;D;J ) [20℄. Our invariant is the a
y
li
 dire
tedgraph whose nodes the non null regular D-
lasses of S(X) labeled by their rankand their 
hara
teristi
 group. The edges 
orrespond to the partial order �Jbetween these D-
lasses. We 
all it the synta
ti
 graph of the so�
 shift. Theresult 
an be extended to the 
ase of redu
ible so�
 shifts.We �rst prove the 
onjuga
y invarian
e of the synta
ti
 graph, and usingthis, we prove the shift equivalen
e invarian
e. The proof of the 
onjuga
yinvarian
e is based on Nasu's Classi�
ation Theorem for so�
 shifts [19℄ thatextends William's one for shifts of �nite type. This theorem says that twoirredu
ible so�
 shifts X;Y are 
onjugate if and only if there is a sequen
e ofsymboli
 adja
en
y matri
es of right Fis
her 
oversA = A0; A1; : : : ; Al�1; Al =B, su
h that Ai�1 and Ai are elementary strong shift equivalent for 1 � i � l,where A and B are the adja
en
y matri
es of the right Fis
her 
overs of X andY , respe
tively. This means that, for ea
h i, there are two symboli
 matri
esUi and Vi su
h that, after re
oding the alphabets of Ai�1 and Ai, we haveAi�1 = UiVi and Ai = ViUi. A bipartite shift is asso
iated in a natural way toa pair of elementary strong shift equivalent and irredu
ible so�
 shifts [19℄.The key point in our invariant is the fa
t that an elementary strong shiftequivalen
e relation between adja
en
y matri
es implies some 
onjuga
y rela-tions between the idempotents in the synta
ti
 semigroup of the bipartite shift.We show that parti
ular 
lasses of irredu
ible so�
 shifts 
an be 
hara
terizedwith this synta
ti
 invariant: the 
lass of irredu
ible shifts of �nite type and the
lass of irredu
ible aperiodi
 so�
 shifts.A related invariant 
hara
terizing redu
ible so�
 shifts and whi
h uses syn-ta
ti
 properties has been presented in [11℄. It is a latti
e whose verti
es rep-resent the sub-syn
hronizing subshifts of the shift. Some verti
es of this latti
e
orrespond to the verti
es of rank 1 in our synta
ti
 graph. Other invariantsof a so�
 shift, as the derived shift spa
es and the depth of the shift, are givenin [21℄.Basi
 de�nitions related to symboli
 dynami
s are given in Se
tion 2.1. Werefer to [18℄ or [14℄ for more details. See also [15℄, [16℄, [5℄ about so�
 shifts.Basi
 de�nitions and properties related to �nite semigroups and their stru
tureare given Se
tion 2.2. We refer to [20, Chapter 3℄ for a more 
omprehensiveexpository. Nasu's Classi�
ation Theorem is re
alled in Se
tion 2.4. We provethe 
onjuga
y invarian
e of the synta
ti
 graph in Se
tion 3. A 
omparisonbetween this synta
ti
 invariant and some other ones whi
h are well known, isgiven in Se
tion 4. In Se
tion 3.1, we extend the result to the 
ase of redu
ibleso�
 shifts. In Se
tion 5, we re
all the de�nition of shift equivalen
e betweenso�
 shifts and we prove that the synta
ti
 graph is also invariant under shiftequivalen
e. Part of this paper was presented at the 
onferen
e STACS'04 [4℄.
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2 De�nitions and ba
kground2.1 So�
 shifts and their presentationsLet A be a �nite alphabet, i.e. a �nite set of symbols. The shift map � : AZ!AZ is de�ned by �((ai)i2Z) = (ai+1)i2Z, for (ai)i2Z 2 AZ. If AZ is endowedwith the produ
t topology of the dis
rete topology on A, a shift is a 
losed�-invariant subset of AZ.If X is a shift of AZ and n a positive integer, the nth higher power of X isthe shift of (An)Z de�ned by Xn = f(ain; : : : ; ain+n�1)i2Z j (ai)i2Z2 Xg.A �nite automaton is a �nite multigraph labeled by A. It is denotedA = (Q;E), where Q is a �nite set of states, and E a �nite set of edges la-beled by A. It is equivalent to a symboli
 adja
en
y (Q �Q)-matrix A, whereApq is the �nite formal sum of the labels of all the edges from p to q. A so�
shift is the set of the labels of all the bi-in�nite paths on a �nite automaton. IfA is a �nite automaton, we denote by XA the so�
 shift de�ned by the automa-ton A. Several automata 
an de�ne the same so�
 shift. They are also 
alledpresentations or 
overs of the so�
 shift. We will assume that all presentationsare essential : all states have at least one outgoing edge and one in
oming edge.An automaton is deterministi
 if for any given state and any given symbol,there is at most one outgoing edge labeled by this given symbol. A so�
 shift isirredu
ible if it has a presentation with a strongly 
onne
ted graph. Irredu
ibleso�
 shifts have a unique (up to isomorphisms of automata) minimal determin-isti
 presentation, that is a deterministi
 presentation having the fewest statesamong all deterministi
 presentations of the shift. This presentation is 
alledthe right Fis
her 
over of the shift.Let A = (Q;E) be a �nite deterministi
 (essential) automaton on the al-phabet A. Ea
h �nite word w of A� de�nes a partial fun
tion from Q to Q.This fun
tion sends the state p to the state q, if w is the label of a path fromp to q. The semigroup generated by all these fun
tions is 
alled the transitionsemigroup of the automaton. When XA is not the full shift, the semigroup hasa null element, denoted 0, whi
h 
orresponds to words whi
h are not fa
tors ofany bi-in�nite word of XA. The synta
ti
 semigroup of an irredu
ible so�
 shiftis de�ned as the transition semigroup of its right Fis
her 
over.Example 1 The so�
 shift presented by the automaton of Figure 1 is 
alledthe even shift. Its synta
ti
 semigroup is de�ned by the table in the right partof the �gure.2.2 Stru
ture of �nite semigroupsWe refer to [20℄ for more details about the notions de�ned in this se
tion.Given a semigroup S, we denote by S1 the following monoid: if S is amonoid, S1 = S. If S is not a monoid, S1 = S [ f1g together with the law �de�ned by x � y = xy if x; y 2 S and 1 � x = x � 1 = x for ea
h x 2 S1.3



1 2bba 1 2a 1 �b 2 1ab 2 �ba � 1bb 1 2bab � 2aba � � :
Figure 1: The right Fis
her 
over of the even shift and its synta
ti
 semigroup. Sin
eaa and a de�ne the same partial fun
tion from Q to Q, we have aa = a in the synta
ti
semigroup. We also have aba = 0 and, in general, ab2k+1a = 0 for any nonnegativeinteger k. The word bb is the identity in this semigroup.We re
all the Green's relations whi
h are fundamental equivalen
e relationsde�ned in a semigroup S. The four equivalen
e relationsR, L, H, J are de�nedas follows. Let x; y 2 S, xRy , xS1 = yS1;xLy , S1x = S1y;xJ y , S1xS1 = S1yS1;xHy , xRy and xLy:Another relation D is de�ned by:xDy , 9z 2 S xRz and zLy:In a �nite semigroup J = D. We re
all the de�nition of the quasi-order �J :x �J y , S1xS1 � S1yS1:AnR-
lass is an equivalen
e 
lass for a relationR (similar notations hold for theother Green's relations). An idempotent is an element e 2 S su
h that ee = e.A regular 
lass is a 
lass 
ontaining an idempotent. In a regular D-
lass, anyH-
lass 
ontaining an idempotent is a maximal subgroup of the semigroup.Moreover, two regular H-
lasses 
ontained in a same D-
lass are isomorphi
 (asgroups), see for instan
e [20, Chapter 3 Proposition 1.8℄. This group is 
alledthe 
hara
teristi
 group of the regular D-
lass. The quasi-order �J indu
es apartial order between the D-
lasses (still denoted �J ). The stru
ture of thetransition semigroup S is often des
ribed by the so 
alled \egg-box" pi
tures ofthe D-
lasses.We say that two elements x; y 2 S are 
onjugate if there are elements u; v 2S1 su
h that x = uv and y = vu. Two idempotents belong to a same regular D-
lass if and only if they are 
onjugate, see for instan
e [20, Chapter 3 Proposition1.12℄. 4



Let S be a transition semigroup of an automaton A = (Q;E) and x 2 S.The rank of x is the 
ardinal of the image of x as a partial fun
tion from Q toQ. The kernel of x is the partition indu
ed by the equivalen
e relation � overthe domain of x where p � q if and only p; q have the same image by x. Thekernel of x is thus a partition of the domain of x. In Figure 2, we des
ribe theegg-box pi
tures for the even shift of Example 1.121=2 b�b2 1 21 �a ab2 ba �bab �� �0Figure 2: The synta
ti
 semigroup of the even shift is 
omposed of three D-
lassesD1, D2, D3, of rank 2, 1 and 0, respe
tively, represented by the above tables fromleft to right. Ea
h square in a table represents an H-
lass. Ea
h row represents anR-
lass and ea
h 
olumn an L-
lass. The 
ommon kernel of the elements in ea
h rowis written on the left of the row. The 
ommon image of the elements in ea
h 
olumn iswritten above the 
olumn. Idempotents are marked with the symbol �. Ea
h D-
lassof this semigroup is regular. The 
hara
teristi
 groups of D1, D2, D3 are Z=2Z, thetrivial group Z=Zand Z=Z, respe
tively.2.3 The synta
ti
 graph of a so�
 shiftLet X be an irredu
ible so�
 shift and S(X) its synta
ti
 semigroup. It is knownthat S(X) has a unique D-
lass of rank 1 whi
h is regular (see [5℄ or [6℄, see also[11℄).We de�ne a �nite dire
ted a
y
li
 graph asso
iated with X as follows. Theset of verti
es of this graph is the set of non null regular D-
lasses of S(X),but the regular D-
lass of null rank, if there is one. Ea
h vertex is labeled bythe rank of the D-
lass and its 
hara
teristi
 group. There is an edge from thevertex asso
iated with a D-
lass D to the vertex asso
iated with a D-
lass D0 ifand only if D0 �J D. We 
all this a
y
li
 graph the synta
ti
 graph of X (seeFigure 3 for an example). Note that the regular D-
lass of null rank, if there isone, is not taken into a

ount in a synta
ti
 graph. This is linked to the fa
tthat a full shift (i.e. the set of all bi-in�nite words on a �nite alphabet) 
an be
onjugate to a non full shift.2.4 Nasu's Classi�
ation Theorem for so�
 shiftsIn this se
tion, we re
all Nasu's Classi�
ation Theorem for so�
 shifts [19℄ (seealso [18, Theorem 7.2.12℄), whi
h extends William's Classi�
ation Theorem forshifts of �nite type (see [18, Theorem 7.2.7℄).Let X � AZ; Y � BZ be two shifts and m; a be nonnegative integers. Amap � : X ! Y is a (m; a)-blo
k map (or (m; a)-fa
tor map) if there is amap Æ : Am+a+1 ! B su
h that �((ai)i2Z) = (bi)i2Z where Æ(ai�m : : : ai�1aiai+1 : : : ai+a) = bi. A blo
k map is a (m; a)-blo
k map for some nonnegative in-tegers m; a (respe
tively 
alled its memory and anti
ipation). The well known5



rank 2, Z=2Zrank 1, Z=ZFigure 3: The synta
ti
 graph of the even shift X of Example 1. We have D2 �J D1sin
e, for instan
e, S(X)1abS(X)1 � S(X)1bS(X)1.theorem of Curtis, Hedlund and Lyndon [10℄ asserts that 
ontinuous maps 
om-muting with the shift map �, are exa
tly blo
k maps. A 
onjuga
y is a one-to-one and onto blo
k map (then, being a shift 
ompa
t, also its inverse is a blo
kmap).We now de�ne the notion of strong shift equivalen
e between two symboli
adja
en
y matri
es. A symboli
 monomial is a formal produ
t of several non-
ommuting variables. In parti
ular, the entries of a symboli
 adja
en
y matrixare integral 
ombinations of symboli
 monomials. In this 
ategory of matri
es,we write A $ B if A = B modulo a bije
tion of their underlying symboli
monomials. For example we 
an write� 0 bb+ 
 2a�$ � 0 aa+ d 2e�$ � 0 bbbb+ 

 2
b� :Two symboli
 matri
es A and B with entries in A and B respe
tively, areelementary strong shift equivalent if there is a pair symboli
 matri
es (U; V )with entries in disjoint alphabets U and V respe
tively, su
h that A$ UV andB $ V U .Another equivalent formulation of this de�nition is the following. Let A andB be two �nite alphabets. We denote by AB the set of words ab with a 2 Aand b 2 B. Let f be a map from A to B. The map f is extended to a morphismfrom �nite formal sums of elements of A to �nite formal sums of elements of B.We say that f transforms a symboli
 (Q�Q)-matrix A into a symboli
 (Q�Q)-matrix B if Bpq = f(Apq) for ea
h p; q 2 Q. Two symboli
 matri
es A and Bwith entries in A and B respe
tively, are elementary strong shift equivalent ifthere is a pair of symboli
 matri
es (U; V ) with entries in disjoint alphabets Uand V respe
tively, su
h that there is a one-to-one map from A to UV whi
htransforms A into UV , and there is a one-to-one map from B to VU whi
htransforms B into V U .Two symboli
 adja
en
y matri
es A and B are strong shift equivalent withinright Fis
her 
overs if there is a sequen
e of symboli
 adja
en
y matri
es ofright Fis
her 
overs A = A0; A1; : : : ; Al�1; Al = B6



su
h that for 1 � i � l the matri
es Ai�1 and Ai are elementary strong shiftequivalent.Theorem 2 (Nasu) Let X and Y be irredu
ible so�
 shifts and let A and Bbe the symboli
 adja
en
y matri
es of the right Fis
her 
overs of X and Y ,respe
tively. Then X and Y are 
onjugate if and only if A and B are strongshift equivalent within right Fis
her 
overs.Example 3 Let us 
onsider the two (
onjugate) irredu
ible so�
 shifts X andY de�ned by the right Fis
her 
overs in Figure 4.
1 2bba 20 3010a0b0b0 d0
0

Figure 4: Two 
onjugate shifts X and Y .The symboli
 adja
en
y matri
es of these automata are respe
tivelyA = �a bb 0� ; B = 24a0 0 d0
0 0 b00 b0 035 :Then A and B are elementary strong shift equivalent withU = �u1 0 u20 u2 0 � ; V = 24v1 0v2 00 v235 :Indeed, UV = �u1v1 u2v2u2v2 0 � ; V U = 24v1u1 0 v1u2v2u1 0 v2u20 v2u2 0 35 :The one-to-one maps from A = fa; bg to UV and from B = fa0; b0; 
0; d0g to VU7



are des
ribed in the tables belowa u1v1b u2v2 ; a0 v1u1b0 v2u2
0 v2u1d0 v1u2 :An elementary strong shift equivalen
e between A = (Q;E) and B = (Q0; E0),enables the 
onstru
tion of an irredu
ible so�
 shift Z on the alphabet U [V asfollows. The so�
 shift Z is de�ned by the automaton C = (Q [ Q0; F ), wherethe symboli
 adja
en
y matrix C of C isQ Q0QQ0 �0 UV 0� :The shift Z is 
alled the bipartite shift de�ned by U; V (see Figure 5). An edgeof C labeled by U goes from a state in Q to a state in Q0. An edge of C labeledby V goes from a state in Q0 to a state in Q. Hen
e, a path of C goes from astate in Q [ Q0 to a state in Q [ Q0, its domain is in
luded either in Q or inQ0, and its image is in
luded either in Q or in Q0. If a path of C has domainin
luded in P and the image in
luded in P 0, we say that it has type (P; P 0).Remark that the se
ond higher power of Z is the disjoint union of X and Ysin
e C2 = �UV 00 V U� :Note also that C is a right Fis
her 
over (i.e. is minimal).
110 23020u2 v2u2v2u1v1Figure 5: The bipartite shift Z of the shifts X and Y in Figure 4. The word u1v1 hastype (Q;Q) and 
orresponds to the word a in X.3 A synta
ti
 invariant for 
onjuga
yIn this se
tion, we prove that the synta
ti
 graph is an invariant for the 
onju-ga
y of irredu
ible so�
 shifts. 8



Theorem 4 Let X and Y be two irredu
ible so�
 shifts. If X and Y are 
onju-gate, then their synta
ti
 graphs are isomorphi
 and the isomorphism preservesthe labels.We give a few lemmas before proving Theorem 4.Let X (respe
tively Y ) be an irredu
ible so�
 shift whose symboli
 adja
en
ymatrix of its right Fis
her 
over is a (Q � Q)-matrix (respe
tively (Q0 � Q0)-matrix) denoted by A (respe
tively by B). We assume that A and B are elemen-tary strong shift equivalent through a pair of matri
es (U; V ). The 
orrespondingalphabets are denoted A, B, U , and V as before. We denote by f a one-to-onemap from A to UV whi
h transforms A into UV and by g a one-to-one mapfrom B to VU whi
h transforms B into V U . Let Z be the bipartite irredu
ibleso�
 shift asso
iated to U; V . We denote by S(X) (respe
tively S(Y ), S(Z))the synta
ti
 semigroup of X (respe
tively Y , Z).Remark that w 2 S(Z) has type (Q;Q) if and only if w 6= 0 and w 2 (f(A))�,and w has type (Q0; Q0) if and only if w 6= 0 and w 2 (g(B))�.Lemma 5 Elements of S(Z) in a same non null H-
lass have the same type.Proof We show the property for the (Q;Q)-type. Let w 2 H and w of type(Q;Q). If w = w0v with w0; v 2 S(Z), then w0 has type (Q; �). If w = zw0 withz; w0 2 S(Z), then w0 has type (�; Q). Thus, wHw0 implies that w0 has type(Q;Q). �The H-
lasses of S(Z) 
ontaining elements of type (Q;Q) (respe
tively (Q0; Q0))are 
alled (Q;Q)-H-
lasses (respe
tively (Q0; Q0)-H-
lasses).Let w = a1 : : : an be an element of S(X), we de�ne the element f(w) as f(a1): : : f(an). Note that this de�nition is 
onsistent sin
e if a1 : : : an = a01 : : : a0m inS(X), then f(a1) : : : f(an) = f(a01) : : : f(a0m) in S(Z). Similarly we de�ne anelement g(w) for any element w of S(Y ).Conversely, let w be an element of S(Z) belonging to f(A)� (� (UV)�). Thenw = f(a1) : : : f(an), with ai 2 A. We de�ne f�1(w) as a1 : : : an. Similarly wede�ne g�1(w). Again these de�nitions and notations are 
onsistent. Thus f isa semigroup isomorphism from S(X) to the subsemigroup of S(Z) of transitionfun
tions de�ned by the words in (f(A))�. Noti
e that f(0) = 0 if 0 2 S(X).Analogously, g is a semigroup isomorphism from S(Y ) to the subsemigroup ofS(Z) of transition fun
tions de�ned by the words in (g(B))�.Lemma 6 Let w;w0 2 S(Z) of type (Q;Q). Then wHw0 in S(Z) if and only iff�1(w)Hf�1(w0) in S(X).Proof Let w = f(a1) : : : f(an) and w0 = f(a01) : : : f(a0m), with ai; a0j 2 A. Wehave w = w0v with v 2 S(Z) if and only if v = f(�a1) : : : f(�ar) with �ai 2 A andf(a1) : : : f(an) = f(a01) : : : f(a0m)f(�a1) : : : f(�ar). This is equivalent to a1 : : : an =a01 : : : a0m�a1 : : : �ar, that is f�1(w)S(Z)1 � f�1(w0)S(Z)1. Analogously, we havew0 = wv0 with v0 2 S(Z), if and only if f�1(w0)S(Z)1 � f�1(w)S(Z)1. Thisproves that wRw0 in S(Z) if and only if f�1(w)Rf�1(w0) in S(X). In the same9



way, one 
an prove the same statement for the relation L and hen
e for therelation H. �A similar statement holds for (Q0; Q0)-H-
lasses.Lemma 7 Let w;w0 2 S(Z) of type (Q;Q). Then w �J w0 in S(Z) if and onlyif f�1(w) �J f�1(w0) in S(X). This implies that wJw0 in S(Z) if and only iff�1(w) J f�1(w0) in S(X).Proof The �rst statement 
an be prooved as in the previous lemma. �Similar results hold between S(Y ) and S(Z). As a 
onsequen
e we get thefollowing lemma.Lemma 8 The bije
tion f between S(X) and the elements of S(Z) in (f(A))�,indu
es a bije
tion between the non null H-
lasses of S(X) and the (Q;Q)-H-
lasses of S(Z). Moreover this bije
tion keeps the relations J , �J and the rankof the H-
lasses.A similar statement holds for the bije
tion g.We now 
ome to the main lemma, whi
h shows the link between the ele-mentary strong shift equivalen
e of the symboli
 adja
en
y matri
es and the
onjuga
y of some idempotents in the semigroup of the bipartite shift. Thislink is the key point of the invariant.Lemma 9 Let H be a regular (Q;Q)-H-
lass of S(Z). Then there is a regular(Q0; Q0)-H-
lass in the same D-
lass as H.Proof Let e 2 S(Z) be an idempotent element of type (Q;Q). Let u1v1 : : : unvnin (UV)� su
h that e = u1v1 : : : unvn. We de�ne �e = v1 : : : unvnu1. Thuseu1 = u1�e in S(Z). Remark that �e depends on the 
hoi
e of the word u1v1 : : :unvn representing e in S(Z).If w denotes v1 : : : unvn and v denotes u1, we have e = vw and �e = wv. Itfollows that e and �e are 
onjugate, thus e2 = e and �e2 are 
onjugate. Moreover�e3 = wvwvwv = weev = wev = wvwv = �e2:Thus �e2 is an idempotent 
onjugate to the idempotent e. As a 
onsequen
e eand �e2 belong to a same D-
lass of S(Z) (see Se
tion 2), and �e2 6= 0. The resultfollows sin
e �e2 is of type (Q0; Q0). �Note that the number of regular (Q;Q)-H-
lasses and the number of regular(Q0; Q0)-H-
lasses in a same D-
lass of S(Z), may be di�erent in general.We now prove Theorem 4.Proof[of Theorem 4℄ By Nasu's Theorem [19℄ we 
an assume, without loss ofgenerality, that the symboli
 adja
en
y matri
es of the right Fis
her 
overs of10



X and Y are elementary strong shift equivalent. We de�ne the bipartite shiftZ as above.Let D be a non null regular D-
lass of S(X). Let H be a regular H-
lassof S(X) 
ontained in D. Let H 00 = f(H). By Lemma 8, the groups H andH 00 are isomorphi
. Let D00 the D-
lass of S(Z) 
ontaining H 00. By Lemma 9,there is at least one regular (Q0; Q0)-H-
lass K 00 in D00, whi
h is isomorphi
 toH 00. Let H 0 = g�1(K 00) and let D0 be the D-
lass of S(Y ) 
ontaining H 0. ByLemma 8, the groups H 0 and K 00 are isomorphi
. Hen
e the groups H and H 0are isomorphi
.By Lemmas 8 and 9, we have that the above 
onstru
tion of D0 from Dis a bije
tive fun
tion ' from the non null regular D-
lasses of S(X) onto thenon null regular D-
lasses of S(Y ). Moreover the 
hara
teristi
 group of D isisomorphi
 to the 
hara
teristi
 group of '(D) and, by Lemma 8, the rank ofD is equal to the rank of '(D).We now 
onsider two non null regular D-
lasses D1 and D2 of S(X). ByLemma 8 and Lemma 9, D1 �J D2 if and only if '(D1) �J '(D2). It followsthat the synta
ti
 graphs of S(X) and S(Y ) are isomorphi
 through the bije
tion'. �3.1 The redu
ible 
aseNasu's Classi�
ation Theorem holds for redu
ible so�
 shifts by the use of rightKrieger 
overs instead of right Fis
her 
overs [19℄. This enables the extensionof our result to the 
ase of redu
ible so�
 shifts.Let X � AZ be a shift. We de�neX� = fx� j x 2 Xg;where for x 2 AZ, we denote by x� the left in�nite word : : : x�2x�1x0. Theequivalen
e relation � on X� is de�ned as follows. Let x; y 2 X�,x � y , fu 2 A+ j xu 2 X�g = fu 2 A+ j yu 2 X�g:If X is a so�
 shift, the equivalen
e 
lasses of � are �nitely many [15℄. The rightKrieger 
over of X is de�ned as the automaton labeled by A in whi
h the statesare the �-
lasses [x℄ with x 2 X�, and there is a an edge labeled a from [x℄to [xa℄ if xa 2 X�. The analogous of Theorem 2 for (possibly) redu
ible so�
shifts is the following.Theorem 10 [19, Theorem 3.3℄ Let X and Y be so�
 shifts and let A andB be the symboli
 adja
en
y matri
es of the right Krieger 
overs of X and Y ,respe
tively. Then X and Y are 
onjugate if and only if A and B are strongshift equivalent within right Krieger 
overs.Hen
e we 
an de�ne the syntati
 graph of a redu
ible shift X as the graph ofthe regular D-
lasses of the transition semigroup of its right Krieger 
over. Theresult of Theorem 4 is extended as follows for redu
ible so�
 shifts.11



Theorem 11 Let X and Y be two so�
 shifts. If X and Y are 
onjugate, thentheir synta
ti
 graphs are isomorphi
 and the isomorphism preserves the labels.An e�e
tive pro
edure to 
onstru
t the right Krieger 
over of a so�
 shift isdes
ribed in [19℄. First, one 
onstru
ts the (unique) minimal deterministi
 au-tomaton with one initial state re
ognizing the language of �nite blo
ks of theshift. Next, one erases all the states whi
h are not the end of any left-in�nitepath. This automaton turns out to be the right Krieger 
over of the shift. Forinstan
e, the right Krieger 
over of the even shift in Figure 1, is illustrated inFigure 6.
2 31bbbaaFigure 6: The right Krieger 
over of the even shift X des
ribed in Figure 1. Noti
ethat, although the shift X is irredu
ible, the right Fisher 
over of X does not 
oin
idewith its right Krieger 
over.4 How dynami
 is this invariant?In this se
tion, we brie
y 
ompare the synta
ti
 invariant with other 
lassi
al
onjuga
y invariants. We refer to [18℄ for their de�nitions and properties.First, one 
an remark that the synta
ti
 invariant does not 
apture all thedynami
s. Two so�
 shifts 
an have the same synta
ti
 graph and a di�erententropy, as shown in the example of Figure 7.The 
omparison with the zeta fun
tion is more interesting. Re
all that thezeta fun
tion of a shift X is �(X) = expPn�1 pn znn , where pn is the number ofbi-in�nite words x 2 X su
h that �n(x) = x. We give in Figure 8 an exampleof two irredu
ible so�
 shifts whi
h have the same zeta fun
tion and di�erentsynta
ti
 graphs.The following 
hara
terization of irredu
ible shifts of �nite type �ts naturallyin our framework. It is of 
ourse well-known and 
an be obtained for instan
efrom the 
hara
terization of synta
ti
 semigroups of lo
al languages (see [9℄), andthe 
hara
terization of synta
ti
 semigroups of irredu
ible so�
 shifts (see [5℄),or also from [11℄. 12



1 2bba 1 2a bb

Figure 7: The two above so�
 shifts X;Y have the same synta
ti
 graph and di�erententropies. Indeed, we have b = 
 in the synta
ti
 semigroup of Y . Hen
e the shifts Xand Y have the same synta
ti
 semigroup.
1 2aab bx y 1 2adb 
x yFigure 8: Two so�
 shifts X;Y whi
h have the same zeta fun
tion 11�4z+z2 (seefor instan
e [18, Theorem 6.4.8℄, or [2℄ for the 
omputation of the zeta fun
tion ofa so�
 shift), and di�erent synta
ti
 graphs. Indeed the synta
ti
 graph of X is(rank 2;Z=2Z) ! (rank 1;Z=Z) while the synta
ti
 graph of Y has only one node(rank 1;Z=Z). Thus they are not 
onjugate. Noti
e that Y is a shift of �nite type.Proposition 12 An irredu
ible so�
 shifts is of �nite type if and only its syn-ta
ti
 graph is redu
ed to one node of rank 1 representing the trivial group.Proof Let X be an irredu
ible shift of �nite type. It is well known that X is
onjugate to an edge shift, that is a so�
 shift with a presentation in whi
h thelabels of the edges are all di�erent (or, in other words, a �nite multigraph whi
his not labeled). Hen
e, by Theorem 4, we 
an suppose that X is an edge shift.Let S(X) be the synta
ti
 semigroup of X . Ea
h non null element of S(X) hasrank 1 be
ause it determines an initial state and a terminal state. Moreover it
an be easily seen that for x; y 2 S(X)nf0g we have xRy if and only if x and yhave the same domain, and xLy if and only if they have the same image. Thismeans that S(X) 
ontains only one D-
lass of rank 1 and that the H-
lasses
ontain exa
tly one element.For the 
onverse, suppose that the synta
ti
 graph of an irredu
ible so�
shift X is redu
ed to one node of rank 1 representing the trivial group. By[18, Theorem 3.4.17℄, it suÆ
es to prove that all suÆ
iently long and non nullwords in the synta
ti
 semigroup S(X) of X have rank 1. By [20, Chapter 3Proposition 1.12℄, we have that all suÆ
iently long words in S(X) are of the13



form uvw, where v is an idempotent of S(X). Being ea
h idempotent of rank1, we have that ea
h non null word of the form uvw has rank 1. �Another interesting 
lass of irredu
ible so�
 shifts 
an be 
hara
terized withthe synta
ti
 invariant. It is the 
lass of aperiodi
 so�
 shifts [1℄.Let x 2 X , we denote by period(x) the least positive integer n su
h that�n(x) = x if su
h an integer exists. It is equal to 1 otherwise.Let X;Y be two shifts and let � : X ! Y be a blo
k map. The map is saidaperiodi
 if period(x) = period(�(x)) for any x 2 X with �nite period. Roughlyspeaking, su
h a fa
tor map � does not make periods de
rease.A so�
 shift is aperiodi
 if it is the image of a shift of �nite type under anaperiodi
 blo
k map. An aperiodi
 presentation is a presentation in whi
h forevery u 2 A+, whenever there is a 
y
ling path labeled unp1 u�! p2 u�! : : : u�! pn u�! p1;one has pi = p1 for ea
h i = 2; : : : ; n.Proposition 13 A so�
 shift is aperiodi
 if and only if it has an aperiodi
presentation.Proof Let X be an aperiodi
 so�
 shift. Hen
e X = �(Y ), where � is anaperiodi
 blo
k map and Y a shift of �nite type. Noti
e that we 
an alwayssuppose that Y is an edge shift and that � has no memory nor anti
ipation.Hen
e a presentation A of X is given by the not labeled presentation G of Y inwhi
h the label of an edge e is the letter �(e) (we identify the blo
k map � withthe lo
al rule Æ de�ning it). Moreover, we 
an always suppose that there is atmost one edge from a given state p to a given state q in G. We have that thepresentation A is aperiodi
. Indeed, letp1 u�! p2 u�! : : : u�! pn u�! p1be a path in A. Noti
e that we 
an always suppose that the 
on�guration u1 2X , obtained by repeating in�nitely many times the word u in both dire
tions,has period h = juj. Moreover, in G there is a path vp1 e(1)1 :::e(1)h������! p2 e(2)1 :::e(2)h������! : : : e(n�1)1 :::e(n�1)h���������! pn e(n)1 :::e(n)h������! p1;su
h that �(e(i)1 : : : e(i)h ) = u, for ea
h i = 1; : : : ; n. Being �(v1) = u1, the
on�guration v1 2 Y must have period h. This implies e(i)1 : : : e(i)h = e(1)1 : : : e(1)hfor ea
h i = 2; : : : ; n. In parti
ular we have pi = p1 for ea
h i = 2; : : : ; n.For the 
onverse, suppose that X is a so�
 shift with an aperiodi
 presenta-tion A. Let Y be the edge shift whose presentation is the underlying graph G ofA. Let � : Y �! X be the labeling map. We have that � is aperiodi
. Indeedlet x be a 
on�guration of Y with period n. Hen
e in G there is the pathp1 e1�! p2 e2�! : : : en�1���! pn en�! p1;14



where x = (e1e2 : : : en)1: Hen
e �(x) = (a1a2 : : : an)1, where ai is the label ofthe edge ei. Suppose that a1 : : : an = (a1 : : : ah)k, with hk = n. Hen
e in A wehave the pathpi ai:::aha1:::ai�1����������! ph+i ai:::aha1:::ai�1����������! : : : p(k�1)h+i ai:::aha1:::ai�1����������! pi;for ea
h i = 1; : : : ; h. Being the presentation of X aperiodi
, one has pi =ph+i = � � � = p(k�1)h+i for ea
h i = 1; : : : ; h. This means that the edgespi ei�! pi+1ph+i eh+i���! ph+i+1...p(k�1)h+i e(k�1)h+i������! p(k�1)h+i+1;have same initial state, same �nal state and same label (where the state pn+1is de�ned as p1). Thus they 
oin
ide and this implies h = n and k = 1. Hen
eperiod(�(x)) = n. �Proposition 14 The right Fis
her 
over of an irredu
ible aperiodi
 so�
 shiftis an aperiodi
 presentation.Proof Let A be an aperiodi
 presentation of a so�
 shift X . Let us assumethat A is not deterministi
. We 
ompute from A a deterministi
 presentation Bby the well known subset 
onstru
tion (see for instan
e [18, Se
tion 3.3℄). Weshow that B is an aperiodi
 presentation.Suppose that in B there is a 
y
ling path labeled by unP1 u�! P2 u�! : : : u�! Pn u�! P1;where u is a word and ea
h Pi is a state of B identi�ed with a subset of the statesof A. Let P and Q be two subsets of the states of A. Re
all that in B there is aunique path from P to Q labeled u, if and only if Q is the set of all states q in Afor whi
h there is at least one state p in P and a path in A from p to q labeledu. If su
h a path exists, the state Q is denoted by P �u. It follows that, for ea
hstate pj 2 P1, there is a left in�nite path (qj;1�(i+1) u�! qj;1�i)i�0 labeled by !u(that is the left in�nite word obtained by repeating in�nitely many times theword u on the left), where qj;1 = pj and qj;i 2 Pi mod n for ea
h i � 0. Sin
e thenumber of states is �nite, there are two positive integerm and l and a �nite pathin A su
h that qj;1�(m+l) ul�! qj;1�m um��! qj;1 = pj with qj;1�(m+l) = qj;1�m.Sin
e A is aperiodi
, one 
an set l = 1. Moreover, one 
an always suppose thatm does not depend on j. Let k = (1�m) mod n. We denote by Qk the set of
15



all states qj;1�m. Thus Qk � um = P1. Moreover, we haveQk � Qk � u � Qk � u2 � � � � Qk � um = P1� Qk � um+1 = P2� Qk � um+2 = P3: : :� Qk � um+n+1 = P1:It follows that P1 � P2 � P3 � � � � Pn � P1, and �nally P1 = P2 = � � � = Pn.The right Fis
her 
over of the shift is obtained by state merging of statesof B having the same future. Thus, if B is an aperiodi
 presentation, its rightFis
her 
over also. It is known that the right Fis
her 
over of an irredu
ibleshift has a strongly 
onne
ted graph. �A 
hara
terization of irredu
ible aperiodi
 so�
 shifts is the following.Proposition 15 An irredu
ible so�
 shift is aperiodi
 if and only if its synta
-ti
 graph 
ontains only trivial groups.Proof Let X be an irredu
ible aperiodi
 so�
 shift and let S(X) be the syn-ta
ti
 semigroup of X . If e is an idempotent of S(X) and u 2 S(X) is su
hthat uHe, there exists n � 1 su
h that un = e. Being the right Fis
her 
over ofX aperiodi
, the fun
tion u 
oin
ides with e at ea
h state p su
h that e(p) = p.If e(p) 6= p and u(p) = q, we have that q is in the image of e be
ause thislatter 
oin
ides with the image of u. Hen
e e(q) = q and then u(q) = q. Thisimplies e(p) = un(p) = un�1(q) = q = u(p). Thus u = e. Hen
e all the regularH-
lasses of S(X) are trivial.For the 
onverse, suppose that the synta
ti
 graph of an irredu
ible so�
shift X has only trivial groups. Let un be the label of a 
y
lep1 u�! p2 u�! : : : u�! pn u�! p1:Without loss of generality, we 
an assume that un is idempotent (indeed there isalways a power of un whi
h is idempotent). Being un+1; : : : ; u2n�1 in the sameH-
lass of un, they must 
oin
ide. From un+i = un we dedu
e pi+1 = p1 forea
h i = 1; : : : ; n� 1. �S
h�utzenberger's 
hara
terization of aperiodi
 languages (see for instan
e[20, Chapter 4 Theorem 2.1℄) asserts that the set of blo
ks of an aperiodi
 so�
shift is a regular star free language.5 An invariant for shift equivalen
eWe now prove that our invariant for strong shift equivalen
e is also an invari-ant of shift equivalen
e. Although shift equivalen
e is de
idable, even for so�
16



shifts [12℄, the algorithm is quite intri
ate. Hen
e invariants for shift equiva-len
e of so�
 shifts, whi
h is equivalent to eventual 
onjuga
y, may be useful.Most known 
onjuga
y invariants are also invariants for shift equivalen
e.Two symboli
 adja
en
y matri
es A and B with entries in A and B respe
-tively, are shift equivalent with lag l, where l is a positive integer, if there is apair of symboli
 adja
en
y matri
es (U; V ) with entries in disjoint alphabets Uand V respe
tively, su
h that (see [8℄)Al $ UV; Bl $ V U;AU $ UB; V A$ BV:Two matri
es are shift equivalent if there is a positive integer l su
h that theyare shift equivalent with lag l. Strong shift equivalen
e implies shift equivalen
ebut the 
onverse is false [13℄.In the following theorem we prove that our invariant is also invariant undershift equivalen
e.Theorem 16 Let X and Y be two so�
 shifts. If X and Y are shift equivalent,then their synta
ti
 graphs are isomorphi
 and the isomorphism preserves thelabels.Proof Let A (respe
tively B), be the symboli
 adja
en
y matrix of the rightFis
her 
over of X (respe
tively of Y ) if X and Y are irredu
ible, or of the rightKrieger 
over of X (respe
tively of Y ) if X and Y are redu
ible. Suppose that Aand B are shift equivalent with lag �l. Noti
e that A and B are shift equivalentwith lag l for ea
h l � �l. Moreover, being Al elementary strong shift equivalentto Bl, they have the same synta
ti
 graph by Theorem 4.Hen
e it suÆ
es to prove that for ea
h symboli
 adja
en
y matri
es A andB, there is a big enough integer l, su
h that A and Al have the same synta
ti
graph, and B and Bl have the same synta
ti
 graph.Let S(X) be the synta
ti
 semigroup of X . For ea
h idempotent e 2 S(X),let we 2 A� be a word representing e. For ea
h x 2 S(X) su
h that xHe, thereis a positive integer hx;e su
h that uhx;e = e (re
all that a regular H-
lass is a�nite group). We do the same for ea
h idempotent e0 2 S(Y ) and ea
h y 2 S(Y )su
h that yHe0 in S(Y ). LethX = Ye2S(X)e2=e jwej � Yx;e2S(X)e2=e; xHehx;e:Let h = hX � hY � �l and l = h+ 1. Note that l � �l.We prove that A and Al have the same synta
ti
 graph. The same proofholds for B and Bl. Let S(Al) be the synta
ti
 semigroup of Al. First, noti
ethat the words representing elements of S(Al) are words labelled in Al. ThusS(Al) is a isomorphi
 to a subsemigroup of S(X) and a Green's relation in S(Al)is still a Green's relation in S(X).Let e be an idempotent of S(X) and let D be its regular D-
lass in S(X).Sin
e el = e, the idempotent e is also an idempotent of S(Al), and the regular17



D-
lass of S(Al) 
ontaining e is 
ontained in D. Moreover, if two idempotents eand �e are 
ontained in the same D-
lass of S(X), then they are also 
ontainedin the same D-
lass of S(Al). Indeed let x; y 2 S(X) su
h that �e = xey. Letu (resp. v) a word in A� representing x (resp. y). We have, sin
e e and �e areidempotents, �e = uwe(juj+jwej) hjwej+1 e vw�e(jvj+jw�ej) hjw�ej+1;and juwe(juj+jwej) hjwej+1j = juj+ (juj+ jwej)h+ jwej = (juj+ jwej)l:In the same way one has that l also divides jvw�e(jvj+jw�ej) hjw�ej+1j. Hen
e e and �eare in the same D-
lass of S(Al).Hen
e to ea
h regular D-
lass in S(X) 
orresponds exa
tly one regular D-
lass in S(Al) and the partial order relation �J is kept.It remains to prove that for ea
h idempotent e, the regular H-
lasses H �S(X) and �H � S(Al) 
ontaining e, 
oin
ide. Clearly �H � H . For the 
onverse,if x 2 H , we have that xh = e (re
all that hx;e divides h), and hen
e xh+1 =xl = x. Sin
e xl 2 S(Al), we have that x 2 �H . �Referen
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