Optimal Prefix and Suffix Queries on Texts
Maxime Crochemore, Costas S. Iliopoulos, Mohammad Sohel Rahman

To cite this version:

HAL Id: hal-00619725
https://hal-upec-upem.archives-ouvertes.fr/hal-00619725
Submitted on 14 Feb 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Optimal Prefix and Suffix Queries on Texts

Maxime Crochemore1,2,4, Costas S. Iliopoulos1,3, and M. Sohel Rahman1,3

1 Algorithm Design Group
Department of Computer Science
King’s College London
Strand, London WC2R 2LS, England
http://www.dcs.kcl.ac.uk/adg
2 Gaspard-Monge Institute
Université de Marne-la-Vallée, France
\{csi, sohel\}@dcs.kcl.ac.uk
4 Maxime.Crochemore@kcl.ac.uk

Abstract. In this paper, we study a restricted version of the position-restricted pattern matching problem introduced and studied Mäkinen and Navarro [Position-Restricted Substring Searching, LATIN 2006]. In the problem handled in this paper, we are interested in those occurrences of the pattern that lies in a suffix or in a prefix of the given text. We achieve optimal query time for our problem against a data structure which is an extension of the classic suffix tree data structure. The time and space complexity of the data structure is dominated by that of the suffix tree. Notably, the (best) algorithm by Mäkinen and Navarro, if applied to our problem, gives sub-optimal query time and the corresponding data structure also requires more time and space.

1 Introduction

The classical pattern matching problem is to find all the occurrences of a given pattern $P = P[1..m]$ of length m in a text $T = T[1..n]$ of length n, both being sequences of characters drawn from a finite character set Σ. This problem, along with its numerous variants, has been the focus of extensive research in the field of computer science. Due to the need of various practical applications, most recent works in pattern matching have considered ‘inexact matching’. Many types of differences have been defined and studied in the literature, namely, errors (Hamming distance, LCS \cite{10,19}, edit distance \cite{10,20}), wild cards or don’t cares \cite{10,11,14,27,29}, rotations \cite{1,4,15}, scaling \cite{2,6,3}, permutations \cite{8} among others.

The indexing problem for pattern matching is to preprocess a given text $T[1..n]$ over an alphabet Σ as efficiently as possible to build a data structure to support the following form of online queries: Given a pattern $P[1..m]$ over Σ find the occurrences of P in T. The indexing problem and its many variants have been central in pattern matching \cite{17,13,5,9,22,23,26,29,28,10}. Recently, Mäkinen and Navarro, in \cite{24}, considered an interesting variant of indexed pattern matching, where only the occurrences of a given pattern starting in a particular area, are of interest. In particular, in this variant, the query provides an
interval \([\ell..r]\), \(1 \leq \ell \leq r \leq n\) along with the pattern \(P\) and the occurrences of \(P\) in \(T[\ell..r]\) are sought for. These queries, as is pointed out in [24], are fundamental in many text search situations where one wants to search only a part of the text. The authors in [24] presented a number of algorithms depending on different trade-offs between the time and space complexities. The best query time they achieved was \(O(m + \log \log n + K)\) (\(K\) is the output size) against a data structure exhibiting \(O(n \log^{1+\epsilon} n)\) space and time complexity, where \(0 \leq \epsilon \leq 1\).

In this paper, we study a restricted version of the problem handled in [24]. In particular, we are interested in those occurrences of the pattern that lies in a suffix or in a prefix of the given text. In other words, in our case, the query interval \([\ell..r]\) is of special form: either \(\ell = 1\), i.e. prefix search, or \(r = n\), i.e. suffix search. This kind of queries seem to be interesting in many contexts as well. For example, many of the queries in real life are restricted up to the table of contents search. This kind of queries seem to be interesting in many contexts as well. For example, many of the queries in real life are restricted up to the table of contents search.

In this paper, we present an efficient data structure to handle such online queries in the prefix or suffix of a given text in optimal time. Note that, the best query time achieved in [24] (for the more general problem) is not optimal due to the additional (mild) log log \(n\) term. The best query time they achieved was \(O(m + \log \log n + K)\) (\(K\) is the output size) against a data structure exhibiting \(O(n \log^{1+\epsilon} n)\) space and time complexity, where \(0 \leq \epsilon \leq 1\).

In this paper, we study a restricted version of the problem handled in [24]. In particular, we are interested in those occurrences of the pattern that lies in a suffix or in a prefix of the given text. In other words, in our case, the query interval \([\ell..r]\) is of special form: either \(\ell = 1\), i.e. prefix search, or \(r = n\), i.e. suffix search. This kind of queries seem to be interesting in many contexts as well. For example, many of the queries in real life are restricted up to the table of contents search. This kind of queries seem to be interesting in many contexts as well. For example, many of the queries in real life are restricted up to the table of contents search.

In this paper, we present an efficient data structure to handle such online queries in the prefix or suffix of a given text in optimal time. Note that, the best query time achieved in [24] (for the more general problem) is not optimal due to the additional (mild) log log \(n\) term. The best query time they achieved was \(O(m + \log \log n + K)\) (\(K\) is the output size) against a data structure exhibiting \(O(n \log^{1+\epsilon} n)\) space and time complexity, where \(0 \leq \epsilon \leq 1\).

In this paper, we present an efficient data structure to handle such online queries in the prefix or suffix of a given text in optimal time. Note that, the best query time achieved in [24] (for the more general problem) is not optimal due to the additional (mild) log log \(n\) term. The best query time they achieved was \(O(m + \log \log n + K)\) (\(K\) is the output size) against a data structure exhibiting \(O(n \log^{1+\epsilon} n)\) space and time complexity, where \(0 \leq \epsilon \leq 1\).

In this paper, we present an efficient data structure to handle such online queries in the prefix or suffix of a given text in optimal time. Note that, the best query time achieved in [24] (for the more general problem) is not optimal due to the additional (mild) log log \(n\) term. The best query time they achieved was \(O(m + \log \log n + K)\) (\(K\) is the output size) against a data structure exhibiting \(O(n \log^{1+\epsilon} n)\) space and time complexity, where \(0 \leq \epsilon \leq 1\).

2 Preliminaries

A text, also called a string, is a sequence of zero or more symbols from an alphabet \(\Sigma\). A text \(T\) of length \(n\) is denoted by \(T[1..n] = T_1T_2\ldots T_n\), where \(T_i \in \Sigma\) for \(1 \leq i \leq n\). The length of \(T\) is denoted by \(|T| = n\). A string \(w\) is a factor or substring of \(T\) if \(T = uvw\) for \(u, v \in \Sigma^*\); in this case, the string \(w\) occurs at position \(|w| + 1\) in \(T\). The factor \(w\) is denoted by \(T[|u| + 1..|u| + |w|]\). A prefix (suffix) of \(T\) is a factor \(T[x..y]\) such that \(x = 1\) (\(y = n\)), \(1 \leq y \leq n\) (\(1 \leq x \leq n\)). We define \(i\)th prefix to be the prefix ending at position \(i\) i.e. \(T[1..i]\), \(1 \leq i \leq n\). On the other hand, \(i\)th suffix is the suffix starting at position \(i\) i.e. \(T[i..n]\), \(1 \leq i \leq n\).

In traditional pattern matching problem, we want to find the occurrences of a given pattern \(P[1..m]\) in a text \(T[1..n]\). The pattern \(P\) is said to occur at position \(i \in [1..n]\) of \(T\) if and only if \(P = T[i..i+m-1]\). We use \(Occ_P^T\) to denote the set of occurrences of \(P\) in \(T\).
The problem we handled in this paper can be defined formally as follows.

Problem “PMP/S” (Pattern Matching in a Prefix/Suffix). We are given a text T of length n. Preprocess T to answer the following form of queries.

Query: Given a pattern P and a query interval $[\ell..r]$, with $1 \leq \ell \leq r \leq n$, where either $\ell = 1$ (prefix query) or $r = n$ (suffix query), construct the set

$$\text{Occ}_{T}[\ell..r] = \{i \mid i \in \text{Occ}_T^P \text{ and } i \in [\ell..r]\}.$$

It is easy to realize that Problem PMP/S is a special case of the problem handled in [24]. Apart from being interesting from a pure combinatorial point of view, Problem PMP/S is motivated by practical applications as follows. In real life pattern matching applications, many of the queries are restricted to table of contents of a book or in the title and abstract of a scientific document. As a result, it is interesting to see whether the solution of [24] can be improved to optimal for this special case.

In traditional indexing problem one of the basic data structures used is the suffix tree data structure. In our indexing problem, we make use of this suffix tree data structure. A complete description of a suffix tree is beyond the scope of this paper, and can be found in [25, 31] or in any textbook on stringology (e.g. [12, 18]). However, for the sake of completeness, we define the suffix tree data structure as follows. Given a string T of length n over an alphabet Σ, the suffix tree ST_T of T is the compacted trie of all suffixes of T, where $\$ \not\in \Sigma$. Each leaf in ST_T represents a suffix $T[i..n]$ of T and is labeled with the index i. We refer to the list (in left-to-right order) of indices of the leaves of the subtree rooted at node v as the leaf-list of v; it is denoted by $LL(v)$. Each edge in ST_T is labeled with a nonempty substring of T such that the path from the root to the leaf labeled with index i spells the suffix $T[i..n]$. For any node v, we let ℓ_v denote the string obtained by concatenating the substrings labeling the edges on the path from the root to v in the order they appear. Several algorithms exist that can construct the suffix tree ST_T in $O(n \log \Sigma)$ time [25, 31]. Given the suffix tree ST_T of a text T we define the “locus” μ_P of a pattern P as the node in ST_T such that ℓ_{μ_P} has the prefix P and $|\ell_{\mu_P}|$ is the smallest of all such nodes. Note that the locus of P does not exist, if P is not a substring of T. Therefore, given P, finding μ_P suffices to determine whether P occurs in T. Given a suffix tree of a text T, a pattern P, one can find its locus and hence the fact whether T has an occurrence of P in optimal $O(|P|)$ time [25, 31]. In addition to that, all such occurrences can be reported in constant time per occurrence.

3 Problem PMP/S

In this section, we handle Problem PMP/S. Our basic idea is to build an index data structure that would solve the problem in two steps. At first, it will (implicitly) give us the set Occ_T^P. Then, the index would ‘select’ some of the occurrences of P.
occurrences to provide us with our desired set $Occ_P^{T[\ell..r],\pi}$, where either $\ell = 1$ or $r = n$.

The idea we employ is as follows. We first construct a suffix tree ST_T. According to the definition of suffix tree, each leaf in ST_T is labeled by the starting location of its suffix. We do some preprocessing on ST_T as follows. We maintain a linked list of all leaves in a left-to-right order. In other words, we realize the list $LL(R)$ in the form of a linked list, where R is the root of the suffix tree. In addition to that, we set pointers $v.left$ and $v.right$ from each tree node v to its leftmost leaf v_ℓ and rightmost leaf v_r (considering the subtree rooted at v) in the linked list. It is easy to realize that, with these set of pointers at our disposal, we can indicate the set of occurrences of a pattern P by the two leaves $\mu_P^{(\ell)}$ and $\mu_P^{(r)}$ because all the leaves between and including $\mu_P^{(\ell)}$ and $\mu_P^{(r)}$ in $LL(R)$ correspond to the occurrences of P in T. In what follows, we define the term ℓ_T and r_T such that $LL(R)[\ell_T] = \mu_P^{(\ell)}$ and $LL(R)[r_T] = \mu_P^{(r)}$, where R is the root of ST_T. Now recall that our data structure has to be able to somehow “select” and report only those occurrences that lies in the query interval. To solve this we use a solution to the following much studied problem.

Problem “RMIN/MAX” (Range Minima/Maxima Query Problem). We are given an array $A[1..n]$ of numbers. We need to preprocess A to answer the following form of queries:

Query: Given an interval $I = [i_s..i_e], 1 \leq i_s \leq i_e \leq n$, the goal is to find the index k (or the value $A[k]$ itself) with minimum (maximum, in the case of Range Maxima Query) value $A[k]$ for $k \in I$.

Problem RMIN/MAX has received much attention in the literature and the best solution can build a data structure in $O(n)$ time and space and can answer subsequent queries in $O(1)$ time per query [16, 7].

Now, to complete the construction of the data structure we simply preprocess the array data structure $LL(R)$ for both range minima and range maxima queries. Algorithm 1 formally states the steps to build our data structure. In the rest of this paper, we refer to this data structure as IDS_PMP/S.

Algorithm 1 Algorithm to build IDS_PMP/S

1: Build a suffix tree ST_T of T. Let the root of ST_T is R.
2: Label each leaf of ST_T by the starting location of its suffix.
3: Construct a linked list L realizing $LL(R)$. Each element in L is the label of the corresponding leaf in $LL(R)$.
4: for each node v in ST_T do
5: Store $v.left = i$ and $v.right = j$ such that $L[i]$ and $L[j]$ corresponds to, respectively, (leftmost leaf) v_ℓ and (rightmost leaf) v_r of v.
6: end for
7: Preprocess L for both Range Minima and Range Maxima Queries.
3.1 Analysis

Let us analyze the running time of Algorithm 1. Step 1 builds the traditional suffix tree requiring \(O(n \log \Sigma) \) time. Note that, for bounded alphabet the time required is reduced to \(O(n) \). Step 2 can be done easily while building the suffix tree. Step 3 and Step 4 can be done together in \(O(n) \) by traversing \(ST_T \) using a breadth first or in order traversal. Finally, the preprocessing for range minima and range maxima queries require \(O(n) \) time and space [16, 7]. So IDS_PMP/S can be constructed in \(O(n) \) and \(O(n \log \Sigma) \) time and space, respectively for bounded and general alphabet.

Algorithm 2 Algorithm for Query Processing

1: Find \(\mu^P \) in \(ST_T \).
2: Set \(i = \mu^P.left, j = \mu^P.right. \)
3: \(Occ^P_T[\ell..r] = \epsilon \)
4: if \(\ell = 1 \{ \text{This is a prefix query} \} \) then
5: \(\text{FindPrefixOccurrence}(\mathcal{L}, r, i, j) \{ \text{See Algorithm 3} \} \)
6: else
7: if \(r = 1 \{ \text{This is a suffix query} \} \) then
8: \(\text{FindSufffixOccurrence}(\mathcal{L}, \ell, i, j) \{ \text{See Algorithm 4} \} \)
9: end if
10: end if

Algorithm 3 Procedure \(\text{FindPrefixOccurrence}(\mathcal{L}, r, i, j) \)

1: \(k = \text{RangeMinimaQuery}(\mathcal{L}, i, j) \)
2: if \(\mathcal{L}[k] < r \) then
3: Set \(Occ^P_T[\ell..r] = Occ^P_T[\ell..r] \cup \mathcal{L}[k] \)
4: \(\text{FindPrefixOccurrence}(\mathcal{L}, r, i, k - 1) \)
5: \(\text{FindPrefixOccurrence}(\mathcal{L}, \ell, k + 1, j) \)
6: end if

Algorithm 4 Procedure \(\text{FindSufffixOccurrence}(\mathcal{L}, \ell, i, j) \)

1: \(k = \text{RangeMaximaQuery}(\mathcal{L}, i, j) \)
2: if \(\mathcal{L}[k] > \ell \) then
3: Set \(Occ^P_T[\ell..r] = Occ^P_T[\ell..r] \cup \mathcal{L}[k] \)
4: \(\text{FindSufffixOccurrence}(\mathcal{L}, \ell, i, k - 1) \)
5: \(\text{FindSufffixOccurrence}(\mathcal{L}, \ell, k + 1, j) \)
6: end if
3.2 Query processing

Now we discuss the query processing. Suppose we are given a query pattern P along with a query interval $[\ell..r]$. We first find the locus μ_P in ST_T. Let $i = \mu_P.left$ and $j = \mu_P.right$. This means, we get the set Occ^P_T in the form of $L[i..j]$ spending $O(m)$ time. Now, suppose we are performing a prefix query, i.e. $\ell = 1$. So we want to compute the set $Occ^P_T[1..r]$. It is easy to see that

$$Occ^P_T[1..r] = \{L[k] \mid i \leq k \leq j, L[k] \leq r\}.$$

To compute $Occ^P_T[1..r]$, we apply a divide and conquer approach as follows. We perform a Range Minima Query on L on the interval $[i..j]$. Suppose the query returns the index k. If $L[k] \leq r$ then $L[k] \in Occ^P_T[1..r]$ and then we perform the range minima query on the intervals $[i..k - 1]$ and $[k + 1..j]$ and continue as before. If any of the queries returns k such that $L[k] > r$ we stop. It is easy to verify that this would give us the set $Occ^P_T[1..r]$. Note that, in this way, for each found entry in $Occ^P_T[1..r]$, we have at most 2 intervals to perform range minima queries further. So, in total the time spent is $O(|Occ^P_T[1..r]|)$.

On the other hand, for a suffix query, i.e. when $r = n$, we want to compute:

$$Occ^P_T[\ell..n] = \{L[k] \mid i \leq k \leq j, L[k] \geq \ell\}.$$

So, in this case, in the above procedure, we just need to perform a Range Maxima (instead of Minima) Query and instead of checking whether $L[k] \leq r$, we need to check whether $L[k] \geq \ell$. The query steps are formally stated in Algorithm 2, 3 and 4. In light of the above discussion, it is straightforward to see that the total query time is $O(m + |Occ^P_T[\ell..n]|)$. The result of this paper is formally presented in the form of following theorem.

Theorem 1. For Problem PMP/S, we can construct the $IDS_{PMP/S}$ data structure in $O(n)$ time and space for bounded alphabet and $O(n \log \Sigma)$ time for general alphabet. We can then answer the relevant queries in optimal $O(m + |Occ^P_T[\ell..n]|)$ time per query.

4 Conclusion

In this paper, we have studied Problem PMP/S, a restricted version of the position restricted pattern matching problem (Problem PRPM) introduced and studied in [24]. In Problem PRPM, the query provides an interval $[\ell..r]$, $1 \leq \ell \leq r \leq n$ along with the pattern P and the occurrences of P in $T[\ell..r]$ are sought for. In Problem PMP/S, on the other hand, we are interested in those occurrences of the pattern that lies in a suffix or in a prefix of the given text. In other words, in our case, the query interval $[\ell..r]$ is of special form: either $\ell = 1$, i.e. prefix search, or $r = n$, i.e. suffix search. We have presented an efficient data structure, $IDS_{PMP/S}$, which is an extension of the classic suffix tree data structure. The time and space complexity of $IDS_{PMP/S}$ is dominated by that of the suffix tree
and hence is \(O(n)\) for bounded alphabet and \(O(n \log \Sigma)\) for the general case. The query time we achieve is \(O(m + |\text{Occ}_{\mathcal{T}[\ell..r]}^P|)\) time per query, which is optimal. Notably, the (best) algorithm in [24], if applied to Problem PMP/S, gives sub-optimal query time and the corresponding data structure also requires more time and space. One final remark is that, we can use the suffix array instead of suffix tree as well with some standard modifications in the corresponding algorithms to solve Problem PMP/S.

References

