Automata and forbidden words
Maxime Crochemore, Filippo Mignosi, Antonio Restivo

To cite this version:

HAL Id: hal-00619578
https://hal-upec-upem.archives-ouvertes.fr/hal-00619578
Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Let $L(M)$ be the (factorial) language avoiding a given anti-factorial language M. We design an automaton accepting $L(M)$ and built from the language M. The construction is effective if M is finite.

If M is the set of minimal forbidden words of a single word v, the automaton turns out to be the factor automaton of v (the minimal automaton accepting the set of factors of v).

We also give an algorithm that builds the trie of M from the factor automaton of a single word. It yields a non-trivial upper bound on the number of minimal forbidden words of a word.

Keywords: formal languages, factorial language, anti-factorial language, factor code, factor automaton, forbidden word, avoiding a word, failure function.
A measure of complexity of the language L is introduced in [2] based on the function F_L, that counts, for any n, the number of words of length n in $MF(L)$. Authors prove that the growth of $F_L(n)$ as well as the topological entropy of $MF(L)$ are topological invariants of the dynamical system defined by L. This result provides a useful tool to show that some systems are not isomorphic, which comes in addition to other notions like the ordinary notion of entropy and the zeta function, for example.

Finally, [5] considers properties of languages defined by finite forbidden sets of words. Authors define the Möbius function for these languages.

In this paper we focus on the transformations between L and $MF(L)$. We first design an automaton accepting L and that is built from the language $M = MF(L)$. When M is a finite set the transformation is effective. Moreover, if M is given by its digital tree, that is, its tree-like deterministic automaton, the algorithm is very similar to the algorithm of Aho and Corasick that builds a pattern-matching machine for a finite set of words [1].

In a second part we consider the particular situation of a language that is the set of factors of a single word v. The construction of its factor automaton, the minimal deterministic automaton accepting the factors of v (see [4]) is known to be rather intricate. It is remarkable that the preceding transformation yields exactly the factor automaton of v when the input if the set M of minimal forbidden words of v. We also give an algorithm that realizes the converse transformation, building the trie of M from the factor automaton of v. A corollary of the algorithm is a non-trivial upper bound on the number of minimal forbidden words of a word.

The complexities of algorithms described in this paper are all linear in the size of their input or output. Therefore, the design of possible faster algorithms relies on different representations of objects, which is not the aim of the paper.

2 Avoiding an anti-factorial language

Let A be a finite alphabet and A^* be the set of finite words drawn from the alphabet A, the empty word ϵ included. Let $L \subseteq A^*$ be a factorial language, i.e. a language satisfying: $\forall u,v \in A^* \forall w \in L \Rightarrow u,w \in L$. The complement language $L^c = A^* \setminus L$ is a (two-sided) ideal of A^*. Denote by $MF(L)$ the base of this ideal, we have $L^c = A^* MF(L) A^*$.

The set $MF(L)$ is called the set of minimal forbidden words for L. A word $v \in A^*$ is forbidden for the factorial language L if $v \notin L$, which is equivalent to say that v occurs in no word of L. In addition, v is minimal if it has no proper factor that is forbidden.

One can note that the set $MF(L)$ uniquely characterizes L, just because

$$L = A^* \setminus A^* MF(L) A^*.$$ \hspace{1cm} (1)

The following simple observation provides a basic characterization of minimal
forbidden words.

Remark 1 A word \(v = a_1a_2\cdots a_n \) belongs to \(MF(L) \) iff the two conditions hold:

- \(v \) is forbidden, (i.e., \(v \notin L \)).
- both \(a_1a_2\cdots a_{n-1} \in L \) and \(a_2a_3\cdots a_n \in L \) (the prefix and the suffix of \(v \) of length \(n-1 \) belong to \(L \)).

The remark translates into the equality:

\[
MF(L) = AL \cap LA \cap (A^* \setminus L).
\] (2)

As a consequence of both equalities (1) and (2) we get the following proposition.

Proposition 1 For a factorial language \(L \), languages \(L \) and \(MF(L) \) are simultaneously rational, that is, \(L \in \text{Rat}(A^*) \) iff \(MF(L) \in \text{Rat}(A^*) \).

The set \(MF(L) \) is an anti-factorial language or a factor code, which means that it satisfies: \(\forall u,v \in MF(L) \ u \neq v \implies u \) is not a factor of \(v \), property that comes from the minimality of words of \(MF(L) \).

We introduce a few more definitions.

Definition 1 A word \(v \in A^* \) avoids the set \(M, M \subseteq A^* \), if no word of \(M \) is a factor of \(v \), (i.e., if \(v \notin A^*MA^* \)). A language \(L \) avoids \(M \) if every word of \(L \) avoids \(M \).

From the definition of \(MF(L) \), it readily comes that \(L \) is the largest (according to the subset relation) factorial language that avoids \(MF(L) \). This shows that for any anti-factorial language \(M \) there exists a unique factorial language \(L(M) \) for which \(M = MF(L) \). The next remark summarizes the relation between factorial and anti-factorial languages.

Remark 2 There is a one-to-one correspondence between factorial and anti-factorial languages. If \(L \) and \(M \) are factorial and anti-factorial languages respectively, both equalities hold: \(MF(L(M)) = M \) and \(MF(M(L)) = L \).

We also refer to the next definition that is to be considered in the context of dynamical systems (see [9] for example).

Definition 2 The factorial language \(L \) is said to be of finite type when \(MF(L) \) is finite.

Finally, with an anti-factorial finite language \(M \) we associate the finite automaton \(A(M) \) as described below. The automaton is deterministic and complete, and, as shown at the end of the section by Theorem 3, the automaton accepts the language \(L(M) \).

The automaton \(A(M) \) is the tuple \((Q, A, i, T, F) \) where
• the set Q of states is $\{ w | w$ is a prefix of a word in $M \}$,
• A is the current alphabet,
• the initial state i is the empty word ϵ,
• the set T of terminal states is $Q \setminus M$.

States of $A(M)$ that are words of M are sink states. The set F of transitions is partitioned into the three (pairwise disjoint) sets F_1, F_2, and F_3 defined by:

- $F_1 = \{ (u, a, ua) | ua \in Q, a \in A \}$ (forward edges or tree edges),
- $F_2 = \{ (u, a, v) | u \in Q \setminus M, a \in A, ua \notin Q, v$ longest suffix of ua in Q \} (backward edges),
- $F_3 = \{ (u, a, u) | u \in M, a \in A \}$ (loops on sink states).

The transition function defined by the set F of arcs of $A(M)$ is noted δ.

Remark 3 One can easily prove from definitions that
1. if $q \in Q \setminus (M \cup \{ \epsilon \})$, all transitions arriving on state q are labeled by the same letter $a \in A$,
2. from any state $q \in Q$ we can reach a sink state, i.e., q can be extended to a word of M.

Definition 3 For any $v \in A^*$, q_v denotes the state $\delta(\epsilon, v)$, target of the unique path in $A(M)$ starting at the initial state and labeled by v.

Since $A(M)$ is a complete automaton, q_v is always defined. In the automaton $A(M)$ states are words, but to avoid misunderstandings we sometimes write “the word corresponding to q_v” instead of just “the word q_v”.

Remark 4 Note that if v is a state of $A(M)$ we have $q_v = v$.

We are now ready to state and prove the next lemma that is used in the proof of Theorem 3, the main result of the section.

Lemma 2 Let M be an anti-factorial language and consider $A(M)$. Let $v \in A^*$ be such that, for any proper prefix u of v, q_u is not a sink state ($q_u \notin M$). Then,

1. the word q_v is a suffix of v,
2. q_v is the longest suffix of v that is also a state of $A(M)$

(for $\forall q \in Q$ suffix of v \Rightarrow q suffix of q_v).

Proof. By induction on $|v|$. Base of the induction, $|v| = 0$. Then, $v = \epsilon = q_\epsilon$ and points 1 and 2 are trivially satisfied.

Inductive step $|v| > 0$. We can write $v = ua, a \in A$; hence, $q_v = \delta(q_u, a)$ or equivalently $(q_u, a, q_v) \in F$. By induction, q_u is a suffix of u and, if $q \in Q$ is a suffix of u, q is also a suffix of q_u. By hypothesis, the transition (q_u, a, q_v) cannot belong to F_3 because q_u is not a sink state. We have two cases:
(i) $(q_u, a, q_i) \in F_1$.
(ii) $(q_u, a, q_i) \in F_2$.

In case (i) condition 1 readily comes from the inductive hypothesis because $q_u = \delta(q_u, a)$. Let us suppose that q is a state suffix of v. If $q = \epsilon$ then 2 is trivially satisfied; otherwise, if $q \neq \epsilon$, $q = \delta(q', a)$ for some state $q' \in Q$. Since $v = u a$, q' is a suffix of u and, by induction, q' is a suffix of q_u. Since $q_u = \delta(q_u, a)$ and $q = \delta(q', a)$ is a suffix of q_u, which proves that 2 is satisfied.

In case (ii), since by definition q_u is a suffix of $\delta(q_u, a)$, and since by induction q_u is a suffix of u, q is a suffix of u and, by induction, q is a suffix of q_u. If $q \in Q$ is a suffix of v with $q \neq \epsilon$ (otherwise 2 trivially holds), then $q = q' a$ for some q' suffix of u, and by induction q' is a suffix of q_u and moreover q is a suffix of $\delta(q_u, a)$. By definition q_u is the longest suffix of $\delta(q_u, a)$ that is also a state, and consequently q is a suffix of q_u.

Denoting by $\text{Lang}(A)$ the language accepted by an automaton A, we get the main theorem of the section.

Theorem 3 For any anti-factorial language M, $\text{Lang}(\text{A}(M)) = L(M)$.

Proof. We first prove $L(M) \subseteq \text{Lang}(\text{A}(M))$. We have to show that if v is a word that avoids M then $v \in \text{Lang}(\text{A}(M))$. Assume ab absurd that $v \notin \text{Lang}(\text{A}(M))$; therefore q_v is a sink state. Let u be the shortest prefix of v for which q_u is a sink state (note that $q_u = q_v$). By lemma 2 statement 1, q_u is a suffix of u, but q_v is by definition an element of M, and so v does not avoid M, a contradiction.

We then prove $\text{Lang}(\text{A}(M)) \subseteq L(M)$. Let $v \in \text{Lang}(\text{A}(M))$. Let us suppose ab absurd that v does not avoid M, i.e., $v = uwz$ for some $w \in M$, $u, z \in A^*$. We choose uw as the shortest prefix of v that belongs to $A^* M$. Since $w \in M$ it is by definition a state of $\text{A}(M)$; since w is a state that is a suffix of uw, by lemma 2 statement 2, u is a suffix of q_w. But q_w, which is by definition a state of $\text{A}(M)$, is a prefix of an element w' of M (note that w' is not empty). Since w is a suffix of a prefix of w', u is a factor of w', a contradiction because M is anti-factorial.

The above definition of $\text{A}(M)$ turns into the algorithm below, called L-AUTOMATON, that builds the automaton from a finite anti-factorial set of words. The input is the trie T that represents M. It is a tree-like automaton accepting the set M and, as such, it is noted (Q, A, τ, v, δ'). The procedure can be adapted to test whether T represents an anti-factorial set, or even to generate the trie of the anti-factorial language associated with a set of words.

In view of Equality 1, the design of the algorithm remains to adapt the construction of a pattern matching machine (see [1] or [4]). The algorithm uses a function f called a failure function and defined on states of T as follows. States of the trie T are identified with the prefixes of words in M. For a state au $(a \in A, u \in A^*)$, $f(au)$ is $\delta'(v, u)$, quantity that may happen to be u itself. Note that $f(i)$ is undefined, which justifies a specific treatment of the initial state in the algorithm.
Figure 1: Trie of the factor code \{aa, bbab, bbb\} on the alphabet \{a, b\}. Squares represent terminal states.

\[
L\text{-AUTOMATON (trie } T = (Q, A, i, T, \delta))
\]

1. for each \(a \in A\)
2. \[\text{if } \delta(i, a) \text{ defined} \]
3. \[\text{set } \delta(i, a) = \delta(i, a);\]
4. \[\text{set } f(\delta(i, a)) = i;\]
5. \[\text{else} \]
6. \[\text{set } \delta(i, a) = i;\]
7. for each state \(p \in Q \setminus \{i\} \text{ in width-first search and each } a \in A\)
8. \[\text{if } \delta(p, a) \text{ defined} \]
9. \[\text{set } \delta(p, a) = \delta(p, a);\]
10. \[\text{set } f(\delta(p, a)) = f(\delta(p), a);\]
11. \[\text{else if } p \not\in T \]
12. \[\text{set } \delta(p, a) = f(\delta(p), a);\]
13. \[\text{else} \]
14. \[\text{set } \delta(p, a) = p;\]
15. \[\text{return } (Q, A, i, Q \setminus T, \delta);\]

Example. Figure 1 displays the trie that accepts \(M = \{aa, bbab, bbb\}\). It is an anti-factorial language. The automaton produced from the trie by algorithm \(L\text{-AUTOMATON}\) is shown in Figure 2. It accepts the prefixes of \((ab \cup b)(ab)^*ba\) that are all the words avoiding \(M\).

Theorem 4 Let \(T\) be the trie of an anti-factorial language \(M\). Algorithm \(L\text{-AUTOMATON}\) builds a complete deterministic automaton accepting \(L(M)\).

Proof. The automaton produced by the algorithm has the same set of states as the input trie. It is clear that the automaton is deterministic and complete.

Let \(u \in A^*\) and \(p = \delta(i, u)\). A simple induction on \(|u|\) shows that the word corresponding to \(f(p)\) is the longest proper suffix of \(u\) that is a prefix of some word in \(M\). This notion comes up in the definition of the set of transitions \(F_2\) in the automaton \(A(M)\). Therefore, the rest of the proof just remains to check that instructions implement the definition of \(A(M)\). \(\square\)
Figure 2: Automaton accepting the words that avoid the set \{aa, bbab, bbb\}. Squares represent non-terminal states (sink states).

Proposition 5 Algorithm \(L\)-AUTOMATON runs in time \(O(|Q| \times |A|)\) on input \(T = (Q, A, i, T, \delta')\) if transition functions are implemented by transition matrices.

Proof. If transition functions \(\delta\) and \(\delta'\) are implemented by transition matrices, access to or definition of \(\delta(p, a)\) or \(\delta'(p, a)\) (\(p\) state, \(a \in A\)) are realized in constant amount of time. The result follows immediately.

3 Factor automaton of a single word

In this section we specialize the previous results to the language of factors of a single word. It is proved below that the construction of Section 2 yields the factor automaton (minimal deterministic automaton accepting the factors) of the word (see Theorem 7). The minimality of the automaton seems to be exceptional because, for example, the same construction applied to the set \{aa, ab\} does not provide a minimal automaton.

The reverse construction that produces the trie of minimal forbidden words from the factor automaton is described in the next section.

We consider a fixed word \(v \in A^*\) and denote by \(F(v)\) the language of factors of \(v\).

Proposition 6 The language \(F(v)\) is of finite type.

Proof. Indeed, factors of \(v\), of lengths less than \(|v| + 1\), avoid all words of length exactly \(|v| + 1\). Therefore, every minimal forbidden word of \(F(v)\) has length at most \(|v| + 1\).

For instance, for the word \(v = abbab\), the set of minimal forbidden words of \(F(abbab)\) is \{aa, aba, babb, bbb, c\} (see Figures 3 and 4).
The result of the previous proposition is made more precise in the next section, but an immediate consequence of it and of the definition of the automaton \(\mathcal{A}(M) \) for an anti-factorial language \(M \), the automaton \(\mathcal{A}(MF(\mathcal{F}(v))) \) has a finite number of states. The next statement gives a complete characterization of the automaton as the factor automaton of \(v \).

Theorem 7 For any \(v \in A^* \), the automaton obtained from \(\mathcal{A}(MF(\mathcal{F}(v))) \) by removing its sink states is the minimal deterministic finite automaton accepting the language \(\mathcal{F}(v) \) of factors of \(v \).

Proof. The automaton \(\mathcal{A}(MF(\mathcal{F}(v))) \) is already a deterministic finite automaton that accepts the language \(\mathcal{F}(v) \) by Theorem 3. We only have to prove that it is minimal after removing the sink states.

Suppose \(ab \) absurd that there exist two equivalent non-sink states \(p, q \in Q \). By the standard equivalence relation of indistinguishability and by construction \(p, q \in \mathcal{F}(v) \). Hence, \(v = xpy \) and \(v = x'qy' \) and we can choose \(x \) and \(x' \) of minimal length. We consider two cases:

(i) \(|xp| \neq |x'q| \).
(ii) \(|xp| = |x'q| \).

Case (i). We can suppose for example that \(|xp| < |x'q| \) (the case \(|xp| > |x'q| \) is handled symmetrically). Then, \(xpy \in \mathcal{F}(v) \) implies that \(\delta(p, y) \) is not a sink state, hence, by the equivalence \(\delta(q, y) \) is not a sink state, that is, \(qy \in \mathcal{F}(v) \) by Remark 4. Therefore, \(v = x''qyz \) where \(|x''| \geq |x'| \) by the choice of \(x' \) (of minimal length). Hence, \(|x''| \geq |x'| + |q| + |y| + |z| > |xp| + |x| \), a contradiction.

Case (ii). The equality \(|xp| = |x'q| \) implies either that \(p \) is a suffix of \(q \) or the converse. Let us suppose for example that \(p = s_q \) for some word \(s \neq \epsilon \). By Remark 3 statement 2, there exists \(w = p_z \) that belongs to \(MF(\mathcal{F}(v)) \). By the equivalence, \(q_z \) is also a sink state and, again by the equivalence, for no proper prefix \(u \) of \(q_z \), \(qy \) is a sink state. Hence, by Lemma 2, \(qz \) is an element of \(MF(\mathcal{F}(v)) \), that is, a suffix of \(qz \). Since \(p = s_q, s \neq \epsilon, q_{z} \) is a proper suffix of \(pz \) against the anti-factorial property of \(MF(\mathcal{F}(v)) \). A contradiction again.

After cases (i) and (ii) it appears that there cannot exist two different non-sink states \(p, q \in Q \) that are equivalent. Therefore the automaton without sink states is minimal, which ends the proof.

The property stated by Theorem 7 does not generalize to any finite set words. For example, consider the set \(M = \{ \text{aa, ba} \} \). Its trie has three internal nodes and then the automaton \(\mathcal{A}(M) \) has three states after removing sink states. But the language \(L(M) \) is \(b^* + ab^* \) and its minimal automaton has only two states.

4 Minimal forbidden words of a word

We end the article by an algorithm that builds the trie accepting the language \(MF(\mathcal{F}(v)) \) of minimal words avoided by \(v \). This is an implementation of the
Figure 3: Factor automaton of $abbab$; all states are terminal.

Figure 4: Trie of minimal forbidden words of $\mathcal{F}(abbab)$ on the alphabet \{a, b, c\}. Squares represent terminal states.

inverse of the transformation described in Section 2. Its design follows Equality 2. A corollary of the transformation gives a bound on the number of minimal forbidden words of a single word, which improves on the bound coming readily from Proposition 6.

The input of algorithm MF-TRIE is the factor automaton of word v. It is the minimal deterministic automaton accepting the factors of v. It includes the failure function defined on the states of the automaton and called s. This function is a by-product of efficient algorithms that build the factor automaton (see [4]). It is defined as follows. Let $u \in A^+$ and $p = \delta(i, u)$. Then, $s(p) = \delta(i, u')$ where u' is the longest suffix of u for which $\delta(i, u') \neq \delta(i, u')$. It can be shown that the definition of $s(p)$ does not depend on the choice of u.

```
MF-TRIE (factor automaton $A = (Q, \mathcal{A}, i, T, \delta)$ and its suffix function $s$)
1. for each state $p \in Q$ in width-first search from $i$ and each $a \in \mathcal{A}$
2.  if $\delta(p, a)$ undefined and ($p = i$ or $\delta(s(p), a)$ defined)
3.    set $\delta(p, a) =$ new sink;
4.  else if $\delta(p, a) = q$ and $q$ not already treated
5.    set $\delta(p, a) = q$;
6. return $(Q, A, i, \{sinks\}, \delta')$;
```

9
Example Consider the word $v = \text{abbab}$ on the alphabet $\{a, b, c\}$. Its factor automaton is displayed in Figure 3. The failure function s defined on states has values: $s(1) = s(5) = 0, s(2) = s(3) = 5, s(4) = 1, s(6) = 2$. Algorithm MF-Trie produces the trie of Figure 4 that represents the set of five words $\{aa, aba, babb, bbb, c\}$.

Theorem 8 Let A be the factor automaton of a word $v \in A^*$. (It accepts the language $F(v)$.) Algorithm MF-Trie builds the tree-like deterministic automaton accepting the set of minimal forbidden words of $F(v)$, that is $MF(F(v))$.

Proof. The transitions defined at line 5 duplicates the transition of the width-first search tree, which is the tree of shortest paths from the the initial state of A. This fact is used in the proof. All other transitions are created at line 3 and lead to a sink state. Let A' be the automaton produced by the algorithm.

Consider a word ua ($a \in A$) accepted by A'. (A' accepts only non-empty words.) Let $p = \delta'(i, u)$. By the remark above, u is the shortest word for which $\delta(i, u) = p$. Therefore, if $u = by$ with $b \in A$, we have $\delta(i, y) = s(p)$ by definition of the suffix function s. When the test $\delta'(s(p), a)$ defined" is satisfied, this implies that $ya \in F(v)$. Thus, $bya \notin F(v)$, while $by, ya \in F(v)$. So, after Remark 1, $bya = ua$ is a minimal forbidden word for $F(v)$.

If v is the empty word, $p = i$. The transition from i to the sink labeled by a is created under the condition "$\delta(p, a)$ undefined", which means that the letter a does not occur in v. The word a is again a minimal forbidden word for $F(v)$ in this case.

This proves that any word accepted by A' is in $MF(F(v))$.

Conversely, let $ua \in MF(F(v))$. If u is the empty word, this means that a does not occur in v, therefore there is no transition labeled by a in A. Lines 3 and 4 cope with this situation by creating a δ'-transition from the initial state to accept a.

Assume now that $u = by$ with $b \in A$. The word u is a factor of v, so let $p = \delta(i, u)$. Note that u is the shortest word for which $p = \delta(i, u)$, because all such words are suffixes of each others in the factor automaton A. The word ua is not a factor of v, so the condition "$\delta(p, a)$ undefined" is satisfied. Let $q = s(p)$. We have $q = \delta(i, y)$ because of the minimality of length of u and the definition of s. By the choice of $ua = bya$, ya is a factor of v. Thus, the condition "$\delta(s(p), a)$ defined" at line 3 is satisfied which yields the creation of a transition at line 4 to make A' accept ua as wanted.

This ends the whole proof.

Corollary 9 A word $v \in A^*$ has no more than $2(|v| - 2) (|A_v| - 1) + |A|$ minimal forbidden words if $|v| \geq 3$, where A_v is the set of letters occurring in v. The bound becomes $|A| + 1$ if $|v| < 3$.

Proof. The number of words in $MF(F(v))$ is the number of sink states created during the execution of algorithm MF-Trie. These states have exactly one
ingoing arc originated at a state of the factor automaton \(\mathcal{A} \) of \(v \). So, we have to count these arcs.

From the initial state of \(\mathcal{A} \) there is exactly \(|A| - |A_v|\) such arcs. From the (unique) state of \(\mathcal{A} \) without outgoing arc, there are at most \(|A_v|\) such arcs. From other states there are at most \(|A_v| - 1\) such arcs.

For \(|v| > 3\), it is known that \(\mathcal{A} \) has at most \(2|v| - 2\) states (see [4]). Therefore, \(|MF(\mathcal{F}(v))| \leq (|A| - |A_v|) + |A_v| + (2|v| - 4)(|A_v| - 1) = 2(|v| - 2)(|A_v| - 1) + |A|\).

When \(|v| < 3\), it can be checked directly that \(|MF(\mathcal{F}(v))| \leq |A| + 1\).

Proposition 10 Algorithm MF-\textsc{trie} runs in time \(O(|v| \times |A|) \) on input word \(v \) if transition functions are implemented by transition matrices.

Proof. As for the proof of Proposition 5, the hypothesis on implementation implies that the running time of the algorithm is proportional to \(|Q| \times |A|\). Thus, the result is a consequence of the linear size of \(\mathcal{A} \): the factor automaton of \(v \) has no more than \(2|v| \) states (see [4] for instance).

References

