
HAL Id: hal-00619578
https://hal.science/hal-00619578

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automata and forbidden words
Maxime Crochemore, Filippo Mignosi, Antonio Restivo

To cite this version:
Maxime Crochemore, Filippo Mignosi, Antonio Restivo. Automata and forbidden words. Information
Processing Letters, 1998, 67 (3), pp.111-117. �10.1016/S0020-0190(98)00104-5�. �hal-00619578�

https://hal.science/hal-00619578
https://hal.archives-ouvertes.fr

Automata and Forbidden Words�M. Crochemorey F. Mignosiz A. RestivoxOctober 28, 1998AbstractLet L(M) be the (factorial) language avoiding a given anti-factoriallanguage M . We design an automaton accepting L(M) and built fromthe language M . The construction is e�ective if M is �nite.If M is the set of minimal forbidden words of a single word v, theautomaton turns out to be the factor automaton of v (the minimal au-tomaton accepting the set of factors of v).We also give an algorithm that builds the trie of M from the factorautomaton of a single word. It yields a non-trivial upper bound on thenumber of minimal forbidden words of a word.Keywords: formal languages, factorial language, anti-factorial language,factor code, factor automaton, forbidden word, avoiding a word, failurefunction.1 IntroductionLet L � A� be a factorial language, i.e., a language containing all factors of itswords. A word w 2 A� is called a minimal forbidden word for L if w =2 L and allproper factors of w belong to L. We denote by MF (L) the language of minimalforbidden words for L.The study of combinatorial properties ofMF (L) helps investigate the struc-ture of the language L or of the system it describes. For instance, locally testablefactorial languages (cf [8]) are characterized by the fact that the correspondinglanguages of minimal forbidden words are �nite. In the context of SymbolicDynamics they correspond to systems of �nite type.Another example is given by a language L that is the set of factors of anin�nite word: in this case, as shown in [2], the elements of MF (L) are closelyrelated to the bispecial factors (cf. [6], [7] and [3]) of the in�nite word.�A preliminary version of this work has been accepted to MFCS'98yInstitut Gaspard-Monge, mac@univ-mlv.fr. Work by this author is supported in part byProgramme \G�enomes" of C.N.R.S.zUniversit�a di Palermo, mignosi@altair.math.unipa.it.xUniversit�a di Palermo, restivo@altair.math.unipa.it.1

A measure of complexity of the language L is introduced in [2] based on thefunction FL, that counts, for any n, the number of words of length n inMF (L).Authors prove that the growth of FL(n) as well as the topological entropy ofMF (L) are topological invariants of the dynamical system de�ned by L. Thisresult provides a usefull tool to show that some systems are not isomorphic,which comes in addition to other notions like the ordinary notion of entropyand the zeta function, for example.Finally, [5] considers properties of languages de�ned by �nite forbidden setsof words. Authors de�ne the M�obius function for these languages.In this paper we focus on the transformations between L and MF (L). We�rst design an automaton accepting L and that is built from the language M =MF (L). When M is a �nite set the transformation is e�ective. Moreover, ifM is given by its digital tree, that is, its tree-like deterministic automaton, thealgorithm is very similar to the algorithm of Aho and Corasick that builds apattern-matching machine for a �nite set of words [1].In a second part we consider the particular situation of a language that is theset of factors of a single word v. The construction of its factor automaton, theminimal deterministic automaton accepting the factors of v (see [4]) is knownto be rather intricate. It is remarkable that the preceding transformation yieldsexactly the factor automaton of v when the input if the set M of minimalforbidden words of v. We also give an algorithm that realizes the conversetransformation, building the trie of M from the factor automaton of v. Acorollary of the algorithm is a non-trivial upper bound on the number of minimalforbidden words of a word.The complexities of algorithms described in this paper are all linear in thesize of their input or output. Therefore, the design of possible faster algorithmsrelies on di�erent representations of objects, which is not the aim of the paper.2 Avoiding an anti-factorial languageLet A be a �nite alphabet and A� be the set of �nite words drawn from thealphabet A, the empty word � included. Let L � A� be a factorial language,i.e. a language satisfying: 8u; v 2 A� uv 2 L =) u; v 2 L. The complementlanguage Lc = A� n L is a (two-sided) ideal of A�. Denote by MF (L) the baseof this ideal, we have Lc = A�MF (L)A�.The set MF (L) is called the set of minimal forbidden words for L. A wordv 2 A� is forbidden for the factorial language L if v =2 L, which is equivalent tosay that v occurs in no word of L. In addition, v is minimal if it has no properfactor that is forbidden.One can note that the set MF (L) uniquely characterizes L, just becauseL = A� nA�MF (L)A�: (1)The following simple observation provides a basic characterization of minimal2

forbidden words.Remark 1 A word v = a1a2 � � �an belongs to MF (L) i� the two conditionshold:� v is forbidden, (i.e., v =2 L),� both a1a2 � � �an�1 2 L and a2a3 � � �an 2 L (the pre�x and the su�x of vof length n� 1 belong to L).The remark translates into the equality:MF (L) = AL \ LA \ (A� n L): (2)As a consequence of both equalities (1) and (2) we get the following proposition.Proposition 1 For a factorial language L, languages L and MF (L) are simul-taneously rational, that is, L 2 Rat(A�) i� MF (L) 2 Rat(A�).The set MF (L) is an anti-factorial language or a factor code, which meansthat it satis�es: 8u; v 2 MF (L) u 6= v =) u is not a factor of v, property thatcomes from the minimality of words of MF (L).We introduce a few more de�nitions.De�nition 1 A word v 2 A� avoids the set M , M � A�, if no word of M is afactor of v, (i.e., if v =2 A�MA�). A language L avoids M if every word of Lavoids M .From the de�nition of MF (L), it readily comes that L is the largest (accord-ing to the subset relation) factorial language that avoids MF (L). This showsthat for any anti-factorial language M there exists a unique factorial languageL(M) for which M = MF (L). The next remark summarizes the relation be-tween factorial and anti-factorial languages.Remark 2 There is a one-to-one correspondence between factorial and anti-factorial languages. If L and M are factorial and anti-factorial languages re-spectively, both equalities hold: MF (L(M)) = M and L(MF (L)) = L.We also refer to the next de�nition that is to be considered in the contextof dynamical systems (see [9] for example).De�nition 2 The factorial language L is said to be of �nite type when MF (L)is �nite.Finally, with an anti-factorial �nite language M we associate the �nite au-tomaton A(M) as described below. The automaton is deterministic and com-plete, and, as shown at the end of the section by Theorem 3, the automatonaccepts the language L(M).The automaton A(M) is the tuple (Q;A; i; T; F) where3

� the set Q of states is fw j w is a pre�x of a word in Mg,� A is the current alphabet,� the initial state i is the empty word �,� the set T of terminal states is Q nM .States of A(M) that are words of M are sink states. The set F of transitions ispartitioned into the three (pairwise disjoint) sets F1, F2, and F3 de�ned by:� F1 = f(u; a; ua) j ua 2 Q; a 2 Ag (forward edges or tree edges),� F2 = f(u; a; v) j u 2 Q nM;a 2 A; ua =2 Q; v longest su�x of ua in Qg(backward edges),� F3 = f(u; a; u) j u 2M;a 2 Ag (loops on sink states).The transition function de�ned by the set F of arcs of A(M) is noted �.Remark 3 One can easily prove from de�nitions that1. if q 2 Q n (M [f�g), all transitions arriving on state q are labeled by thesame letter a 2 A,2. from any state q 2 Q we can reach a sink state, i.e., q can be extended toa word of M .De�nition 3 For any v 2 A�, qv denotes the state �(�; v), target of the uniquepath in A(M) starting at the initial state and labeled by v.Since A(M) is a complete automaton, qv is always de�ned. In the automatonA(M) states are words, but to avoid misunderstandings we sometimes write \theword corresponding to qv" instead of just \the word qv".Remark 4 Note that if v is a state of A(M) we have qv = v.We are now ready to state and prove the next lemma that is used in theproof of Theorem 3, the main result of the section.Lemma 2 Let M be an anti-factorial language and consider A(M). Let v 2 A�be such that, for any proper pre�x u of v, qu is not a sink state (qu =2M). Then,1. the word qv is a su�x of v,2. qv is the longest su�x of v that is also a state of A(M)(or 8q 2 Q q su�x of v =) q su�x of qv).Proof. By induction on jvj.Base of the induction, jvj = 0. Then, v = � = qv and points 1 and 2 aretrivially satis�ed.Inductive step jvj > 0. We can write v = ua; a 2 A; hence, qv = �(qu; a)or equivalently (qu; a; qv) 2 F . By induction, qu is a su�x of u and, if q 2 Qis a su�x of u, q is also a su�x of qu. By hypothesis, the transition (qu; a; qv)cannot belong to F3 because qu is not a sink state. We have two cases:4

(i) (qu; a; qv) 2 F1,(ii) (qu; a; qv) 2 F2.In case (i) condition 1 readily comes from the inductive hypothesis becauseqv = �(qu; a). Let us suppose that q is a state su�x of v. If q = � then 2is trivially satis�ed; otherwise, if q 6= �, q = �(q0; a) for some state q0 2 Q.Since v = ua, q0 is a su�x of u and, by induction, q0 is a su�x of qu. Sinceqv = �(qu; a) and q (= �(q0; a)) is a su�x of qv, which proves that 2 is satis�ed.In case (ii), since by de�nition qv is a su�x of �(qu; a), and since by induction quis a su�x of u, qv is a su�x of ua = v and 1 holds. If q 2 Q is a su�x of v withq 6= � (otherwise 2 trivially holds), then q = q0a for some q0 su�x of u, and byinduction q0 is a su�x of qu and moreover q is a su�x of �(qu; a). By de�nitionqv is the longest su�x of �(qu; a) that is also a state, and consequently q is asu�x of qv. ./Denoting by Lang (A) the language accepted by an automaton A, we get themain theorem of the section.Theorem 3 For any anti-factorial language M , Lang(A(M)) = L(M).Proof. We �rst prove L(M) � Lang(A(M)). We have to show that if vis a word that avoids M then v 2 Lang(A(M)). Assume ab absurdo thatv =2 Lang (A(M)); therefore qv is a sink state. Let u be the shortest pre�x of vfor which qu is a sink state (note that qu = qv). By lemma 2 statement 1, qu isa su�x of u, but qv is by de�nition an element of M , and so v does not avoidM , a contradiction.We then prove Lang(A(M)) � L(M). Let v 2 Lang (A(M)). Let us supposeab absurdo that v does not avoid M , i.e., v = uwz for some w 2 M;u; z 2 A�.We choose uw as the shortest pre�x of v that belongs to A�M . Since w 2 Mit is by de�nition a state of A(M); since w is a state that is a su�x of uw, byLemma 2 statement 2, w is a su�x of quw. But quw, which is by de�nition astate of A(M), is a pre�x of an element w0 of M (note that w0 is not empty).Since w is a su�x of a pre�x of w0, w is a factor of w0, a contradiction becauseM is anti-factorial. ./The above de�nition of A(M) turns into the algorithm below, called L-automaton, that builds the automaton from a �nite anti-factorial set of words.The input is the trie T that represents M . It is a tree-like automaton acceptingthe set M and, as such, it is noted (Q;A; i; T; �0). The procedure can be adaptedto test whether T represents an anti-factorial set, or even to generate the trieof the anti-factorial language associated with a set of words.In view of Equality 1, the design of the algorithm remains to adapt theconstruction of a pattern matching machine (see [1] or [4]). The algorithm usesa function f called a failure function and de�ned on states of T as follows.States of the trie T are identi�ed with the pre�xes of words in M . For a stateau (a 2 A, u 2 A�), f(au) is �0(i; u), quantity that may happen to be u itself.Note that f(i) is unde�ned, which justi�es a speci�c treatment of the initialstate in the algorithm. 5

- m mm m m0 12 3 4�����a@@@@Rb -a -b �����a -b -bFigure 1: Trie of the factor code faa; bbab; bbbg on the alphabet fa; bg. Squaresrepresent terminal states.L-automaton (trie T = (Q;A; i; T; �0))1. for each a 2 A2. if �0(i; a) de�ned3. set �(i; a) = �0(i; a);4. set f(�(i; a)) = i;5. else6. set �(i; a) = i;7. for each state p 2 Q n fig in width-�rst search and each a 2 A8. if �0(p; a) de�ned9. set �(p; a) = �0(p; a);10. set f(�(p; a)) = �(f(p); a);11. else if p 62 T12. set �(p; a) = �(f(p); a);13. else14. set �(p; a) = p;15. return (Q;A; i; Q n T; �);Example. Figure 1 displays the trie that accepts M = faa; bbab; bbbg. It isan anti-factorial language. The automaton produced from the trie by algorithmL-automaton is shown in Figure 2. It accepts the pre�xes of (ab [b)(ab)�bathat are all the words avoiding M .Theorem 4 Let T be the trie of an anti-factorial language M . Algorithm L-automaton builds a complete deterministic automaton accepting L(M).Proof. The automaton produced by the algorithm has the same set of statesas the input trie. It is clear that the automaton is deterministic and complete.Let u 2 A+ and p = �(i; u). A simple induction on juj shows that the wordcorresponding to f(p) is the longest proper su�x of u that is a pre�x of someword in M . This notion comes up in the de�nition of the set of transitions F2in the automaton A(M). Therefore, the rest of the proof just remains to checkthat instructions implement the de�nition of A(M). ./6

- m mm m m0 12 3 4�����a@@@@Rb -a -b?b6a �����a -b -b@@@@I a� �	�a,b � �	�a,b � �	�a,bFigure 2: Automaton accepting the words that avoid the set faa; bbab; bbbg.Squares represent non-terminal states (sink states).Proposition 5 Algorithm L-automaton runs in time O(jQj � jAj) on inputT = (Q;A; i; T; �0) if transition functions are implemented by transition matri-ces.Proof. If transition functions � and �0 are implemented by transition matrices,access to or de�nition of �(p; a) or �0(p; a) (p state, a 2 A) are realized inconstant amount of time. The result follows immediately. ./3 Factor automaton of a single wordIn this section we specialize the previous results to the language of factors of asingle word. It is proved below that the contruction of Section 2 yields the factorautomaton (minimal deterministic automaton accepting the factors) of the word(see Theorem 7). The minimality of the automaton seems to be exceptionalbecause, for example, the same construction applied to the set faa; abg doesnot provide a minimal automaton.The reverse construction that produces the trie of minimal forbidden wordsfrom the factor automaton is described in the next section.We consider a �xed word v 2 A� and denote by F(v) the language of factorsof v.Proposition 6 The language F(v) is of �nite type.Proof. Indeed, factors of v, of lengths less than jvj+1, avoid all words of lengthexactly jvj+ 1. Therefore, every minimal forbidden word of F(v) has length atmost jvj+ 1. ./For instance, for the word v = abbab, the set of minimal forbidden words ofF(abbab) is faa; aba; babb; bbb; cg (see Figures 3 and 4).7

The result of the previous proposition is made more precise in the next sec-tion, but an immediate consequence of it and of the de�nition of the automatonA(M) for an anti-factorial language M , the automaton A(MF (F(v))) has a�nite number of states. The next statement gives a complete characterizationof the automaton as the factor automaton of v.Theorem 7 For any v 2 A�, the automaton obtained from A(MF (F(v))) byremoving its sink states is the minimal deterministic �nite automaton acceptingthe language F(v) of factors of v.Proof. The automaton A(MF (F(v))) is already a deterministic �nite automa-ton that accepts the language F(v) by Theorem 3. We only have to prove thatit is minimal after removing the sink states.Suppose ab absurdo that there exist two equivalent non-sink states p; q in Q.By the standard equivalence relation of undistinginshability and by constructionp; q 2 F(v). Hence, v = xpy and v = x0qy0 and we can choose x and x0 ofminimal length. We consider two cases:(i) jxpj 6= jx0qj,(ii) jxpj = jx0qj.Case (i). We can suppose for example that jxpj < jx0qj (the case jxpj > jx0qjis handled symmetrically). Then, xpy 2 F(v) implies that �(p; y) is not a sinkstate, hence, by the equivalence �(q; y) is not a sink state, that is, qy 2 F(v)by Remark 4. Therefore, v = x"qyz where jx"j � jx0j by the choice of x0(of minimal length). Hence, jvj � jx0j + jqj + jyj + jzj > jxpj + jyj = jvj, acontradiction.Case (ii). The equality jxpj = jx0qj implies either that p is a su�x of q or theconverse. Let us suppose for example that p = sq for some word s 6= �. ByRemark 3 statement 2, there exists w = pz that belongs to MF (F(v)). By theequivalence, qz is also a sink state and, again by the equivalence, for no properpre�x u of qz, qu is a sink state. Hence, by Lemma 2.1, qqz is an element ofMF (F(v)), that is, a su�x of qz. Since p = sq; s 6= �, qqz is a proper su�x ofpz against the anti-factorial property of MF (F(v)). A contradiction again.After cases (i) and (ii) it appears that there cannot exist two di�erent non-sink states p; q in Q that are equivalent. Therefore the automaton without sinkstates is minimal, which ends the proof. ./The property stated by Theorem 7 does not generalize to any �nite set words.For example, consider the set M = faa; bag. Its trie has three internal nodesand then the automaton A(M) has three states after removing sink states. Butthe language L(M) is b� + ab� and its minimal automaton has only two states.4 Minimal forbidden words of a wordWe end the article by an algorithm that builds the trie accepting the languageMF (F(v)) of minimal words avoided by v. This is an implementation of the8

- m m m m m m0 1 2 3 4 6m5- - - - -a b b a b& -b �����b %6aFigure 3: Factor automaton of abbab; all states are terminal.- m m m m m m0 1 2 3 4 6m5- - -a b b& -b �����b %6a����� ����� ����� ����� �����c a a b bFigure 4: Trie of minimal forbidden words of F(abbab) on the alphabet fa; b; cg.Squares represent terminal states.inverse of the transformation described in Section 2. Its design follows Equal-ity 2. A corollary of the transformation gives a bound on the number of minimalforbidden words of a single word, which improves on the bound coming readilyfrom Proposition 6.MF-trie (factor automaton A = (Q;A; i; T; �) and its su�x function s)1. for each state p 2 Q in width-�rst search from i and each a 2 A2. if �(p; a) unde�ned and (p = i or �(s(p); a) de�ned)3. set �0(p; a) = new sink;4. else if �(p; a) = q and q not already treated5. set �0(p; a) = q;6. return (Q;A; i; fsinksg; �0);The input of algorithm MF-trie is the factor automaton of word v. It isthe minimal deterministic automaton accepting the factors of v. It includesthe failure function de�ned on the states of the automaton and called s. Thisfunction is a by-product of e�cient algorithms that build the factor automaton(see [4]). It is de�ned as follows. Let u 2 A+ and p = �(i; u). Then, s(p) =�(i; u0) where u0 is the longest su�x of u for which �(i; u) 6= �(i; u0). It can beshown that the de�nition of s(p) does not depend on the choice of u.9

Example Consider the word v = abbab on the alphabet fa; b; cg. Its factorautomaton is displayed in Figure 3. The failure function s de�ned on stateshas values: s(1) = s(5) = 0, s(2) = s(3) = 5, s(4) = 1, s(6) = 2. AlgorithmMF-trie produces the trie of Figure 4 that represents the set of �ve wordsfaa; aba; babb; bbb; cg.Theorem 8 Let A be the factor automaton of a word v 2 A�. (It accepts thelanguage F(v).) Algorithm MF-trie builds the tree-like deterministic automa-ton accepting the set of minimal forbidden words of F(v), that is MF (F(v)).Proof. The transitions de�ned at line 5 duplicates the transition of the width-�rst search tree, which is the tree of shortest paths from the the initial state ofA. This fact is used in the proof. All other transitions are created at line 3 andlead to a sink state. Let A0 be the automaton produced by the algorithm.Consider a word ua (a 2 A) accepted by A0. (A0 accepts only non-emptywords.) Let p = �0(i; u). By the remark above, u is the shortest word forwhich �(i; u) = p. Therefore, if u = by with b 2 A, we have �(i; y) = s(p) byde�nition of the su�x function s. When the test \�(s(p); a) de�ned" is satis�ed,this implies that ya 2 F(v). Thus, bya 62 F(v), while by; ya 2 F(v). So, afterRemark 1, bya = ua is a minimal forbidden word for F(v).If u is the empty word, p = i. The transition from i to the sink labeled by ais created under the condition \�(p; a) unde�ned", which means that the lettera does not occur in v. The word a is again a minimal forbidden word for F(v)in this case.This proves that any word accepted by A0 is in MF (F(v)).Conversely, let ua 2 MF (F(v)). If u is the empty word, this means that adoes not occur in v, therefore there is no transition labeled by a in A. Lines 3and 4 cope with this situation by creating a �0-transition from the initial stateto accept a.Assume now that u = by with b 2 A. The word u is a factor of v, so letp = �(i; u). Note that u is the shortest word for which p = �(i; u), because allsuch words are su�xes of each others in the factor automaton A. The wordua is not a factor of v, so the condition \�(p; a) unde�ned" is satis�ed. Letq = s(p). We have q = �(i; y) because of the minimality of length of u andthe de�nition of s. By the choice of ua = bya, ya is a factor of v. Thus, thecondition \�(s(p); a) de�ned" at line 3 is satis�ed which yields the creation of atransition at line 4 to make A0 accept ua as wanted.This ends the whole proof. ./Corollary 9 A word v 2 A� has no more than 2(jvj�2)(jAvj�1)+jAj minimalforbidden words if jvj � 3, where Av is the set of letters occurring in v. Thebound becomes jAj+ 1 if jvj < 3.Proof. The number of words in MF (F(v)) is the number of sink states createdduring the execution of algorithm MF-trie. These states have exactly one10

ingoing arc originated at a state of the factor automaton A of v. So, we haveto count these arcs.From the initial state of A there is exactly jAj � jAvj such arcs. From the(unique) state of A without outgoing arc, there are at most jAvj such arcs. Fromother states there are at most jAvj � 1 such arcs.For jvj � 3, it is known that A has at most 2jvj�2 states (see [4]). Therefore,jMF (F(v))j � (jAj�jAvj)+ jAvj+(2jvj�4)(jAvj�1) = 2(jvj�2)(jAvj�1)+ jAj.When jvj < 3, it can be checked directly that jMF (F(v))j � jAj+ 1. ./Proposition 10 Algorithm MF-trie runs in time O(jvj � jAj) on input wordv if transition functions are implemented by transition matrices.Proof. As for the proof of Proposition 5, the hypothesis on implementationimplies that the running time of the algorithm is proportional to jQj � jAj.Thus, the result is a consequence of the linear size of A: the factor automatonof v has no more than 2jvj states (see [4] for instance). ./References[1] A. V. Aho and M. J. Corasick. E�cient string matching: an aid to bibli-ographic search, Comm. ACM 18:6 (1975) 333{340.[2] M.-P. B�eal, F. Mignosi, and A. Restivo. Minimal Forbidden Words andSymbolic Dynamics, in (STACS'96, C. Puech and R. Reischuk, eds., LNCS1046, Springer, 1996) 555{566.[3] J. Cassaigne. Complexit�e et Facteurs Sp�eciaux, Bull. Belg. Math. Soc. 4(1997) 67{88.[4] M. Crochemore, C. Hancart. Automata for matching patterns, in (Hand-book of Formal Languages, G. Rozenberg, A. Salomaa, eds.", Springer-Verlag", 1997, Volume 2, Linear Modeling: Background and Application)Chapter 9, 399{462.[5] V. Diekert, Y. Kobayashi. Some identities related to automata, determi-nants, and M�obius functions, Report 1997/05, Fakult�at Informatik, Uni-versit�at Stuttgart, 1997.[6] A. de Luca, F. Mignosi. Some Combinatorial Properties of SturmianWords, Theor. Comp. Sci. 136 (1994) 361{385.[7] A. de Luca, L. Mione. On Bispecial Factors of the Thue-Morse Word, Inf.Proc. Lett. 49 (1994) 179{183.[8] R. McNaughton, S. Papert. Counter-Free Automata, M.I.T. Press, MA1970.[9] D. Perrin. Symbolic Dynamics and Finite Automata, invited lecture in(Proc. MFCS'95, LNCS 969, Springer, Berlin 1995).11

