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Abstract

The Apostolico-Giancarlo string-matching algorithm is analyzed precisely. We give a tight upper
bound of %n text character comparisons when searching for a pattern in a text of length n. We
exhibit a family of patterns and texts reaching this bound. We also provide a slightly improved
version of the algorithm.
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1 Introduction

The string-matching problem consists in finding all occurrences of a pattern in a text. It is a basic
problem that occurs in information retrieval, bibliographic search and molecular biology, for example.
It has been extensively studied and numerous techniques and algorithms have been designed to solve
this problem (see [5] and [10]).

Basically, a string-matching algorithm applies the sliding window mechanism as follows. It first
initializes the search by aligning the left ends of the pattern and the text. Then, it checks (or scans)
if the pattern occurs in the text at the chosen position and eventually shifts the pattern to the right.
Finally, it repeats the same operation until the right end of the pattern goes beyond the right end of
the text.

Scan operations are composed of series of symbol comparisons made in a specific order. Boyer and
Moore [2] have derived, from choosing the reverse order (according to the direction of shifts), one of the
most practically efficient algorithm. Scanning the characters of the pattern from right to left enables
the algorithm to “jump” over some portions of the text and therefore to save symbol comparisons as
well as running time. This assumes however that both text and pattern reside in main memory.

The main drawback of the algorithm is that after a shift it forgets all the matches encountered
so far. As a consequence, the complexity analysis of the Boyer-Moore algorithm is rather difficult to
achieve. The worst-case time analysis is given by Cole [3] who proves a tight upper bound of 3n —n/m
comparisons when looking for the first occurrence of a non-periodic pattern (where n is the length of
the text and m is the length of the pattern).

Boyer-Moore algorithm has been primarily designed for discovering the first occurrence of the pattern
in the text. When adapted in a straightforward way for searching for all the occurrences of the pattern,
its worst-case running time is quadratic. The exact complexity in this situation is O(n 4+ rm), where r
is the number of times the pattern occurs in the text (see [6]).

To remedy to the oblivious feature of the Boyer-Moore algorithm, several solutions have been pro-
posed. Galil [6] introduces what can be called a prefiz memorization in order to save comparisons after
the localization of an occurrence of the pattern. This leads to a linear-time algorithm for the problem.
Crochemore et al. [4] show that last-match memorization, which embodies the idea in [6], yields an



Memorization Extra Extra prepro- | Bound on the number
of space cessing time of comparisons
prefix [6] constant none 14n
last match [4] | constant none 2n
all matches [1] | O(m) O(m) 1.5n

Figure 1: Features of variants of the Boyer-Moore algorithm.

y 0 u | |
0 J j+i n—1
0 ) m—1

Figure 2: If a # b, algorithm BM applies a precomputed shift function.

algorithm that makes no more than 2n comparisons in the worst case. The algorithm called Turbo-BM
uses the same preprocessing as Boyer-Moore algorithm, as well as Galil’s algorithm, and requires only
constant extra space (to store the last match or the prefix, respectively) at searching time.

Apostolico and Giancarlo [1] designed another variant of Boyer-Moore algorithm that remembers all
previous matches between the pattern and the text. They proved an upper bound of 2n — m + 1 text
characters comparisons for their algorithm. Contrary to Galil’s algorithm and Turbo-BM, this algorithm
needs an additional preprocessing and requires O(m) extra space to store all previous matches inside
the current window on the text.

In this paper, we provide a worst-case analysis of the Apostolico-Giancarlo algorithm that proves an
upper bound of %n text characters comparisons at search phase. In some sense, this is a “reward” for the
extra work necessary to implement this improvement on Boyer-Moore algorithm. Figure 1 summarizes
the features of the three variants of Boyer-Moore algorithm. We also show that this bound is tight, by
exhibiting a family of patterns and texts reaching this bound. Moreover, we reformulate the algorithm
and design a slightly modified version of the algorithm that captures more information about previous
matches. Although the improvement is hard to measure, the worst-case analysis still holds for the
modified algorithm.

The paper is organized as follows. Section 2 recalls the elements introduced by Apostolico and
Giancarlo, and gives a presentation of their algorithm. In Section 3 we analyze its worst-case complexity
in term of symbol comparisons. Finally, Section 4 presents the new version of the algorithm.

Throughout this paper the pattern is a word of length m denoted by z (z = 2[0...m — 1]). The
text is denoted by y and has length n (y = y[0...n — 1]). Both 2 and y are built over a finite alphabet
Y. of size 0.

2 The Apostolico-Giancarlo algorithm

The Apostolico-Giancarlo algorithm (algorithm AG) is built upon the Boyer-Moore algorithm (algorithm
BM) that we recall first.

For checking whether an occurrence of the pattern occurs at position j in the text, BM algorithm
scans the characters from right to left beginning with the rightmost character of the pattern. In case
of a mismatch (or a complete match of the whole pattern) it uses two precomputed functions to shift
the pattern to the right. These two shift functions are called the occurrence shift and the match shift
functions. Figure 2 displays the situation, an attempt at position j, with a mismatch between character



M (z,m,y,n)
j«0
while j <n-m
do i+ m-1
while i > 0 and z[i] = y[j + {]
do i+i—-1
ifi<0
then OUTPUT (match at position j)
Jj <« j+dd[0]
else j « j+ max(dd'[i+ 1],d[y[j+ ] —m+i+1)

WO 00~ O O i W N~ g

Figure 3: The Boyer-Moore algorithm.

z[i] of the pattern and character y[j + 7] of the text. The suffix u = z[i + 1...m — 1] of the pattern
matches the segment y[j +i+ 1...5 4+ m — 1] of the text.

The length of the shift computed by BM algorithm is the maximum value of the occurrence shift
function and the match shift function with arguments defined by the situation. The occurrence shift
consists in aligning the text character y[j + 4] with its rightmost occurrence in z[0...m — 2]. The match
shift consists in aligning the factor u = y[j+i+1...74+m—1] =z[i+ 1...m — 1] with its rightmost
occurrence in z that is preceded by a character different from z[i]. If there exists no such factor, it
consists in aligning the longest suffix of y[j +i+ 1...j + m — 1] with a matching prefix of z.

More formally, the two shift functions are defined as follows, with the notation of [7]. The occurrence
shift is represented by a table d of size o defined, for all a € X, by:

dla] =min{m} U{i| 0 < i< mand z[m—1—i] = a}.
The match shift is stored in a table dd’ of size m + 1 defined, for all i, 0 < i < m, by:

dd'[i] = min{s > 0| (s > i or z[i — s] # z[i]) and
(for all k,i < k < m,s >k or z[k — s] = z[k])}.

Tables d and dd’ can be precomputed in time O(m + o) before the search phase (see, for example, [5]).
A presentation of algorithm BM based on these tables is depicted in Figure 3.

As noticed above, the drawback of algorithm BM is that after a shift it forgets completely what has
been matched previously. Algorithm AG copes with this problem by remembering segments of the text
already matched with suffixes of the pattern. At the end of each attempt, it keeps track of the length
of the suffix matched during this attempt in a table called skip. It is exploited in conjunction with a
table that stores the similar information related to the pattern itself. We call this table suf defined, for
all 2, 0 < ¢ < m, by:

suf[i] = max{|u| | u longest suffix of z ending at i in z}.

The table suf can be computed during the preprocessing phase required by the shift tables. This takes
O(m) extra time (see [1] or [5]).

We are now ready to explain the central idea of algorithm AG. Let us consider the situation displayed
in Figure 4. The algorithm is scanning the text inside the window placed at position j;, and the suffix
z[i+1...m— 1] of the pattern matches the text. Let k = skip[j1 +1i]. If £ = 0, the algorithm continues
as algorithm BM does. Otherwise, three cases are considered.

Case 1: k > suf[i] and i + 1 = suf[i]. An occurrence of the pattern is detected.

Case 2: k > suf[i] and suf[i] < i. The pattern does not occur at position j;, and the algorithm
executes a shift of length dd[i 4+ 1] (see below).



Figure 4: A typical situation during the Apostolico-Giancarlo algorithm: jump or shift 7 Light gray
areas correspond to factors of the text scanned during the current attempt, while dark gray areas
correspond to factors scanned previously.

AG (y,z,n,m)

1 70

2 whilej<n-m

3 do i< m-1

4 while i > 0

5 do ifskip[j+i =0

6 thenif z[i] = y[j + ]

7 theni +:—1

8 else break

9 else if skip[j + 1] > suf[i]

10 thenif suffil =i+ 1

11 then: + —1 > Case 1
12 break > Case 2
13 else > skip[j + 1] < sufld]
14 i « skip[j +1i] > Case 3
15 skiplj+i «m—i—1

16 ifi<0

17 then OUTPUT (match at position j)

18 J < j+dd[0]

19 else j « j+ max(dd[i + 1], d[y[j +i]] — m+ i+ 1)

Figure 5: A presentation of the Apostolico-Giancarlo algorithm.



y = a a a a a a b a b a b
X = a a b a b a b
X = a a b a b a b
X = a a b a b a b

Figure 6: Algorithm AG can make several mismatches on a symbol of the text (3 on the symbol in
bold). Underlined characters are compared positively once.

Case 3: k < suf[i] then a “jump” is performed over the previous match of length k and the comparisons
resume between characters y[j; + i — k] and z[i — k].

A presentation of algorithm AG is shown in Figure 5. Notice that the algorithm uses a weak version
of the matching shift function represented by the table dd and defined as follows. For all i, 0 < ¢ < m:

dd[i] = min{s > 0| for all k,i < k < m,s > k or z[k — s] = z[k]}.

The dd table does not take into account the mismatched character, and corresponds to the original table
used by algorithm BM. The dd’ table has been introduced by Knuth in [7].

The values of the table skip, initialized to 0, are computed during the searching procedure. The size
of this table can be reduced to O(m) since, during each attempt, no more than the last m values are
necessary.

The proof of the next statement is in [1]. It does not include the preprocessing time that is linear in
the length of the pattern.

Theorem 1 (Apostolico-Giancarlo) After a preprocessing of « in time O(m+ o), the algorithm AG
finds all the occurrences of a pattern of length m in a text of length n in time O(n), and makes no more
than 2n — m+ 1 character comparisons.

3 Complexity analysis

In this section, we prove the tight bound of 1.5n on the number of symbol comparisons made by the
Apostolico-Giancarlo algorithm. This refines the result of Theorem 1.

During the execution of the algorithm, if a symbol of the text is found to match a symbol of the
pattern, then never again the symbol of the text is compared. The total number of such positive
comparisons may be n, for instance, if a™ is searched for in a®™ (n = em). Therefore we focus our
attention on mismatched symbols of the text. These symbols can be compared several times as shown
by the example of Figure 6. The strategy to prove the result is to amortize the number of re-comparisons
on lengths of shifts. This is the aim of Lemma 1, whose consequence, given in Lemma 2, is that the total
number of all re-comparisons is bounded by n/2. The bound on the number of symbol comparisons in
algorithm AG follows immediately (Theorem 2).

Lemma 1 If, during an attempt of algorithm AG, k positive symbol comparisons are made on text
characters previously compared then the subsequent shift realized by the algorithm has length at least

k+1.

Proof: Assume that A is an attempt that performs k& comparisons made on text characters that have
already been compared. Figure 7 displays the situation. Characters that are compared again at the
present step were mismatched characters during previous attempts. Since a mismatch in the algorithm
implies an immediate shift, the characters correspond to segment of the text in the form byu, (1 < £ < k).
All these segments are disjoint (or possibly adjacent) inside the text. Thus, the scanned part of the text
is in the form bovgbiuiv1bougvy .. . byugvy (see Figure 7) where:

e bg is the mismatch character, and vobiuyvibsusvsy . .. brugvg is a suffix of the pattern,
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Figure 7: Impossible: k positive re-comparisons on ay, ..., ag, but a subsequent shift of length s < k.

o the by’s (1 < £ < k) are the k text characters that are re-compared (positively) during the attempt
A

bl

o the us’s (1 < £ < k) are the corresponding suffixes of # matched during k previous attempts (they
are jumped over during the present attempt A),

o the vy’s (1 < ¢ < k) are the segments of the text that are effectively scanned during the attempt
A (Jve] > 0).

Note that, by definition of the above elements, the words byu,’s are not suffixes of the pattern, and
that |us| >0 (1 < £ < k).

Assume, ab absurdo, that the match shift of length s realized at the end of attempt A is no longer
than k. Let w be the suffix of length s of . By definition of the function dd, vobiuivibausvs .. bpurviw
is a suffix of z and has period s = |w|.

For two different indices £ and £, u, and ugr fall at the same position within the factor w because
there are only k& — 1 possible positions. Therefore, we have bgrug = bgugr, which implies that the shifts
at the corresponding attempts are of the same length. Whence, they have produced the same situations
implying us 41 = ugr41. We get a contradiction with the fact that bguy is different from the other bpu,’s.

So, the length of the match shift at the attempt A is greater than k. Since the length of the actual
shift is at least the length of the match shift, algorithm AG performs a shift of length at least k + 1, as
announced. ad

We are now going to give an upper bound on the number of comparisons performed with text
characters already compared.

Lemma 2 The Apostolico-Giancarlo algorithm makes at most n/2 comparisons on text characters pre-
viously compared.

Proof: Let us group all the attempts performed by the algorithm: two attempts are in the same group if
they perform a comparison on a common text character. A group g of attempts in which are performed
kg positive comparisons on text characters previously compared contains at least k4 + 1 attempts (as in
Figure 7). Among the corresponding shifts, k, of them are of length at least 1, and one shift has length
at least k; + 1, by Lemma 1. Thus, the total length of shifts involved in the group is at least 2k, + 1.

If the symbol by of Figure 7 is not re-compared at that step, the total number of re-comparisons is
kg, which is no more than half the total length of shifts. If the symbol by of Figure 7 is re-compared
at that step, there are ky, + 1 shifts of length at least 1 (instead of k;). Then, the total number of
re-comparisons is kg 4+ 1, which is again no more than half the total length of shifts, 2k, 4 2.

Finally, since the sum of all shifts is no more the n, the total number of re-comparisons is no more
than n/2, which ends the proof. a
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Figure 8: Case 1’, k > suf[i] and suf[i] = i+ 1, an occurrence of z is found.
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Figure 9: Case 2, k > suf[i] and suf[i] < ¢, a mismatch occurs between y[ji +¢ — suf[i]] and x[i — suf[7]].

We are now able to give the maximal number of text characters comparisons performed by the
Apostolico-Giancarlo algorithm.

3

Theorem 2 The Apostolico-Giancarlo algorithm performs no more 3

n character comparisons. There

are texts of length n and associated patterns of length 2m + 1 for which the algorithm makes ‘Z’Zﬁn —-m
character comparisons.

Proof

The result is a direct consequence of Lemma 2. The bound is tight: for & = a™ '6a™b and y =
(@™~ 1ba™b)® (m,e > 0, n = (2m + 1)e), the algorithm makes exactly 2m + 1 + (3m + 1)e, that is,
‘;’Zi% n — m character comparisons. a

4 Improving the Apostolico-Giancarlo algorithm

In this section we refine the analysis that leads to algorithm AG. Let us look more closely at the general
situation depicted in Figure 4 (k = skip[j1 +7]). Actually four different cases can be considered:

Case 1”: (identical to Case 1) k > suf[i] and suf[i] =i+ 1. An occurrence of x is found at position j
(see Figure 8).

Case 2" k > suf[i] and suf[i] < 7. A mismatch occurs between characters y[j1 + ¢ — suf[7]] and
z[i — suf[t]] (see Figure 9). Thus, as already mentioned in [8], the length of the shift is computed
as in algorithm BM (i.e., using dd'[i — suf[{] + 1] and d[y[j1 + i — suf[i]]]).
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Figure 10: Case 3’, k < suf[] a mismatch occurs between y[j; + ¢ — k] and z[i — k].
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Figure 11: Case 4, k = suf[i],a # b and b # ¢, a jump is performed.



AG’ (y,z,n,m)

1 7+0

2 whilej<n-m

3 do im-1

4 while i > 0

5 do ifskip’[j+14=0

6 thenif z[i] = y[j + ]

7 then: -1

8 else break

9 else if skip’[j + 1] > suf[{]

10 theni « i — suf[{] > Case 1’ and 2’
11 break

12 else if skip’[j + i] < suf][i]

13 theni « i — skip’[j +i] > Case 3’
14 break

15 else > skip’[j+ i = suf[i]
16 i+ i—skip’[j+1i > Case 4’
17 skip’[j+i] —m—i—1

18 ifi<0

19 then OUTPUT (match at position j)

20 J < j+dd'0]

21 else j « j+ max(dd'[i + 1],d[y[j + ]| —m+i+1)

Figure 12: The Apostolico-Giancarlo algorithm revisited.

Case 3" k < suf[i]. A mismatch occurs between characters y[j; + ¢ — k] and z[i — k] (see Figure 10).
Thus a shift can be performed using dd'[i — k + 1] and d[y[j1 + i — k]].

Case 4”: k = suf[i]. This is the only case where a “jump” has to be done in order to resume the
comparisons between characters y[j1 + ¢ — k] and «[i — k] (see Figure 11).

Following the four cases we obtain the version AG’ of the Apostolico-Giancarlo algorithm presented
in Figure 12. Note that it uses the match shift function dd’, which provides longer shifts on the average.
The worst-case analysis of Section 3 is still valid for algorithm AG’.

The table skip’ computed by algorithm AG’ satisfies the property: if skip’[j] > 0, skip’[j] is the
length of the longest suffix of z ending at position j in the text. The table skip of algorithm AG does
not share the same property.

Let us now look more closely to the total number of comparisons included non character comparisons.
The instruction of line 7 of algorithm AG’ in Figure 12 can be executed at most n times because each
character is compared positively only once. This is done after the comparisons of line 5 and 6 which
leads to 2n comparisons. The instructions of lines 8 to 14 lead to a shift, thus that can happened at
most n — m + 1 times (because shift are of length at least 1). In the worst case 3 comparisons are done
before knowing the right case which leads to 3(n — m + 1) comparisons. The instruction in line 16 leads
to a jump and thus to a re-comparisons, we know that it can happen at most n/2 and 3 comparisons are
needed to detect that case which gives 3n/2 comparisons. Thus we get an overall bound of 13n/2—3m+3
character and non-character comparisons which improves the bound of 11n of [1].

Remark: When comparing two positive integers m and n it is only necessary to compare at most
1+ |logy, max(m, n)| bits.



5 Conclusion

We have presented an analysis on the number of symbol comparisons of the Apostolico-Giancarlo algo-
rithm proving a tight 1.5n bound. Following it we have designed a new version of the algorithm that
fully used all the information considered by the algorithm to take local decisions.
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