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Abstract. We consider a version of pattern matching useful in processing large musical data:� -
matching, which consists in finding matches which are� -approximate in the sense of the distance
measured as maximum difference between symbols. The alphabet is an interval of integers, and the
distance between two symbols� , � is measured as� �	�
��� . We also consider�
������� -matching, where�
is a bound on the total sum of the differences. We first consider “occurrence heuristics” by adapting
exact string matching algorithms to the two notions of approximate string matching. The resulting
algorithms are efficient in practice. Then we consider “substring heuristics”. We present� -matching
algorithms fast on the average providing that the pattern is“non-flat” and the alphabet interval is
large. The pattern is “flat” if its structure does not vary substantially. The algorithms, named� -
BM1, � -BM2 and � -BM3 can be thought as members of the generalized Boyer-Moore family of
algorithms. The algorithms are fast on average. This is the first paper on the subject, previously only
“occurrence heuristics” have been considered. Our substring heuristics are much stronger and refer
to larger parts of texts (not only to single positions). We use � -versions of suffix tries and subword
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graphs. Surprisingly, in the context of� -matching subword graphs appear to be superior compared
with compact suffix trees.

Keywords: String algorithms, approximate string matching, dynamic programming, computer-
assisted music analysis.

1. Introduction

This paper focuses on a set of string pattern-matching problems that arise in musical analysis, and espe-
cially in musical information retrieval. A musical score can be viewed as a string: at a very rudimentary
level, the alphabet could simply be the set of notes in the chromatic or diatonic notation, or the set of
intervals that appear between notes (e.g. pitch may be represented as MIDI numbers and pitch intervals
as number of semitones). Approximate repetitions in one or more musical works play a crucial role in
discovering similarities between different musical entities and may be used for establishing “characteris-
tic signatures” (see [8]). Such algorithms can be particularly useful for melody identifi cation and musical
retrieval.

The approximate repetition problem has been extensively studied over the last few years. Effi cient
algorithms for computing the approximate repetitions are directly applicable to molecular biology (see
[11, 14, 16]) and in particular in DNA sequencing by hybridization ([17]), reconstruction of DNA se-
quences from known DNA fragments (see [19, 20]), in human organ and bone marrow transplantation as
well as the determination of evolutionary trees among distinct species ([19]).

The approximate matching problem has been used for a varietyof musical applications (see over-
views in McGettrick [15]; Crawford et al [8]; Rolland et al [18]; Cambouropoulos et al [5]). It is
known that exact matching cannot be used to fi nd occurrences of a particular melody. Approximate
matching should be used in order to allow the presence of errors. The number of errors allowed will
be referred to as� . This paper focuses in one special type of approximation that arise especially in
musical information retrieval, i.e.� -approximation. Most computer-aided musical applications adopt
an absolute numeric pitch representation (most commonly MIDI pitch and pitch intervals in semitones;
duration is also encoded in a numeric form). The absolute pitch encoding, however, may be insuffi cient
for applications in tonal music as it disregards tonal qualities of pitches and pitch-intervals (e.g. a tonal
transposition from a major to a minor key results in a different encoding of the musical passage and
thus exact matching cannot detect the similarity between the two passages). One way to account for
similarity between closely related but non-identical musical strings is to use what will be referred to
as � -approximate matching (and� -approximate matching). In� -approximate matching, equal-length
patterns consisting of integers match if each corresponding integer differs by not more than� - e.g. a
C-major �����	�
���
�
�����
����� and a C-minor�����	�
�����
�����
����� sequence can be matched if a tolerance�����
is allowed in the matching process (� -approximate matching is described in the next section).

In [6], a number of effi cient algorithms for� -approximate matching, using “occurrence heuristics”
was presented (i.e. the SHIFT-AND algorithm and SHIFT-PLUS algorithm). The SHIFT-AND algorithm
is based on the������� -time computation of different states for each symbol in thetext. Hence the overall
complexity is ���! "� . These algorithms use the bitwise technique [3, 22]. It is possible to adapt fast
and practical exact string matching algorithms to these kind of approximations. In this paper we will
present the adaptations of the TUNED-BOYER-MOORE [13], the SKIP-SEARCH algorithm [7] and the
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MAXIMAL -SHIFT algorithm [21] and present some experiments to assert that these adaptations are faster
than the algorithms using the bitwise technique.

Then we present three new algorithms, using “substring heuristics”: � -BM1, � -BM2 and � -BM3.
They can be thought as members of the Boyer-Moore family of algorithms. The two fi rst algorithms
implement a heuristic based on a suitable generalization ofthe suffi x trees data structure. The third al-
gorithm uses a heuristic that considers fi ngerprints for selected substrings of the pattern and compares
them with corresponding fi ngerprints of substrings of the text to be processed. The algorithms are fast
on average. We provide experimental results and observations on the suitability of the heuristics. Our al-
gorithms are particularly effi cient for “non-flat”patternsover large alphabet intervals, and many patterns
are of this kind.

The paper is organized as follows. In the next section we present some basic defi nitions for strings
and background notions for approximate matching. In section 3 we present the adaptation of TUNED-
BOYER-MOORE, SKIP-SEARCH and MAXIMAL -SHIFT to � - and (����� )-approximate string matching
algorithms. In section 4 we present the data structures for our “substring heuristics”, the three algorithms
which use them and an average case analysis for two of them. Insection 5 we present experimental
results for all these algorithms. Finally in section 6 we present our conclusions.

2. Background and basic string definitions

A string is a sequence of zero or more symbols from an alphabet� ; the string with zero symbols is
denoted by� . The set of all strings over the alphabet� is denoted by��� . A string � of length � is
represented by��� �	�
���
� , where ��� ������� for ��������� . A string � is asubstringof � if � ������� for� ��� �!� � ; we equivalently say that the string� occurs at position" �#"%$ � of the string� . The position" ��"&$ � is said to be thestarting positionof � in � and the position" ��"&$�" �'" theend positionof � in � .
A string � is aprefixof � if � �(�)� for � �*� � . Similarly, � is asuffixof � if � �(��� for �*�*� � .

The string ��+ is a concatenationof two strings � and + . The concatenations of, copies of � is
denoted by�.- .

Let � be a string of length� . The integer/ is said to be aperiod of � , if ��� ��� �0��� ��$1/2� for all
�3�4�5�6�879/ . The periodof a string � is the smallest period of� . A string + is aborderof � if + is a
prefi x and a suffi x of� .

Let � be an alphabet of integers and� an integer. Two symbols: �<; of � are said to be� -approximate,

denoted:4=��; if and only if " :>7!;?"@� �A�
We say that two strings�"��+ are � -approximate, denoted�B=�(+ if and only if

" �#"��B" +C" � and ��� ��� =�(+D� ��� �FE���� �����G�G�G���%" �#" �H� ��I@� ���
For a given integer� we say that two strings�"��+ are � -approximate, denoted��J�K+ if and only if

" ��"��B" +C" � and

L MNLO P
QSR " ��� ���T7U+D� ���F"V� �W� ��I@�XI��

Furthermore, we say that two strings� ��+ are � ����� � -approximate, denoted� =FY J�0+ , if and only if � and +
satisfy conditions (2.1) and (2.2).
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3. Occurrence heuristics

The problem of� -approximate pattern matchingis formally defi ned as follows: given a string+ �K+T� �	�
�  T�
and a pattern� �(��� �	�
���
� compute all positions� of + such that

��=�K+T� �N�
� ��$ �07 � �N�
A naive solution to this problem is to build an Aho-Corasick automaton (see [1]) of all strings that are

� -approximate to� and then use the automaton to process+ . The time required to build the automaton
is ��� ��� � since there areI�� �5$ � different letters that can be used in each position, thus this method is
of no practical use for large values of� and � . In [6] an effi cient algorithm was presented based on the
������� -time computation of the “delta states” by using bit operations under the assumption that� � � ,
where � is the number of bits in a machine word. In this section we present direct adaptations of exact
string matching algorithms to the notion of� -approximate string matching. The new algorithms use only
heuristics on single positions of the pattern. Section 3.1 presents the adaptation of the TUNED-BOYER-
MOOREexact string matching algorithm. Section 3.2 depicts the adaptation of the SKIP-SEARCH exact
string matching algorithm. Section 3.3 presents the adaptation of the MAXIMAL -SHIFT exact string
matching algorithm. Section 3.4 shows the adaptation of these algorithms to (����� )-approximate string
matching.

3.1. � -TUNED-BOYER-MOORE Approximate Pattern Matching

Here we present an adaptation of the TUNED-BOYER-MOORE for exact pattern matching algorithm to
� -approximate pattern matching. The exact pattern matchingproblem consists in fi nding one or more
(generally all) exact occurrences of a pattern� of length � in a text + of length  . Basically a pattern
matching algorithm uses a window which size is equal to the length of the pattern. It fi rst aligns the
left ends of the window and the text. Then it checks if the pattern occurs in the window and shifts the
window to the right. It repeats the same procedure again until the right end of the window goes beyond
the right end of the text.

The TUNED-BOYER-MOORE algorithm [13] is a very fast practical variant of the famousBOYER-
MOORE algorithm [4]. It only uses the occurrence shift function toperform the shifts. The occurrence
shift function is defi ned for each symbol: in the alphabet� as follows:

shift � : � ���	��
 ���&� 7 ��" ��� � � �K: with � � � � � �
� �&� ���H�
The TUNED-BOYER-MOORE algorithm gains its effi ciency by unrolling three shifts in avery fast

skip loop to locate the occurrences of the rightmost symbol of the pattern in the text. Once an occurrence
of ��� �
� is found, it checks naively if the whole pattern occurs in thetext. Then the shift consists in
aligning the rightmost symbol of the window with the rightmost reoccurrence of��� �
� in ��� �	�
��� 7 � � , if
any. The length� of this shift is defi ned as follows:

� ���	��
 ���&� 7U� " ��� ��� �(��� �
� and �	� ��� � ��� �&� ���H�
To do � -approximate pattern matching, the shift function can be defi ned to be for each symbol: in

the alphabet� the distance from the right end of the pattern of the closest symbol ��� ��� such that��� � � =�K: :
shift � : � ���	��
 ���&� 7 ��" ��� � � =��: with � � � � � ��� �&� ���H�
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� -TUNED-BOYER-MOORE� �"� � ��+ �  �
���
1 � Preprocessing

2 for all : �*�
3 do shift � :N��� �	��
 ���&� 7U� " ��� ��� =��: � � �&� ���
4 ��� �	��
 ���&� 7U�5"%��� ��� � =�(��� �
� and � � ��� � ��� �&� ���
5 +D�  �$ �	�
�  $1�
��� � ��� �
�!� �
6 � Searching

7 ��� �
8 while � �  
9 do ,�� shift � +D� �	�
�

10 while , �� �
11 do �	� ��$ ,
12 ,�� shift � +T� �?�
�
13 �	� � $ ,
14 ,�� shift � +T� �?�
�
15 �	� � $ ,
16 ,�� shift � +T� �?�
�
17 if ��� �	�
��� 7 � � =�K+T� �37U� $ �	�
� �W7 � � and � �  
18 then REPORT� �37U� $ ���
19 �	� ��$ �

Figure 1. Adaptation of the TUNED-BOYER-MOORE exact pattern matching algorithm to do� -approximate
pattern matching. Line 3,
 copies of��� 
�
 are appended at the end of� . Line 5, shift � ��� 
�
�
 is set to � so that
during the inner loop (lines 10–16) of the searching phase whenever� becomes greater than� , � becomes equal to
� .

Then the length of the shift� becomes:

� � � ��
 ���&�07U� "%��� ��� � =�4��� �
� and �	� � � � � � �&� ���H�
The reason why it is necessary to useI�� in the new defi nition of� is that I�� is the minimum such

that for any three symbols: �<;���� �*� , if :K=��; and ;*=��� then : � =��� .
The pseudo-code for� -TUNED-BOYER-MOORE algorithm can be found in fi gure 1.

3.2. � -SKIP-SEARCH Approximate Pattern Matching

In the SKIP-SEARCH algorithm [7], for each symbol of the alphabet, a bucket collects all of that symbol’s
positions in� . When a symbol occurs, times in the pattern, there are, corresponding positions in the
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� -SKIP-SEARCH � � ��� ��+ �  �
���
1 � Preprocessing

2 for all : �*�
3 do ��� : ��� �&�5" ��� � � =�K: �
4 � Searching

5 �	� �
6 while � �  
7 do for all �A����� +D� �	�
�
8 do if � =�K+T� �37U�.$ �	�
� �W7U�T$1�
�
9 then REPORT� �37U�.$ ���

10 � � ��$1�
Figure 2. Adaptation of the SKIP-SEARCH exact pattern matching algorithm to do� -approximate pattern match-
ing.

symbol’s bucket. When the word is much shorter than the alphabet, many buckets are empty. The buckets
are stored in a table� defi ned as follows:

��� :N� � �&� " ��� ��� �K: with ��� ��� � �H�
The main loop of the search phase consists in examining every� -th text symbol,+T� �?� (so there will

be  � � main iterations). Then for+D� �	� , it uses each position in the bucket��� +T� �?�
� to obtain a possible
starting position of� in + and checks if the pattern occurs at that position.

To do � -approximate pattern matching, the buckets can be computedas follows:

��� :N� � �&� " ��� ��� =�K: with ��� ��� � �H�
Figure 2 shows the pseudo-code for� -SKIP-SEARCH algorithm. In this case when� is much shorter

than the alphabet and the pattern� is flat (i.e. its structure does not vary substantially), many buckets are
empty.

3.3. � -MAXIMAL -SHIFT Approximate Pattern Matching

Sunday [21] designed an exact string matching algorithm where the pattern positions are scanned from
the one which will lead to a larger shift to the one which will lead to a shorter shift, in case of a mismatch.
Doing so one may hope to maximize the lengths of the shifts andthus to minimize the overall number of
comparisons.

Formally we defi ne a permutation

��� �����<I��G�G�G����� ��� $ ����� �����<I��G�G�G����� ��� $ ���
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and a functionshift such that
shift � � � � � ��� shift � � � �T$ ��� �

for � � � � � and

shift � � � � � � � �	��
 ��� "
� E�� such that��� � � �
����� � � � � 7�� � �(��� � � ��� �!� and � ��� � � � �#7�� � ��(��� � � � � �!�
�
for �>�(� �(� and � � � $ ��� � � $ � . Furthermoreshift � � $ � � is set with the value of the period of
the pattern� .

We also defi ne a function��� for each symbol of the alphabet:

��� � : � �
	
�	��
 � �
"���� � � � and ��� �87 �	� ��: � if : occurs in� �� otherwise�

for :
�*� .
Then, when the pattern is aligned with the+D� �?�
� ��$(� 7 � � the comparisons are performed in the

following order ��� � ����� � ����� � ��I�� � �G�G�G������� � � � � � until the whole pattern is scanned or a mismatch is found.
If a mismatch is found when comparing��� � � � � � then a shift of length��

� � shift � � � � � � �����V� +D� ��$ � $ � �
� �
is performed. Otherwise an occurrence of the pattern is found and the length of the shift is equal to the
maximum value between the period of the pattern and��� � +D� ��$ � $ � �
� . Then the comparisons resume
with ��� � ����� � without keeping any memory of the comparisons previously done.

To perform � -approximate string matching the two functions can be redefined as follows:

shift � � � � � � � �	��
 ��� "
� E�� such that��� � � �
����� � � � � 7�� � � =�(��� � � � � �!� and � ��� � � � �H7�� � =��(��� � � ��� �!�
�
for � � ��� � and

shift � � $ � � � � ��
 ��� "	��� ��� =�(��� �.$�� � for ��� �A� �07����
and

��� � :N� �
	
�	� 
 � � "��'� � � � and ��� �07 �	� =�K: � if such a� exists�� otherwise�

for :
�*� .
The preprocessing phase can be done in��� � � � . Figure 3 gives the pseudo-code of the searching

phase.

3.4. � ������� -Approximate String Matching Algorithms

The problem of� � ��� � -approximate pattern matchingis formally defi ned as follows: given a string+ �+T� �	�
�  T� and a pattern� �(��� �	�
���
� compute all positions� of + such that

� =FY J� +D� �?�
� ��$1�07 � �N�
In [6] this problem was solved by making use of the SHIFT-AND algorithm to fi nd the� -approximate

matches of the pattern� in + . Once a� -approximate match was found, it was then tested to check
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� -MAXIMAL -SHIFT � � ��� � + �  �
��� shift �������
1 � Searching

2 � � �
3 while � �  7 �
4 do � � �
5 while �A� � and ��� � � � � � �(+D� � $ � � � � �
6 do � � �T$ �
7 if ��� �
8 then REPORT� � �
9 �	� � $ � 

� � shift � � � � � � �����V� +D� � $1� $ � �
� �

Figure 3. Adaptation of the MAXIMAL -SHIFT exact pattern matching algorithm to do� -approximate pattern
matching.

whether it is also a� -approximate match. This was done by computing successive “delta states” and
“gamma states” in������� time using bit operations under the assumption that� � � where � is the
number of bits in a machine word.

In order to adapt the� -TUNED-BOYER-MOORE, � -SKIP-SEARCH and � -MAXIMAL -SHIFT algo-
rithms to the case of� ����� � -approximation, it just suffi ces to adapt the naive check of the pattern. The
resulting algorithms are named� � ��� � -TUNED-BOYER-MOORE algorithm, � ����� � -SKIP-SEARCH algo-
rithm and � ����� � -MAXIMAL -SHIFT algorithm.

4. Substring heuristics

In this section we introduce “substring heuristics” to solve the problem of� - and (����� )-approximate
string matching. It is the fi rst time that such heuristics areconsidered for this kind of problems. Section
4.1 defi nes two notions of approximate dictionaries which corresponding data structures are given in
sections 4.2 and 4.3. In section 4.4 we give three new algorithms using these approximate dictionaries
and we give an average case analysis for two of them in section4.5.

4.1. Two approximate dictionaries

The Boyer-Moore type algorithms are very effi cient on average since scanning a small segment of size, allows, on average, to make large shifts of the pattern. Eventually this gives sublinear average time
complexity. This general idea has many different implementations, see [9]. In this section, our approach
to � -matching is similar, we scan a segment of size, in the text. If this segment is not� -approximate
with any subword of the pattern we know that no occurrence of the pattern starts at� 71, positions to
the left of the scanned segment. This allows to make a large shift of size �07�, . The choice of, affects
the complexity. In practice small, would suffi ce. Hence the fi rst issue, with this approach, is tohave a
data structure which allows to checkfast if a word of size, is � -approximate to a subword of� . We are
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especially interested in the answer “no” which allows to make a large shift, so an important parameter
is therejection ratio, denote byExact-RR. It is the probability that a randomly chosen, -subword is not
� -approximate with a subword of� . If this ratio is high then our algorithms would work much faster on
average. However another parameter is the time to check if the answer is “no”. It should be proportional
to , . We do a compromise: build a data structure with smaller rejection ratio but with faster queries about
subwords of size, . Smaller rejection ratio means that sometimes we have answer “yes” though it should
be “no”, however if the real answer is “no” then our data structure always outputs “no” also. This is the
negative answer which speeds up Boyer-Moore type algorithms. The positive answer has small effect.
The data structure is an approximate one, its rejection ratio is denoted byRR, and it is hard to analyze
it exactly. Hence we rather deal with heuristics. The performance depends on particular structure, the
parameter, and class of patterns. Another important factors are rejection ratios: Exact-RRandRR. If
Exact-RRis too small we cannot expect the algorithms to be very fast. On the other hand we need to have
RRas close toExact-RRas possible. The applicability is verifi ed in practice. The starting structure is the
suffi x trie, it is effective in searching but it could be too large theoretically, though in practice, is small
and , -truncated suffi x trie is also small. Surprisingly we do not have linear size equivalent of (compact)
suffi x trees, but we have a linear size equivalent of subword graphs: � -subword graphs. this shows that
suffi x trees and subword graphs are very different in the context of � -matching. Below we give a formal
defi nition of our data structures and rejection ratios. Denote bySUB� �"�<, � the set of all substrings of�
of size , . Denote also:

� -SUB� � �<, � � � � " � =�4� for some��� SUB� � �<, �
�H�
This is similar to the computation of high-scoring words in BLAST [2].

An approximate dictionaryfor a given string� is the data structure� M Y =FY - which answers the queries:

� M Y =FY - � � � � “� � � -SUB� � �<, ��� ”
Let � M Y =FY - � � � be the result (true or false) of such query for a string� given by the data structure� M Y =FY - .
By � M Y =FY J Y - we denote the corresponding data structure for the queries involving the equality� =FY J� � .
In order for our data structure to work fast we allow that the answers could be incorrect.� M Y =FY - � � � can
answertruealthough� is not in � -SUB� �"�<, � . By an effi ciency of� M Y =FY - we understand therejection-ratio
proportion:

RR- ��� M Y =FY - � � " � � �*� - "�� M Y =FY - � ��� �����
	���
��@""�� " - �
Optimal effi ciency is the exactrejection-ratiofor � :

Exact-RR- � � � � � 7 " � -SUB� �"�<, �G""�� " - �
In other words the effi ciencyRR- is the probability that a random substring� of length , is not accepted
by � M Y =FY - and the effi ciencyExact-RR- is the probability that a random substring� of length , is not an
element of� -SUB� �"�<, � . Our data structures� arepartially correct:

� -SUB� � �<, ��� � � "�� M Y =FY - � � � ��������
��H�
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4.2. � -suffix tries and � -subword graphs

Denote��� � � ��

� �&�S7 � � � ��
 � � ��� and ��� � � �	� 
 �&�C$ ��� ��

� � � ��� . We defi ne� -suffi x tries and
� -subword graphs algorithmically. The� -suffi x trie of a pattern� is built as follows:

� build the trie � � ��� �	� � recognizing all the suffi xes of� where � is the set of nodes and� �� �*���
� is the set of edges of� ;

� replace each edge� / � : �	��� ��� by � / � � � 

� ���	� :'7 ����� �	��
 ����

� � � ��� : $ ���G� �	��� ;
� for all the nodes�6�
� , if there are two edges� � � � : �<; � � / � ��� � � � ���	�?� �	��� ��� such that� : �<;<���� ���	�N� ���� then merge/ and � into a single new node� and replace� � � � : �<;<� � / � and � � � � ���	�?� �	��� by

one edge� � � � �	��
 � : ������� ��

� �%;��	�
�G� � ��� .
We have an equivalence relation on the set of vertices: two vertices are equivalent iff they are roots of
isomorphic subtrees. In the� -suffi x trie construction we process nodes by taking at eachlarge step all
vertices which are in a same equivalence class� . Then in this step we process all edges outgoing from
vertices from � . All these vertices are independent and we can think that it is done in parallel. The
construction terminates when the trie stabilizes. The� -subword graph of a sequence� is obtained by
minimizing its � -suffi x trie. This means that each equivalence class of vertices is merged into a single
vertex. Figure 5 shows an example of� -suffi x trie and� -subword graph. It should be noted that using an
alphabet of ranges is not a new idea (see [12]).

Theorem 4.1. The numbers of nodes and of edges of� -subword graph for the string� are ��� " ��" � .
Proof:
The number of equivalence classes of the initial suffi x trie is at mostI� . In the process of merging
edges the nodes which are equivalent initially will remain equivalent until the end. Hence the number
of equivalence classes of intermediate� -suffi x trie (after processing all edges outgoing from nodesin
a same equivalence class) is at mostI� , which gives the upper bound on the number of nodes of the
� -subword graph. The bound on the number of edges can be shown similarly as for standard subword
graphs. ��
4.3. Families of intervals

For each subword� � SUB� �"�<, � of � , denote by� �����"� � � the sum of the symbols of+ . For each, � " �#"
we introduce the following families of intervals (overlapping and adjacent intervals are “glued together”)
of the interval � �	��
 � � ���H, � ��

� � � �G� which represents respectively the sets:� = � � �<, � � ���� SUB� M Y -��

��� �����"� � � � ,
���!� �����"� � � � ,
�&�
and "

J � �"�<, � � ��#� SUB� M Y -$�
��� ���%� � � ��� �	��
 �%,
� ���"���&� ���%� � � ��� �	��
 �%,
� ���"�G�N�

Clearly
"
- = � �"�<, � � � = � � �<, � . Figure 6 presents an example.

The defi nitions of
�

and
"

imply:
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� -BM1 � � ��� ��+ �  �
���
1 � � �
2 while �A�  
3 do if +T� �S7!, $ �	�
�
������� � -suffi x trie of �
4 then NAIVE � �
���D$1�07 ,�7 ���

Figure 7. � -BM1 algorithm.

Lemma 4.1. The two following properties hold:

(a) If � =�(� for some� � SUB� �"�<, � then � �����"� ��� � � = � �"�<, � ;
(b) If � =FY J� � for some� � SUB� � �<, � then � �����"� � �5� "

J � �"�<, � .
The effi ciency of the family� of intervals can be measured asRR��� � � � 7�� ��� � � � �����"� ��� ��� � where�
is a random string of length, . In other words it is the probability that an integer is not inany interval of
the family. Observe that� in our case is always represented as a family of disjoint intervals, overlapping
and adjacent ones have been glued together.

4.4. Three � -BM algorithms

We show how the data structures introduced in this section are used in� -matching. We now want to fi nd
all the � -occurrences of a pattern� of length � in a text + of length  . We apply a very simple greedy
strategy: place the pattern over the text such that the rightend of the pattern is over position� in the text.
Then check if the suffi x� � � of length , ( , may depend on� ) of text ending at� is “sensible”. If not the
pattern is shifted by a large amount and many positions of of the text are never inspected at all. If��� � is
sensible then a naive search in a “window” on the text is performed. Figure 7 implements this method.

We denote here by NAIVE � / �	��� a procedure checking directly if� ends at positions in the interval� / �
� �%� , for / � � .
We design an improved version of� -BM1 using � -subword graphs instead of tries. The� -subword

graph of the reverse pattern is denoted by� � �%� �������
	 �	� � , where� is the alphabet,� is the set of states,� � � � is the initial state,	 � � is the set of fi nal states and� � � � � � � is the set of transitions. Let

� -� 
 � � � � be the� -period of the word� defi ned by� - � 
��
� � � � �	� 
 ��/ " E ��� �A� � 7�/ ����� ��� =�K��� � $)/2� � .
Then it is possible to adopt the same strategy as the Reverse Factor algorithm [9] for exact string

matching to� -approximate string matching. When the pattern� is compared with+D� �H7 � $ �	�
����� the
symbols of+T� �N7>�6$ �	�
����� are parsed through the� -subword graph of the reverse pattern from right to left
starting with the initial state. If transitions are defi ned for every symbol of+D� �S7 � $ �	�
����� , it means that
a � -occurrence of the pattern could have been found and the pattern can be shifted by� -� 
�� � � � positions
to the right. Otherwise the pattern can be shifted by� minus the length of the path, in the� -subword
graph, from the initial state and the last fi nal state encountered while scanning+D� � 7 ��$ �	�
��� � from right
to left. Indeed the� -subword graph of the reverse pattern recognizes at least all the � -suffi xes of the
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� -BM2 � �"��� ��+ �  �
���
1 � � �
2 while �A�  
3 do � � � �
4 � � �
5 ; � �
6 while � ����+D� �	� � / �)� �
7 do � �8/
8 �	� �37 �
9 if �>� 	

10 then ; � � 7 �
11 if �S7 � � �
12 then check and report a� -occurrence at position��7U� $ �
13 � � �.$ � - � 
�� � � �
14 else � � �.$1�07!;

Figure 8. � -BM2 algorithm.

reverse pattern from right to left and thus at least all the� -prefi xes of the pattern from left to right. Figure
8 implements this method.

The value� -� 
 � � � � can be approximated using the� -subword graph of the reverse pattern.
Our last algorithm can be used also for� � ��� � -approximate string matching. We apply the data struc-

ture of interval families. Figure 9 implements this method.� -BM3 algorithm is conceptually simpler
than the other algorithms and its preprocessing is easy.

4.5. Average time analysis of algorithms� -BM1 and � -BM3

Denote/ � ����� ;�� � =�(+ � where� and + are random symbols and� - Y M � RR- ��� M Y =FY - � .
Lemma 4.2. The overall average number of comparisons made by� -BM1 and � -BM3 algorithms is at
most  �07!,

� ,3$ ��� 7 � - Y M � �
� 7
/��

Proof:
Divide the text into windows of size�07!, . In each window the probability that the pattern is moved to
the next window after at most, comparisons is� - Y M . Now it is enough to prove that the average number
of comparisons made by the naive algorithm in the window is bounded by �R
	�� . We assume now that our
algorithm performs worse than in reality and no matter what is the result of comparisons of symbols at
positions��7 ,H$ �	�
��� of the window the algorithm goes further and ends when one of the other window
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� -BM3 � � ��� ��+ �  �
���
1 � � �
2 while ���  
3 do if � ���%�"� +T� ��7!, $ �	�
�����!� � "

=FY J � � �<, �
4 then NAIVE � �
���D$1�07�,>7 ���

Figure 9. � -BM3 algorithm.

symbols mismatches the symbol of the pattern or all of them match. This is because we cannot assume
that the symbols at positions� 7
,5$ �	�
��� are random since they matched the symbols in the dictionary.

Making this assumption the average number of comparisons made by the naive algorithm at position� of the window is

/ R � ��� 7
/ � ��,3$ ���C$*/ ���579/ � ��, $ I��C$ / �
��� 7
/ � ��, $ ���C$������ $

$A/ � 	 - 	DR ��� 79/ � � $*/ � 	 - �U�
Similarly the average number of comparisons made by the naive algorithm at position� $ � is

/ � � ��� 7
/ �����A$*/ ���57
/ � ��, $ I��C$*/ �
���)7
/ � ��, $ ��� $������ $*/ � 	 - 	DR ���)7
/ � � $*/ � 	 - �U�

Similarly the average number of comparisons made by the naive algorithm at position�8$ � 7 � for
� � �	�
��� 7!, is

/ � � ��� 7
/ ��� � $*/ ��� 7
/ ���%I $������ $*/ � 	 �
��� 7
/ ����� �37 ����$

$A/ � 	DR ���)7
/ � ��, $ ���C$*/ � ��� 7
/ � ��, $ � $ ��� $(�G�G��/ � 	 - 	DR ��� 79/ � � $*/ � 	 - �U�
We have / � � ��� 7
/ ��� � $*/ ��� 7
/ ���%I $������	$ / � 	 - 	DR ��� 7
/ � � � 7�, ��$

$�, � / � 	DR ���)7
/ �D$*/ � ��� 7
/ �D$������?$*/ � 	 - 	DR ��� 7
/ � �C$*/ � 	 - � �
�)7
/ � 	 -
�)7
/ 7 � �07!, � / � 	 - $ , � / � 	DR 7 / � 	 - �C$*/ � 	 - � �

� 7
/ � 	 -
� 7
/ $ ,%/ � 	DR �

Hence,
� 	 -O
� QSR / � � � �87!, � � 7
/ � 	 -

� 7
/ $ , �)7
/ � 	 -
�57
/ �(� �57
/ � 	 -

�57
/ � �
� 7
/ �

This completes the proof. ��
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The analysis of our algorithms would be simpler and we would get slightly better estimation for the
average number of symbol comparisons if we assume that in each window the naive algorithm performs
comparisons of text symbols at positions� 7�, $ �	�
��� at the end. The estimation is however not
signifi cantly better. In particular it does not give an improvement in the estimation in our next theorem.

Theorem 4.2. Let ,6� �V����� � and /�� �V����� . The average time complexity of the algorithms� -BM1
and � -BM3 is

���  � ��, $ ��� 7 � - Y M � � � � �
Observe here that our analysis does not depend on the data structure � . The only thing it assumes is

that the scheme of the algorithm matches the structure of thealgorithms� -BM1 and � -BM3. Clearly, the
effi ciency of such algorithms depends heavily on the choice of , and the effi ciency of� . For instance,
for � � � , (ie. we consider string matching without errors) we may choose , � I������ L �DL � . Then, for
� -BM1, ��7�� - Y M is the probability that a random string of length, is not a subword of� . The number of
subwords of length, of � is at most� and the number of all words of length, is � �

so ��7 � - Y M � R
�thus the average time complexity is���
	� ����� � � , the best possible. Moreover, may depend also on the

pattern� itself. If / is “good” then , may be chosen small and when it is “bad”, may be chosen bigger.
In particular we may increase, up to the moment when� 7 � - Y M decreases below an acceptable level.

5. Experimental Results

We fi rst count the number of text character inspections of thealgorithms in section 5.1 while we observe
their running times in section 5.2.

5.1. Text character inspections

We computed experimentally the valuesRRandExact-RRfor our approximate dictionaries for various
values of, and different sizes of the alphabet. These effi ciencies correspond to average case complexity
of our � -BM algorithms. We compared the values ofRRandExact-RRwith average running time for
suffi ciently large sample of random inputs. We counted the average number of text character inspections
for the following algorithms: � -TUNED-BOYER-MOORE, � -SKIP-SEARCH, � -MAXIMAL -SHIFT [10]
and � -BM1, � -BM2 and � -BM3.

All the algorithms have been implemented in C in a homogeneous way such as to keep their com-
parison signifi cant. The text used is composed of�����	� ����� symbols and was randomly built. The size
of the alphabet is 100. The target machine is a PC, with a AMD-K6 II processor at 330MHz running
Linux kernel 2.2. The compiler is�
��� . For each pattern length� , we searched per one hundred patterns
randomly built.

We counted the number� of text character inspections for one text character. The results are presented
in fi gures 10 and 11. For� � � the best results for� -BM1 algorithm have been obtained with, �
����� � � . The best results for the� -BM3 algorithm have always been obtained with, � I . For small
values of� , � -BM1 and � -BM2 algorithms are better than� -TUNED-BOYER-MOORE algorithm (which
is the best among the known algorithms) for large values of� ( � �4I�� ). For large values of� , � -BM1
and � -BM2 algorithms are performing a large number of text character inspections since the� -subword
graph and the� -suffi x trie tend to be a line with all edges labeled with� �	��
 � � �N�
� ��

� � � �G� . For larger
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Figure 10. Results for�&� �
.

values of� (up to 5) � -BM1 and � -BM2 algorithms are better than� -TUNED-BOYER-MOOREalgorithm
for small values of� ( � � �&I ). For larger values of� , the � -TUNED-BOYER-MOORE algorithm is
performing better than the other algorithms. In conclusionthe algorithms introduced in this article are
of particular practical interest for large alphabets, short patterns and small values of� . Alphabets used
for music representations are typically very large. A “bare” absolute pitch representation can be base-
7 (7 symbols), base-12, base-40 or 120 symbols for MIDI. But meaningful alphabets that will allow
us to do in-depth music analysis use symbols that in reality is a set of parameters. A typical symbol
could be� : R � : � � :����G�G�G��� : - � , where: R represents the pitch,: � represents the duration,:�� the accent etc.
A typical pattern (“motif”) in musical sequence is 15-20 notes but an alphabet can have thousands of
symbols. Thus the need of algorithms that perform well for small patterns and large alphabets.

5.2. Running times

We implemented in C, in a homogeneous way, the following algorithms:
SHIFT-AND, � -TUNED-BOYER-MOORE, � -SKIP-SEARCH, � -MAXIMAL -SHIFT and
SHIFT-PLUS, � ����� � -TUNED-BOYER-MOORE, � ����� � -SKIP-SEARCH and � � ��� � -MAXIMAL -SHIFT.
We randomly built a text of�����	� ����� symbols on an alphabet of size��� . We then searched for each

values of� , 100 random patterns and took the average running time. Times are measured in hundredth
of seconds and include both preprocessing and searching times. The design of effi cient algorithms for
the preprocessing phase of the algorithms using “substringheuristics” is still an open problem, they are
not included in the running time experimentation.

The results for� -approximation are shown in tables 1 to 5. For the values usedin these experiments,
the � -TUNED-BOYER-MOORE algorithm is always faster than the� -SKIP-SEARCH algorithm which is
itself always faster than the SHIFT-AND algorithm.
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.

Table 1. Running times for� -approximation with� � �
.

� SHIFT-AND � -TUNED-BOYER-MOORE � -SKIP-SEARCH

8 32.98 10.78 18.61
9 32.90 10.55 18.11
10 32.93 10.10 17.65
20 32.86 9.32 15.81

Table 2. Running times for� -approximation with� � 	
.

� SHIFT-AND � -TUNED-BOYER-MOORE � -SKIP-SEARCH

8 33.07 13.40 21.66
9 32.90 13.00 20.94
10 32.93 12.64 20.49
20 32.92 11.97 18.81
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Table 3. Running times for� -approximation with� ��� .

� SHIFT-AND � -TUNED-BOYER-MOORE � -SKIP-SEARCH

8 33.65 16.65 24.99
9 33.14 16.05 24.06
10 33.05 15.71 23.62
20 32.93 14.82 21.42

Table 4. Running times for� -approximation with� � $
.

� SHIFT-AND � -TUNED-BOYER-MOORE � -SKIP-SEARCH

8 34.72 21.18 29.15
9 33.41 20.03 27.64
10 33.07 19.12 26.85
20 32.81 18.20 24.41

Table 5. Running times for� -approximation with� � 

.

� SHIFT-AND � -TUNED-BOYER-MOORE � -SKIP-SEARCH

8 36.46 26.82 34.64
9 34.46 24.36 31.46
10 33.41 23.61 30.55
20 33.00 22.32 27.54
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Table 6. Running times for�
������� -approximation with� ��� ����� 
 � � ��� and �'� � �
.

� SHIFT-PLUS � � ��� � -TUNED-BOYER-MOORE � � ��� � -SKIP-SEARCH

8 50.73 23.33 31.93
9 50.32 27.78 35.52
10 51.79 33.76 39.45
20 50.26 32.46 36.91

Table 7. Running times for�
������� -approximation with� ��� ����� 
 � � ��� and �'� �"�
.

� SHIFT-PLUS � � ��� � -TUNED-BOYER-MOORE � � ��� � -SKIP-SEARCH

8 50.88 23.16 31.99
9 50.86 28.70 36.40
10 51.87 33.74 39.58
20 51.11 32.53 37.38

The results for� ����� � -approximation are shown in tables 6 to 10. For the values that were used in
these experiments, the� ����� � -TUNED-BOYER-MOORE algorithm is always faster than the� ����� � -SKIP-
SEARCH algorithm which is itself always faster than the SHIFT-PLUS algorithm.

Experiments conduct only on� -approximation show that an adaptation to this case of the SKIP-
SEARCH algorithm is faster than an adaptation of the TUNED-BOYER-MOORE algorithm.

One should notice that the SHIFT-AND and SHIFT-PLUS algorithms need constant time to run what-
ever the values of the parameters are. In case of very high values for� and/or� they have to be considered
as the best choice.

6. Conclusion

We presented in this article two types of heuristics for� - and � -string matching problems. We fi rst
consider “occurrence heuristics” for which we designed theSKIP-SEARCH, TUNED-BOYER-MOORE

and MAXIMAL -SHIFT approximate string matching algorithms that outperform, in practice, the one

Table 8. Running times for�
������� -approximation with� ��� ����� 
 � � ��� and �'� ��	
.

� SHIFT-PLUS � � ��� � -TUNED-BOYER-MOORE � � ��� � -SKIP-SEARCH

8 50.72 23.33 32.02
9 50.70 27.96 35.65
10 51.94 33.88 40.00
20 51.35 33.20 37.03
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Table 9. Running times for� ��� � � -approximation with� ��� ����� 
 � � ��� and � � � � .

� SHIFT-PLUS � ����� � -TUNED-BOYER-MOORE � ����� � -SKIP-SEARCH

8 50.67 23.29 32.20
9 50.83 28.38 35.74
10 51.93 34.41 39.91
20 50.18 32.94 37.10

Table 10. Running times for�
� � � � -approximation with� ��� ����� 
 � � ��� and �'� �
$
.

� SHIFT-PLUS � ����� � -TUNED-BOYER-MOORE � ����� � -SKIP-SEARCH

8 51.24 23.57 32.22
9 50.31 28.33 35.73
10 51.83 34.36 40.15
20 49.97 32.77 37.03

presented in [6]. Then we consider “substring heuristics”.Using � -tries, � -subword graphs and families
of intervals we gave three new algorithms that can be considered as members of the Boyer-Moore family
of pattern matching algorithms. The algorithms using “occurrence heuristics”are very fast in practice. A
theoretical study of the algorithms using “substring heuristics”shows that they are optimal in the average.
An experimental study shows that for small values of� (1 or 2) the � -BM algorithms are effi cient. For
mid values of� the TUNED-BOYER-MOORE algorithm is the fastest algorithm. In case of very high
values for � and/or � the SHIFT-AND and SHIFT-PLUS algorithms have to be considered as the best
choice.

A problem remains in designing effi cient algorithms for building � -tries and� -subword graphs.
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