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Abstract. We consider a version of pattern matching useful in proogslsirge musical datad-
matching, which consists in finding matches which é&a@pproximate in the sense of the distance
measured as maximum difference between symbols. The alpatreinterval of integers, and the
distance between two symbalsb is measured g&—b|. We also considg(d, v)-matching, where

is a bound on the total sum of the differences. We first com$@mzurrence heuristics” by adapting
exact string matching algorithms to the two notions of agpnate string matching. The resulting
algorithms are efficient in practice. Then we consider “stihgteuristics”. We preseidtmatching
algorithms fast on the average providing that the pattefnas-flat” and the alphabet interval is
large. The pattern is “flat” if its structure does not vary staimtially. The algorithms, named
BM1, 6-BM2 andé-BM3 can be thought as members of the generalized Boyer-&faonily of
algorithms. The algorithms are fast on average. This is thefaper on the subject, previously only
“occurrence heuristics” have been considered. Our sulsgtenristics are much stronger and refer
to larger parts of texts (not only to single positions). We é&ersions of suffix tries and subword

*The work of these authors was partially supported by NATOWQRST.CLG.977017.
#The work of this author was partially supported by Welcomenftation, Royal Society and EPSRC grants.
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graphs. Surprisingly, in the context &matching subword graphs appear to be superior compared
with compact suffix trees.

Keywords: String algorithms, approximate string matching, dynamiegpamming, computer-
assisted music analysis.

1. Introduction

This paper focuses on a set of string pattern-matching @nabkhat arise in musical analysis, and espe-
cially in musical information retrieval. A musical scorendae viewed as a string: at a very rudimentary
level, the alphabet could simply be the set of notes in therohtic or diatonic notation, or the set of
intervals that appear between notes (e.g. pitch may beseqiexd as MIDI numbers and pitch intervals
as number of semitones). Approximate repetitions in one anermusical works play a crucial role in
discovering similarities between different musical eesitand may be used for establishing ‘characteris-
tic signatures” (see [8]). Such algorithms can be partitplaseful for melody identifi cation and musical
retrieval.

The approximate repetition problem has been extensivaljied over the last few years. Effi cient
algorithms for computing the approximate repetitions areatly applicable to molecular biology (see
[11, 14, 16]) and in particular in DNA sequencing by hybratinn ([17]), reconstruction of DNA se-
guences from known DNA fragments (see [19, 20]), in humaam&and bone marrow transplantation as
well as the determination of evolutionary trees amongmisispecies ([19]).

The approximate matching problem has been used for a variatyusical applications (see over-
views in McGettrick [15]; Crawford et al [8]; Rolland et al ), Cambouropoulos et al [5]). It is
known that exact matching cannot be used to find occurrenicasparticular melody. Approximate
matching should be used in order to allow the presence ofseribhe number of errors allowed will
be referred to ag. This paper focuses in one special type of approximation dnae especially in
musical information retrieval, i.ed-approximation. Most computer-aided musical applicatiaaopt
an absolute numeric pitch representation (most commonIMitch and pitch intervals in semitones;
duration is also encoded in a numeric form). The absolutd@hcoding, however, may be insuffi cient
for applications in tonal music as it disregards tonal digaliof pitches and pitch-intervals (e.g. a tonal
transposition from a major to a minor key results in a différencoding of the musical passage and
thus exact matching cannot detect the similarity betweentilo passages). One way to account for
similarity between closely related but non-identical nsasistrings is to use what will be referred to
as J-approximate matching (ang-approximate matching). Ia-approximate matching, equal-length
patterns consisting of integers match if each correspgnufiteger differs by not more thaft e.g. a
C-major{60, 64, 65,67} and a C-minoK60, 63, 65,67} sequence can be matched if a tolerafice 1
is allowed in the matching procesg-approximate matching is described in the next section).

In [6], a number of effi cient algorithms far-approximate matching, using ‘occurrence heuristics”
was presented (i.e. thed8T-AND algorithm and 81FT-PLUS algorithm). The SIFT-AND algorithm
is based on thé&(1)-time computation of different states for each symbol intthe. Hence the overall
complexity isO(n). These algorithms use the bitwise technique [3, 22]. It issfile to adapt fast
and practical exact string matching algorithms to these kihapproximations. In this paper we will
present the adaptations of th& NED-BOYER-MOORE [13], the &XIP-SEARCH algorithm [7] and the
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MAXIMAL -SHIFT algorithm [21] and present some experiments to assertitbagtadaptations are faster
than the algorithms using the bitwise technique.

Then we present three new algorithms, using ‘substringisies™ §-BM1, §-BM2 andé-BM3.
They can be thought as members of the Boyer-Moore family géréghms. The two first algorithms
implement a heuristic based on a suitable generalizaticheo$uffi x trees data structure. The third al-
gorithm uses a heuristic that considers fi ngerprints faectet substrings of the pattern and compares
them with corresponding fi ngerprints of substrings of the te be processed. The algorithms are fast
on average. We provide experimental results and obsengatio the suitability of the heuristics. Our al-
gorithms are particularly effi cient for ‘hon-fat” patterager large alphabet intervals, and many patterns
are of this kind.

The paper is organized as follows. In the next section weeptesome basic defi nitions for strings
and background notions for approximate matching. In se@iave present the adaptation o/ NED-
BOYER-MOORE SKIP-SEARCH and MAXIMAL -SHIFT to §- and @, y)-approximate string matching
algorithms. In section 4 we present the data structuresuiolsabstring heuristics”, the three algorithms
which use them and an average case analysis for two of theraechion 5 we present experimental
results for all these algorithms. Finally in section 6 wesgr@ our conclusions.

2. Background and basic string definitions

A string is a sequence of zero or more symbols from an alphabdhe string with zero symbols is
denoted by. The set of all strings over the alphabietis denoted by:*. A string z of lengthm is
represented by[1..m], wherez[i] € ¥ for 1 < i < m. A stringw is asubstringof z if z = uwv for
u,v € ¥*; we equivalently say that the string occurs at positioru| + 1 of the stringz. The position
|u| + 1 is said to be thetarting positionof w in z and the positiortu| + |w| theend positiorof w in z.
A string w is aprefixof z if z = wu for u € X*. Similarly, w is asuffixof z if £ = uw for u € ¥*.

The stringzy is a concatenationof two stringsz andy. The concatenations &f copies ofz is
denoted byz*.

Let = be a string of lengthn. The integerp is said to be geriod of z, if z[i] = z[i + p] for all
1 <14 < m — p. The periodof a stringz is the smallest period af. A stringy is aborderof z if y is a
prefi x and a sulffi x ofc.

Let: be an alphabet of integers afidn integer. Two symbols, b of 3 are said to bé-approximate,

denotec < b if and only if
la —bl < 6.

We say that two strings, y ared-approximate, denoted 2 y if and only if
N
z| = |yl, andz[i] = y[i],Vi e {1,..., |z} (2.1)

For a given integery we say that two strings, y arey-approximate, denoted < y if and only if

kd

|z = lyl, and Z |wli] —ylill < - (2:2)

Furthermore, we say that two stringsy are(d, y)-approximate, denoted % y, if and only if z andy
satisfy conditions (2.1) and (2.2).
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3. Occurrence heuristics

The problem of-approximate pattern matchirig formally defi ned as follows: given a string= y[1..n]
and a patterm: = z[1..m] compute all positiong of y such that

[ .o
z=ylj.j+m—1].

A naive solution to this problem is to build an Aho-Corasicikanaton (see [1]) of all strings that are
d-approximate tar and then use the automaton to procgsd he time required to build the automaton
is O(&™) since there ar@ x ¢ + 1 different letters that can be used in each position, thissttathod is
of no practical use for large values ®andm. In [6] an effi cient algorithm was presented based on the
O(1)-time computation of the ‘delta states” by using bit openasi under the assumption that < w,
wherew is the number of bits in a machine word. In this section wegmedirect adaptations of exact
string matching algorithms to the notion &approximate string matching. The new algorithms use only
heuristics on single positions of the pattern. Section 8etgnts the adaptation of th&/NED-BOYER-
MOORE exact string matching algorithm. Section 3.2 depicts theptation of the 8IP-SEARCH exact
string matching algorithm. Section 3.3 presents the atlaptaf the MAXIMAL -SHIFT exact string
matching algorithm. Section 3.4 shows the adaptation cfetadgorithms tod, y)-approximate string
matching.

3.1. 0-TUNED-BOYER-MOORE Approximate Pattern Matching

Here we present an adaptation of theNED-BOYER-MOORE for exact pattern matching algorithm to
d-approximate pattern matching. The exact pattern matgbinglem consists in fi nding one or more
(generally all) exact occurrences of a patterof lengthm in a texty of lengthn. Basically a pattern
matching algorithm uses a window which size is equal to thgtle of the pattern. It first aligns the
left ends of the window and the text. Then it checks if thegratbccurs in the window and shifts the
window to the right. It repeats the same procedure agait thietiright end of the window goes beyond
the right end of the text.

The TUNED-BOYER-MOORE algorithm [13] is a very fast practical variant of the famd@&isYER-
MooRE algorithm [4]. It only uses the occurrence shift functionprform the shifts. The occurrence
shift function is defi ned for each symhein the alphabek as follows:

shifffa] = min{{m — i | z[i] =awith1 <i<m}U{m}}.

The TUNED-BOYER-MOORE algorithm gains its effi ciency by unrolling three shifts irvery fast
skip loop to locate the occurrences of the rightmost symbtiiepattern in the text. Once an occurrence
of z[m] is found, it checks naively if the whole pattern occurs in teet. Then the shift consists in
aligning the rightmost symbol of the window with the rightsteeoccurrence af[m| in z[1..m — 1], if
any. The lengths of this shift is defi ned as follows:

s =min{{m — i | z[i] = z[m] and0 < i < m} U{m}}.

To dod-approximate pattern matching, the shift function can Herdel to be for each symbalin
the alphabek the distance from the right end of the pattern of the closgsbsl z[i] such thatz[] 2 a

shiffa] = min{{m — i | z[i] £ awith 1 <i < m} U {m}}.
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d-TUNED-BOYER-MOORE(z, m, y, n, d)
1 o Preprocessing
2 forallaeX
do shiftja] « min{{m —i | z[i] < a} U {m}}
s « min{{m — i | z[i] £ z[m] and0 < i < m} U {m}}
y[n+ 1.n + m] « (z[m])™
> Searching

w

j 4 m
while j <n
do k <« shiftly[4]]
10 while k # 0
11 doj« j+k
12 k « shifty[]]
13 jej+k
14 k « shiftfy[4]]
15 j+—i+k
16 k « shifty[7]]
17 if g[l.m — 1] 2 y[j —m+1.j — 1] andj <n
18 then REPORT(j — m + 1)
19 jg+s

© 00 N o 0 b~

Figure 1. Adaptation of the INED-BOYER-MOORE exact pattern matching algorithm to deapproximate

pattern matching. Line 3n copies ofz[m] are appended at the endwf Line 5, shiffz[m]] is set to0 so that

during the inner loop (lines 10-16) of the searching phaseneverj becomes greater than k becomes equal to
0.

Then the length of the shit becomes:
s = min{{m — i | z[i] £ z[m] and0 < i < m} U {m}}.

The reason why it is necessary to @ein the new defi nition of is that2d is the minimum such

that for any three symbols b,c € 3., if a 2 pandb £ cthena Z ¢,
The pseudo-code f@-TUNED-BOYER-MOORE algorithm can be found in fi gure 1.

3.2. 0-SKIP-SEARCH Approximate Pattern Matching

In the XIP-SEARCH algorithm [7], for each symbol of the alphabet, a bucketezil all of that symbol’'s
positions inz. When a symbol occurk times in the pattern, there akecorresponding positions in the
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§-SKIP-SEARCH(z, m, y, n, §)

1 » Preprocessing

2 forallaeX®

3 do z[a] + {7 | z[i] 2 a}

4 > Searching

5 jm

6 whilej <n

7 do for all i € z[y[j]]

8 doifz L y[j —i+1.j —i+m]

9 then REPORT(j — i + 1)
10 Jeg+m

Figure 2. Adaptation of thekK3P-SEARCH exact pattern matching algorithm to depproximate pattern match-
ing.

symbol’s bucket. When the word is much shorter than the dighanany buckets are empty. The buckets
are stored in a table defi ned as follows:

zla) ={i| z[i] = awith1 <i <m}.

The main loop of the search phase consists in examining eretytext symboly[;] (so there will
ben/m main iterations). Then fog[j], it uses each position in the bucksi|[;]] to obtain a possible
starting position ofz in y and checks if the pattern occurs at that position.

To dod-approximate pattern matching, the buckets can be compagtéallows:

2a] = {i | o[i] £ awith 1 <i < m}.

Figure 2 shows the pseudo-code deBKIP-SEARCH algorithm. In this case whem is much shorter
than the alphabet and the patteris fht (i.e. its structure does not vary substantially), ynlbinckets are
empty.

3.3. 0-MAXIMAL -SHIFT Approximate Pattern Matching

Sunday [21] designed an exact string matching algorithmrevttee pattern positions are scanned from
the one which will lead to a larger shift to the one which wathtl to a shorter shift, in case of a mismatch.
Doing so one may hope to maximize the lengths of the shiftdfauglto minimize the overall number of
comparisons.

Formally we defi ne a permutation

o:{1,2,...,mym+1} = {1,2,...,m,m+ 1}
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and a functiorshift such that
shifffo(z)] > shiftio(: + 1)]

forl <i<mand
shiffo(i)] = min{¢ | (Vj suchthatl < j < i,z[o(j) — ¢] = z[o(j)]) and(z[o (i) — £] # z[o(7)])}

forl1 <i <mando(m + 1) = m + 1. Furthermoreshiffm + 1] is set with the value of the period of
the patterne.
We also defi ne a functiobe for each symbol of the alphabet:

bela] {min{j |0 <j <mandz[m — j] = a} if aoccursinz,
cla| =

m otherwise
fora € X.
Then, when the pattern is aligned with thg..; + m — 1] the comparisons are performed in the
following orderz[o(1)], z[o(2)],.. ., z[o(m)] until the whole pattern is scanned or a mismatch is found.

If a mismatch is found when compariago (7)] then a shift of lengthmax{shiftjc(¢)], be[y[j + m + 1]]}
is performed. Otherwise an occurrence of the pattern isd@umd the length of the shift is equal to the
maximum value between the period of the pattern &ig[j + m + 1]]. Then the comparisons resume
with z[o(1)] without keeping any memory of the comparisons previouslyedo

To performé-approximate string matching the two functions can be rewsfias follows:

shiffo(i)] = min{¢ | (Vj such thatl < j < i,z[o(j) — ] 2 z[o(7)]) and(z[o (i) — £] ;éw[a(z)])}
forl <7 <mand
shiftfm + 1] = min{¢ | z[i] < z[i + £] for 1 < i < m — £}

and
be[a] = min{j | 0 < j < m andz[m — j] 2 a} if such aj exists
m otherwise

fora € X.

The preprocessing phase can be don®{m?). Figure 3 gives the pseudo-code of the searching
phase.
3.4. (6,)-Approximate String Matching Algorithms
The problem of(§, y)-approximate pattern matching formally defi ned as follows: given a string=
y[1..n] and a patterm = z[1..m] compute all positiong of y such that

&Y ..
2 yljj+m—1].

In [6] this problem was solved by making use of theiSr-AND algorithm to fi nd thej-approximate
matches of the patterm in y. Once ad-approximate match was found, it was then tested to check



8 Crochemore, lliopoulos, Lecroq, Pinzon, Plandowski anddryOccurrence and Substring Heuristics #Matching

d-MAXIMAL -SHIFT(z, m, y,n, §, shift, bc)
1 > Searching
j«0
while j <n—m
doi <+ 1
while s < m andz[o(3)] = y[j + o ()]
doi <+ i+1
ifi >m
then REPORT(j)
J « j + max{shiftlo(3)], be[y[j + m + 1]}

© 00 N O O b WDN

Figure 3. Adaptation of the MXIMAL -SHIFT exact pattern matching algorithm to deapproximate pattern
matching.

whether it is also ay-approximate match. This was done by computing succesdel&a“states” and
‘gamma states” ir0(1) time using bit operations under the assumption thaK w wherew is the
number of bits in a machine word.

In order to adapt thé-TUNED-BOYER-MOORE, §-SKIP-SEARCH andd-MAXIMAL -SHIFT algo-
rithms to the case ofd, v)-approximation, it just suffi ces to adapt the naive checkhefgattern. The
resulting algorithms are naméd, v)-TUNED-BOYER-M OORE algorithm, (4, v)-SKIP-SEARCH algo-
rithm and(d, v)-MAXIMAL -SHIFT algorithm.

4. Substring heuristics

In this section we introduce ‘substring heuristics” to gothe problem of- and ¢, v)-approximate
string matching. It is the first time that such heuristics@esidered for this kind of problems. Section
4.1 defines two notions of approximate dictionaries whiclregponding data structures are given in
sections 4.2 and 4.3. In section 4.4 we give three new algositusing these approximate dictionaries
and we give an average case analysis for two of them in settton

4.1. Two approximate dictionaries

The Boyer-Moore type algorithms are very effi cient on aversigce scanning a small segment of size
k allows, on average, to make large shifts of the pattern. tedly this gives sublinear average time
complexity. This general idea has many different impleragons, see [9]. In this section, our approach
to 6-matching is similar, we scan a segment of gizia the text. If this segment is n@tapproximate
with any subword of the pattern we know that no occurrencéefpattern starts at — & positions to
the left of the scanned segment. This allows to make a lanfteo$lsize m — k. The choice of affects

the complexity. In practice small would suffi ce. Hence the first issue, with this approach, isaee a
data structure which allows to chetdstif a word of sizek is §-approximate to a subword af We are
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especially interested in the answer ‘ho” which allows to smakarge shift, so an important parameter
is therejection ratig denote byExact-RR It is the probability that a randomly chosgrsubword is not
d-approximate with a subword af. If this ratio is high then our algorithms would work muchtfason
average. However another parameter is the time to chec& driswer is ‘ho”. It should be proportional
to k. We do a compromise: build a data structure with smallectigje ratio but with faster queries about
subwords of siz&. Smaller rejection ratio means that sometimes we have ariggggthough it should

be ‘ho”, however if the real answer is ‘no” then our data dinue always outputs ‘no” also. This is the
negative answer which speeds up Boyer-Moore type algosithfilne positive answer has small effect.
The data structure is an approximate one, its rejection ratilenoted byRR and it is hard to analyze
it exactly. Hence we rather deal with heuristics. The penfonce depends on particular structure, the
parametetk and class of patterns. Another important factors are liejectatios: Exact-RRandRR If
Exact-RRs too small we cannot expect the algorithms to be very fastth® other hand we need to have
RRas close td&xact-RRas possible. The applicability is verifi ed in practice. Ttating structure is the
suffi x trie, it is effective in searching but it could be tooda theoretically, though in practideis small
andk-truncated suffi x trie is also small. Surprisingly we do navé linear size equivalent of (compact)
suffi x trees, but we have a linear size equivalent of subwaeaglts: §-subword graphs. this shows that
suffi x trees and subword graphs are very different in theeodruf §-matching. Below we give a formal
defi nition of our data structures and rejection ratios. Defy SUBz, k) the set of all substrings of

of sizek. Denote also:

5-SUB(z, k) = {z | z < w for somew € SUR(z, k)} .

This is similar to the computation of high-scoring words ib/A&ST [2].
An approximate dictionaryor a given stringr is the data structur®,, ; , which answers the queries:

Dy si(2) : “z € 0-SUBz, k) 7"

Let D, 5x(2) be the resulttfue or false) of such query for a string given by the data structur®, 5 .

By D,,s,,,x We denote the corresponding data structure for the quewnedving the equalityz % 0.

In order for our data structure to work fast we allow that theveers could be incorrecD,, 5 (z) can
answeitrue althoughz is not ind-SUB(z, k). By an effi ciency oD, ; , we understand thejection-ratio
proportion:

~ H{z € % | Dy sp(z) = false}|

RR. (D, =
Re(Dy.s,k) SfF
Optimal effi ciency is the exacejection-ratiofor x:
Exact-RR(z) =1 — %

In other words the effi cienciRR is the probability that a random substringf length% is not accepted
by D, s and the effi ciencfExact-RR is the probability that a random substriagf lengthk is not an
element of5-SUB(z, k). Our data structure® arepartially correct

0-SUB(z, k) C {z | Dy s(2) = true}.
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4.2. §-suffix tries and §-subword graphs

Denotei © 4 = max{i — §, min{>}} andi & § = min{i + §, max{X}}. We defi nes-suffi x tries and
d-subword graphs algorithmically. Thesuffi x trie of a patterrx is built as follows:

e build the trieT" = (V, E) recognizing all the suffi xes of whereV is the set of nodes anfl C
V x 3 x Vis the set of edges df,;

¢ replace each edge, a,q) € E by (p, [max{0,a — ¢}, min{max{X},a + d}], q);

e for all the nodesy € V, if there are two edge&, [a, b], p), (v,[c,d],q) € E such thafa,b] N
[c,d] #  then merge andq into a single new node and replacév, [a, b], p) and(v, [c, d], q) by
one edg€v, [min{a, c}, max{b,d}], s).

We have an equivalence relation on the set of vertices: twiices are equivalent iff they are roots of
isomorphic subtrees. In thiesuffi x trie construction we process nodes by taking at dagie step all
vertices which are in a same equivalence cltadsg hen in this step we process all edges outgoing from
vertices fromC. All these vertices are independent and we can think thatdone in parallel. The
construction terminates when the trie stabilizes. #sibword graph of a sequenges obtained by
minimizing its §-suffi x trie. This means that each equivalence class ofoe=tis merged into a single
vertex. Figure 5 shows an examplede$uffi x trie andd-subword graph. It should be noted that using an
alphabet of ranges is not a new idea (see [12]).

Theorem 4.1. The numbers of nodes and of edgesg-aiubword graph for the string areO(|z|).

Proof:

The number of equivalence classes of the initial suffix tsi@ti most2n. In the process of merging
edges the nodes which are equivalent initially will remagiiealent until the end. Hence the number
of equivalence classes of intermediatsuffi x trie (after processing all edges outgoing from noitles

a same equivalence class) is at m#&st which gives the upper bound on the number of nodes of the
d-subword graph. The bound on the number of edges can be shmiarly as for standard subword
graphs. O

4.3. Families of intervals

For each subword) € SUHz, k) of z, denote byhash (w) the sum of the symbols af For eachk < |z|
we introduce the following families of intervals (overlapg and adjacent intervals are ‘glued together”)
of the intervalmin{X}, k& x max{X}] which represents respectively the sets:

Fs(zk) = |J  [hash(w) © kS, hash(w) @ kd]
weSURz,k)
and
M, (z,k) = U [hash(w) © min{kd,~}, hash(w) ® min{kd,~}].
weSUHz,k)
Clearly Mys(z, k) = Fs(z, k). Figure 6 presents an example.
The defi nitions ofF and M imply:
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Figure 4. The suffix tree and subword graph for the woré= 1521652659 andX = [0..9].

CUIONTITORFRN

Figure 5. Thed-suffix tree and thé-subword graph for the sequenee= 1521652659 with § = 1 and¥ =
[0..9]. A single intege means the intervdl © 6,i & 4].

0 5 22 27

Figure 6. (a) The family of interval®;s(z, k) and (b) the familyM , (x, k), for the stringl 529283 with § = v =
1,k =3 andX = [0..9].
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d-BM1(z, m,y,n,d)

1 i< m

2 whilei<n

3 doif y[i — k + 1...7] € §-suffix trie of x
4 then NAIVE (¢, +m — k — 1)

Figure 7. §-BM1 algorithm.

Lemma 4.1. The two following properties hold:
(@ If z 2w for somew € SUB(z, k) thenhash(z) € Fs(x, k);

(b) If 2 % 14 for somew ¢ SUBz, k) thenhash(z) € M. (z, k).

The effi ciency of the familyZ of intervals can be measuredRB(Z) = 1 — Prob(hash(z) € ) wherez
is a random string of length. In other words it is the probability that an integer is noaiy interval of
the family. Observe thaf in our case is always represented as a family of disjointvats, overlapping
and adjacent ones have been glued together.

4.4. Threed-BM algorithms

We show how the data structures introduced in this sectiemsed iny-matching. We now want to fi nd
all the §-occurrences of a pattemof lengthm in a texty of lengthn. We apply a very simple greedy
strategy: place the pattern over the text such that the eigthtof the pattern is over positiarin the text.
Then check if the suffi xuf of lengthk (k may depend omr) of text ending at is ‘sensible”. If not the
pattern is shifted by a large amount and many positions dietéxt are never inspected at all siff is
sensible then a naive search in a ‘window” on the text is peréol. Figure 7 implements this method.

We denote here by NVE (p, q) a procedure checking directly if ends at positions in the interval
[p..q], forp < q.

We design an improved version &BM1 using §-subword graphs instead of tries. Thaubword
graph of the reverse pattern is denoted ByV, vy, F, E), whereX is the alphabef/ is the set of states,
vg € V isthe initial statef’ C V is the set of fi nal states arfd C V x X x V is the set of transitions. Let
d-per(z) be thed-period of the word: defi ned bys-per(z) = min{p | V1 < i < m—p, z[i] 2 zli+pl}.

Then it is possible to adopt the same strategy as the Revarterfalgorithm [9] for exact string
matching tod-approximate string matching. When the patteris compared withy[i — m + 1..i] the
symbols ofy[: —m+1..7] are parsed through tldesubword graph of the reverse pattern from right to left
starting with the initial state. If transitions are defi ned évery symbol of)[i — m + 1..i], it means that
ad-occurrence of the pattern could have been found and therpatan be shifted b§-per(z) positions
to the right. Otherwise the pattern can be shiftedsbyninus the length of the path, in tllesubword
graph, from the initial state and the last fi nal state enaredtwhile scanning[i — m + 1..i] from right
to left. Indeed thej-subword graph of the reverse pattern recognizes at lelastead-suffi xes of the
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d-BM2(z, m,y,n,d)

1 i+<m

2 whilei<n

3 dogq + vy

4 j1

5 b« 20

6 while (¢, y[j],p) € E

7 dog < p

8 j—j3-—-1

9 ifgeF
10 thenb <+ i —j
11 ifi—j>m
12 then check and report &occurrence at position— m + 1
13 i< i+ 0-per(z)
14 elsei+—i+m—>

Figure 8. §-BM2 algorithm.

reverse pattern from right to left and thus at least allitpeefi xes of the pattern from left to right. Figure
8 implements this method.

The valued-per(x) can be approximated using thesubword graph of the reverse pattern.

Our last algorithm can be used also {ér+)-approximate string matching. We apply the data struc-
ture of interval families. Figure 9 implements this meth@dBM3 algorithm is conceptually simpler
than the other algorithms and its preprocessing is easy.

4.5. Average time analysis of algorithms-BM1 and 6-BM3
Denotep = Prob(z 2 y) wherez andy are random symbols ang , = RR, (D4 51)-

Lemma 4.2. The overall average number of comparisons madé-By11 ands-BM3 algorithms is at

most
n m
1— -

Proof:

Divide the text into windows of size: — k. In each window the probability that the pattern is moved to
the next window after at mogtcomparisons igy, ;. Now it is enough to prove that the average number
of comparisons made by the naive algorithm in the window isded by%. We assume now that our
algorithm performs worse than in reality and no matter whahe result of comparisons of symbols at
positionsm — k + 1..m of the window the algorithm goes further and ends when onleeobther window



14 Crochemore, lliopoulos, Lecroq, Pinzon, Plandowski anddryOccurrence and Substring Heuristics ®Matching

d-BM3(z, m,y,n,d)

1 i<m

2 whilei <n

3 do if hash(y[i — k + 1..i]) € M (z, k)
4 then NAIVE (i,i + m — k — 1)

Figure 9. §-BM3 algorithm.

symbols mismatches the symbol of the pattern or all of thentimarhis is because we cannot assume
that the symbols at positions — k + 1..m are random since they matched the symbols in the dictionary.

Making this assumption the average number of comparisownte tmathe naive algorithm at position
m of the window is

pr=(1-p)(k+1)+p(1—p)(k+2)+p*(1—p)(k+3)+--+
+p™ L1 — p)ym + p™ Fm.
Similarly the average number of comparisons made by thesradgorithm at positiomn + 1 is
pr=(1—-p)-1+p(1—p)(k+2) +p*(1—p)(k+3) +---+p" * (1 —p)m+p™ *m.

Similarly the average number of comparisons made by theeragorithm at positionn + j — 1 for
j=1lm—kis

pi=(1=p) 1+p(l—p) 2+ +p*(1=p) (G -+

+p A= p)k+) + A =p)k+j+ 1) +...pm L1 — p)m + p™Fm.

We have
pi=(1—p)-1+p(1l—p)-2+---+p™ ¥ (1 —p)(m—k)+

+k(pj_1(1 —p) +pj(1 —p)+--- +pm—k—1(1 —p)) _I_pm—km _

1_pm—k .
1-p (m = E)p™* + k(" —p™ ) +p"Fm =
1— m—k .
TP gL
1-p
Hence,
m—k _ _ _
1= p™m k 1—p™m k 1 —p™m k
pj = (m —k) P +E—2 = P <
e 1-p 1—p 1-p 1-p

This completes the proof. O
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The analysis of our algorithms would be simpler and we wowdd gightly better estimation for the
average number of symbol comparisons if we assume that mwiaclow the naive algorithm performs
comparisons of text symbols at positions — k£ + 1..m at the end. The estimation is however not
signifi cantly better. In particular it does not give an imygment in the estimation in our next theorem.

Theorem 4.2. Let k£ < 0.99m andp < 0.99. The average time complexity of the algorithid&8M1
andé-BM3 is n
O(E(k + (1 = gg,e)m)) -

Observe here that our analysis does not depend on the dattustfD. The only thing it assumes is
that the scheme of the algorithm matches the structure @ltfmeithmss-BM1 andj-BM3. Clearly, the
effi ciency of such algorithms depends heavily on the chofce and the effi ciency oD. For instance,
for § = 0, (ie. we consider string matching without errors) we maycsied: = 2logy; m. Then, for
0-BM1, 1 — g, 5 is the probability that a random string of lendths not a subword of. The number of
subwords of lengtlt of z is at mostm and the number of all words of lengkhis m? so1 — g, < %
thus the average time complexityGY ;- log m), the best possible. Moreovemay depend also on the
patternz itself. If p is ‘good”thenk may be chosen small and when it is ‘badhay be chosen bigger.
In particular we may increaseup to the moment wheh — ¢, , decreases below an acceptable level.

5. Experimental Results

We fi rst count the number of text character inspections oatgerithms in section 5.1 while we observe
their running times in section 5.2.

5.1. Text character inspections

We computed experimentally the valueRandExact-RRfor our approximate dictionaries for various
values ofk and different sizes of the alphabet. These effi ciencie®spond to average case complexity
of our 6-BM algorithms. We compared the valuesRR and Exact-RRwith average running time for
suffi ciently large sample of random inputs. We counted tlegaye number of text character inspections
for the following algorithms:d-TUNED-BOYER-MOORE, §-SKIP-SEARCH, 6-MAXIMAL -SHIFT [10]
andé-BM1, §-BM2 and§-BM3.

All the algorithms have been implemented in C in a homogeseaeay such as to keep their com-
parison signifi cant. The text used is composed@sf, 000 symbols and was randomly built. The size
of the alphabet is 100. The target machine is a PC, with a AMDHKprocessor at 330MHz running
Linux kernel 2.2. The compiler igcc. For each pattern length, we searched per one hundred patterns
randomly built.

We counted the numberof text character inspections for one text character. Thalt®are presented
in figures 10 and 11. Faf = 1 the best results fof-BM1 algorithm have been obtained wikh=
logy, m. The best results for th&BM3 algorithm have always been obtained with= 2. For small
values ofd, -BM1 andé-BM2 algorithms are better thah TUNED-BOYER-M OORE algorithm (which
is the best among the known algorithms) for large values ¢in > 20). For large values afr, §-BM1
andd-BM2 algorithms are performing a large number of text chemaimspections since thiesubword
graph and thé-suffi x trie tend to be a line with all edges labeled within{¥}.. max{3}]. For larger
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Figure 10. Results faf = 1.

values of§ (up to 5)6-BM1 andd-BM2 algorithms are better thanTUNED-BOYER-M OORE algorithm

for small values oim (m < 12). For larger values o#, the -TUNED-BOYER-MOORE algorithm is
performing better than the other algorithms. In conclugtomalgorithms introduced in this article are
of particular practical interest for large alphabets, spatterns and small values &f Alphabets used
for music representations are typically very large. A ‘Baftesolute pitch representation can be base-
7 (7 symbols), base-12, base-40 or 120 symbols for MIDI. Baainingful alphabets that will allow
us to do in-depth music analysis use symbols that in reaity $et of parameters. A typical symbol
could be(ay, az,as, ..., ax), wherea; represents the pitch, represents the duratioa; the accent etc.

A typical pattern (‘motif”) in musical sequence is 15-20 e®tbut an alphabet can have thousands of
symbols. Thus the need of algorithms that perform well foapatterns and large alphabets.

5.2. Running times

We implemented in C, in a homogeneous way, the following réittyms:

SHIFT-AND, 6-TUNED-BOYER-MOORE, §-SKIP-SEARCH, 6-MAXIMAL -SHIFT and

SHIFT-PLUS, (4,7)-TUNED-BOYER-MOORE, (4, y)-SKIP-SEARCH and(d,y)-MAXIMAL -SHIFT.

We randomly built a text 0500, 000 symbols on an alphabet of sizé. We then searched for each
values ofm, 100 random patterns and took the average running time. sTamemeasured in hundredth
of seconds and include both preprocessing and searchimg.tifrhe design of effi cient algorithms for
the preprocessing phase of the algorithms using ‘subsrngistics” is still an open problem, they are
not included in the running time experimentation.

The results fob-approximation are shown in tables 1 to 5. For the values imstigbse experiments,
the §-TUNED-BOYER-MOORE algorithm is always faster than tlieSkipP-SEARCH algorithm which is
itself always faster than theH&T-AND algorithm.
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Figure 11. Results fof = 2.

Table 1. Running times faf-approximation withy = 5.

m | SHIFT-AND | 6-TUNED-BOYER-MOORE | §-SKIP-SEARCH
8 32.98 10.78 18.61
9 32.90 10.55 18.11
10 32.93 10.10 17.65
20 32.86 9.32 15.81
Table 2. Running times fa-approximation with) = 6.
m | SHIFT-AND | 6-TUNED-BOYER-MOORE | §-SKIP-SEARCH
8 33.07 13.40 21.66
9 32.90 13.00 20.94
10 32.93 12.64 20.49
20 32.92 11.97 18.81
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Table 3. Running times far-approximation withj = 7.

m | SHIFT-AND | 6-TUNED-BOYER-MOORE | -SKIP-SEARCH
8 33.65 16.65 24.99
9 33.14 16.05 24.06
10 33.05 15.71 23.62
20 32.93 14.82 21.42

Table 4. Running times far-approximation withj = 8.

m | SHIFT-AND | 6-TUNED-BOYER-MOORE | -SKIP-SEARCH
8 34.72 21.18 29.15
9 33.41 20.03 27.64
10 33.07 19.12 26.85
20 32.81 18.20 24.41

Table 5. Running times far-approximation withj = 9.

m | SHIFT-AND | 6-TUNED-BOYER-MOORE | -SKIP-SEARCH
8 36.46 26.82 34.64

9 34.46 24.36 31.46

10 33.41 23.61 30.55

20

33.00 22.32 27.54
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Table 6. Running times fdig, v)-approximation withy = min{m, 10} andy = 14.

m | SHIFT-PLUS | (d,y)-TUNED-BOYER-MOORE | (4,7y)-SKIP-SEARCH
8 50.73 23.33 31.93
9 50.32 27.78 35.52
10 51.79 33.76 39.45
20 50.26 32.46 36.91

Table 7. Running times fdig, v)-approximation withy = min{m, 10} and~y = 15.

m | SHIFT-PLUS | (d,7)-TUNED-BOYER-MOORE | (4,7y)-SKIP-SEARCH
8 50.88 23.16 31.99
9 50.86 28.70 36.40
10 51.87 33.74 39.58
20 51.11 32.53 37.38

The results for(4,y)-approximation are shown in tables 6 to 10. For the valuesweae used in
these experiments, tHé, v)-TUNED-BOYER-MOORE algorithm is always faster than tfié, )-Skip-
SEARCH algorithm which is itself always faster than theng1-PLus algorithm.

Experiments conduct only om-approximation show that an adaptation to this case of thie-S
SEARCH algorithm is faster than an adaptation of theNED-BoOYER-MOORE algorithm.

One should notice that thed8-T-AND and SHIFT-PLUS algorithms need constant time to run what-
ever the values of the parameters are. In case of very higevébr§ and/ory they have to be considered
as the best choice.

6. Conclusion
We presented in this article two types of heuristics forand y-string matching problems. We first

consider ‘occurrence heuristics” for which we designed $ke°-SEARCH, TUNED-BOYER-MOORE
and MAXIMAL -SHIFT approximate string matching algorithms that outperformpiactice, the one

Table 8. Running times fdid, v)-approximation withy = min{m, 10} and~y = 16.

m | SHIFT-PLUS | (d,y)-TUNED-BOYER-MOORE | (4,7y)-SKIP-SEARCH

8 50.72 23.33 32.02
9 50.70 27.96 35.65
10 51.94 33.88 40.00

20 51.35 33.20 37.03
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Table 9. Running times fqid, v)-approximation withh = min{m, 10} and~y = 17.

m | SHIFT-PLUS | (d,)-TUNED-BOYER-MOORE | (4,7)-SKIP-SEARCH
8 50.67 23.29 32.20
9 50.83 28.38 35.74
10 51.93 34.41 39.91
20 50.18 32.94 37.10

Table 10. Running times fdp, v)-approximation withy = min{m, 10} and~y = 18.

m | SHIFT-PLUS | (d,7)-TUNED-BOYER-MOORE | (4,7)-SKIP-SEARCH
8 51.24 23.57 32.22
9 50.31 28.33 35.73
10 51.83 34.36 40.15
20 49.97 32.77 37.03

presented in [6]. Then we consider ‘substring heuristicsing §-tries, d-subword graphs and families
of intervals we gave three new algorithms that can be coresicdes members of the Boyer-Moore family
of pattern matching algorithms. The algorithms using ‘opence heuristics” are very fast in practice. A
theoretical study of the algorithms using ‘substring h&tigs” shows that they are optimal in the average.
An experimental study shows that for small values @1 or 2) thed-BM algorithms are effi cient. For
mid values of§ the TUNED-BOYER-MOORE algorithm is the fastest algorithm. In case of very high
values ford§ and/ory the SHIFT-AND and SHIFT-PLUS algorithms have to be considered as the best
choice.

A problem remains in designing effi cient algorithms for Hinp ¢-tries ands-subword graphs.
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