A weak equivalence between shifts of finite type
Marie-Pierre Béal, Dominique Perrin

To cite this version:

HAL Id: hal-00619322
https://hal-upec-upem.archives-ouvertes.fr/hal-00619322
Submitted on 6 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A weak equivalence between shifts of finite type

Marie-Pierre Béal
Institut Gaspard-Monge,
Université de Marne-la-Vallée
http://www-igm.univ-mlv.fr/~beal

Dominique Perrin
Institut Gaspard Monge,
Université de Marne-la-Vallée
http://www-igm.univ-mlv.fr/~perrin

September 27, 2001

Abstract

We introduce the following notion of weak equivalence between shifts of finite type. Two shifts of finite type $S$ and $T$ are equivalent if and only if there are finite alphabets $A$ and $B$ and sliding block maps $f$ from $A^2$ to $B^2$ and $g$ from $B^2$ to $A^2$ such that $S \subseteq A^2$, $T \subseteq B^2$, $S = f^{-1}(T)$ and $T = g^{-1}(S)$. We give a necessary condition for this equivalence and we show how to decide the equivalence when the shifts are given by finite circular codes.

1 Introduction

In this paper, we introduce a notion of weak equivalence between shifts of finite type. Shifts of finite type can be seen both from the point of view of the mathematical theory of symbolic dynamics and from the point of view of finite automata theory. Some practical applications from these areas have been found in the field of coding into constrained channels. From the automata theory point of view that we adopt, a shift of finite type is the set of bi-infinite words recognized by a finite local automaton. An automaton is local if it does not admit two distinct equally labeled cycles. The automata are such that all states are both initial and final. The labeling is in a finite alphabet. When one can choose an automaton such that all labels of edges are distinct, the shift is called an edge shift.
Several notions of equivalence have been studied, in order to classify the
shifts of finite type and other more general symbolic dynamical systems,
like shift equivalence and strong shift equivalence (see [6]). The strong shift
equivalence is the conjugacy or isomorphism between two systems. An iso-
morphism is a bijective continuous map that commutes with the shift op-
eration on bi-infinite words. The decidability of strong shift equivalence
between shifts of finite type is still an open question. Some invariants have
been found but none of them is a characteristic one.

The notion of weak equivalence that we introduce here is much weaker
than the previous ones. Two shifts of finite type $S$ and $T$ are are equivalent if
and only if there are finite alphabets $A$ and $B$ and sliding block maps $f$ from
$A^Z$ to $B^Z$ and $g$ from $B^Z$ to $A^Z$ such that $S \subset A^Z$, $T \subset B^Z$, $S = f^{-1}(T)$ and
$T = g^{-1}(S)$. The topological entropy for example is no more an invariant for
this equivalence relation. We prove that the weak equivalence is decidable
for a subclass of edge shifts called the flower edge shifts, that is the shifts that
are generated by a finite circular code, or, equivalently, the shifts recognized
by a flower automaton whose edges have distinct labels. An equivalence
class for this relation is characterized by the signature of the flower edge
shift which is given by the length sequence of a minimal generating system
of the ideal of $\mathbb{N}$ of periods of words of the flower edge shift.

For more general edge shifts, we give a trivial necessary condition for
their equivalence but the question of decidability of their equivalence is
open. At the end of the paper, we give an example of a flower edge shift
which is weakly equivalent to a non flower one.

2 Definitions and background

We first recall some basic definitions about subshifts and sliding block maps.
We refer to [5], [6], or [3], [2] for more details about these notions coming
from symbolic dynamics.

If $A$ is a finite alphabet, we consider the set $A^Z$ of two-sided infinite
words as a topological space with respect to the usual product topology.
The shift transformation $\sigma$ acts on $A^Z$ bijectively. It associates to $x \in A^Z$
the element $y = \sigma(x) \in A^Z$ defined for $n \in \mathbb{Z}$ by

$$y_n = x_{n+1},$$

and obtained by shifting all symbols one place left. A symbolic dynamical
system or subshift is a subset $S$ of $A^Z$ which is both topologically closed
and shift-invariant, i.e. such that $\sigma(S) = S.$
Figure 1: A sliding block map

Let $G$ be a directed graph with $E$ as its set of edges. We actually use multigraphs instead of ordinary graphs in order to be able to have several distinct edges with the same origin and end. We shall always say “graph” for “directed multigraph”. Let $S_G$ be the subset of $E^\mathbb{Z}$ formed by all bi-infinite paths in $G$. It is clear that $S_G$ is a subshift called the edge shift on $G$. Indeed $S_G$ is closed and shift invariant by definition.

Let $\mathcal{A} = (Q, E)$ be a finite automaton on an alphabet $A$ given by a finite set $Q$ of states and a set $E \subset Q \times A \times Q$ of edges, all states being both initial and final. The set of all labels $\cdots a_{-1}a_0a_1 \cdots$ of the bi-infinite paths

$$
\cdots p_{-1} \xrightarrow{a_{-1}} p_0 \xrightarrow{a_0} p_1 \cdots
$$

is a subshift $S$. We say that $S$ is the subshift recognized by the automaton $\mathcal{A}$. A subshift obtained in this way is called a sofic shift. It is transitive iff it can be recognized by an automaton with a strongly connected underlying graph.

A shift of finite type is a subshift which is made of all infinite words avoiding a given finite set of blocks. It is a sofic shift. Any edge shift is of finite type and is characterized by a finite list of forbidden blocks of length $2$. An allowed block is a finite word that is subblock of at least one bi-infinite word of the shift.

Let $S \subset A^\mathbb{Z}$ and $T \subset B^\mathbb{Z}$ be two subshifts and let $k \geq 1$ be an integer. A function $f : S \to T$ is said to be a $k$-sliding block map if there is a function $\overline{f} : A^k \to B$ and an integer $a \in \mathbb{Z}$, called the anticipation, such that for all $x \in S$ the word $y = f(x)$ is defined for $n \in \mathbb{Z}$ by

$$
y_{n-a} = \overline{f}(x_{n-(k-1)} \cdots x_{n-1}x_n)
$$

(1)

Thus the value of a symbol in the image is a function of the symbols contained in a window of length $k$ above it, called a sliding window (represented on Figure 1 in the case $a = 0$). It is known (see for instance [6]) that sliding block maps are exactly the maps $f$ that are continuous and commute with the shifts, i.e. such that $f \sigma = \sigma f$. 

3
An isomorphism or a *conjugacy* is a bijective sliding block map. The inverse is also a sliding block map. Two isomorphic shifts are also said to be conjugate or strong shift-equivalent. Any shift of finite type is isomorphic to an edge shift.

A finite nonempty word $x$ is said to be *primitive* if $x = u^n$, where $n \geq 1$ and $u$ is a word, implies $n = 1$ and $u = x$. Let $x$ be a finite primitive word. The bi-infinite word $y$ obtained by infinite concatenations of $x$ left and right and such $y_0 \ldots y_{|x|-1} = x$ is denoted by $\bar{x}$.

$$\bar{x} = \ldots x x x x x x x x \ldots$$

We denote by $(x)^\mathbb{Z}$ the set $\{\sigma^n(\bar{x}) \mid n \in \mathbb{Z}\}$, that is the orbit of $\bar{x}$.

We consider a finite set $X$ of $n$ finite words such that all letters of all words are distinct. We denote by $F(X^*)$ the set of finite factors of concatenations of words of $X$. We call $S_X$ the shift of finite type defined as the bi-infinite words whose finite factors belong to $F(X^*)$. The shift $S_X$ is an edge shift recognized by an automaton constructed with $n$ cycles around one central state, each cycle being labeled by one word of $X$. Such a shift is called the *flower edge shift* $(l_1, l_2, \ldots, l_n)$, where $(l_1, l_2, \ldots, l_n)$ is the length distribution of the set $X$. In Figure 2 is represented on the left the flower edge shift $(2, 3, 5)$ by an automaton recognizing $S_X$, where $X = \{ab, cde, fghij\}$. On the right part of the figure the same automaton is represented by a labeled graph such that each edge labeled $i$ represents a path of length $i$ with same origin and end. The labeling is omitted in this last compact representation. Note that flower edge shifts are transitive shifts.

Let $A$ be an alphabet. A subset $C$ of $A^*$ is said to be a *circular code* (see [4]) if for all $n, m \geq 1$ and $x_1, x_2, \ldots, x_n \in C$, $y_1, y_2, \ldots, y_m \in C$, and
\( p \in A^* \) and \( s \in A^+ \), the equalities
\[
  s x_2 \ldots x_n p = y_1 y_2 \ldots y_m \\
  x_1 = p s
\]

imply
\[
  n = m, p = e, \text{ and } x_i = y_i \ (1 \leq i \leq n)
\]

Let \( C \) be a finite set of distinct words that is a circular code. The shift \( S_C \) defined as the bi-infinite words whose finite factors belong to \( F(C^*) \) is a shift of finite type which is strong shift equivalent to the flow edge shift defined by a code \( X \) which has the same length distribution (see for instance [2]). This allows us to work in Section 4 with flow edge shifts and to omit the labeling on these graphs. We consider that each edge has a label which is distinct from the others.

3 The weak equivalence

We define a notion of weak equivalence between subshifts. This notion is much weaker than the notions of strong shift-equivalence and shift-equivalence (see [6] for these notions).

**Definition** Let \( S \) and \( T \) be two symbolic subshifts. We note \( S \rightarrow T \) or \( T \leftarrow S \) if and only if there are finite alphabets \( A \) and \( B \) and a sliding block map from \( A^\mathbb{Z} \) to \( B^\mathbb{Z} \) such that \( S \subset A^\mathbb{Z} \), \( T \subset B^\mathbb{Z} \) and \( S = f^{-1}(T) \). We say that \( S \) and \( T \) are weakly equivalent, and we note it \( S \sim T \) if and only if \( S \rightarrow T \) and \( T \rightarrow S \).

We can remark that the relation \( \rightarrow \) is reflexive and transitive. It is a partial order. Note that if \( S = f^{-1}(T) \), then \( f(S) \subset T \). Two strong shift-equivalent (or isomorphic) subshifts are of course weakly equivalent. This allows us to consider shifts of finite type that are always edge shifts, i.e. that are recognized by finite automata whose edges all have distinct labels, since every shift of finite type is isomorphic to an edge shift. It is also known that the inverse image of a shift of type by a sliding block map is a shift of finite type. Then a shift of finite type cannot be weakly equivalent to a subshift which is not of finite type. As we shall see later, the topological entropy is not an invariant of weak equivalence.

Let \( u \) be a (bi-infinite) word of \( A^\mathbb{Z} \). We say that a positive integer \( p \) is a period of \( u \) iff \( \sigma^p(u) = u \). The word \( u \) is said to be periodic when such an integer exists. We call the period of \( u \) the smallest integer with this
property. The period of $u$ divides all other periods of $u$. Let $f$ be a sliding block map from $A^\mathbb{Z}$ to $B^\mathbb{Z}$. Since $f \sigma = \sigma f$, if $u$ is a periodic word, $f(u)$ also and the period of $f(u)$ divides the period of $u$. From this we get the following proposition.

**Proposition 1** Let $S$ and $T$ be two symbolic subshifts with $S \rightarrow T$. If $S$ has a word of period $n$, then $T$ has a word of period $m$ dividing $n$.

**Proposition 2** Let $T$ be a symbolic subshift that has a word of period $p$. Let $x$ be a finite primitive word of length multiple of $p$. Then $(x)^\mathbb{Z} \rightarrow T$.

**Proof:** Let us assume that $T$ is a subshift of $B^\mathbb{Z}$, where $B$ is a finite alphabet. Let $u = (u_i)_{i \in \mathbb{Z}}$ be a bi-infinite word of period $p$ of $T$. Thus for each integer $n$, we have $u_{n+p} = u_n$. Let $x = x_1 x_2 \ldots x_{kp}$ be a primitive word of $A^r$, where $k$ is a positive integer and $A$ is a finite alphabet. We define a $kp$-sliding block map $f$ with a null anticipation from $A^\mathbb{Z}$ to $(B \cup \{\$\})^\mathbb{Z}$, where $\$ does not belong to $B$, by defining the image by $\tilde{f}$ of any block of length $kp$ as follows. We map each block $(x_1, x_{i+1}, \ldots, x_{kp}, x_1, x_2, \ldots, x_{i-1})$ to $u_{i-1}$, and any other block to $\$$. It is then easy to verify that $f^{-1}(T) = (x)^\mathbb{Z}$. \qed

**Proposition 3** Let $S$ be a transitive shift of finite type such that the g.c.d of the periods of periodic words of $S$ is equal to $d$. Let $x$ be a primitive finite word of length dividing $d$. Then $S \rightarrow (x)^\mathbb{Z}$.

**Proof:** Without loss of generality, we assume that $S$ is an edge shift, recognized by a finite automaton $\mathcal{A}$ that has a strongly connected graph and edges with distinct labels in an alphabet $A$. The g.c.d. of the lengths of cycles of the graph of the automaton is equal to g.c.d., denoted by $d$, of periods of periodic words of $S$.

Let $x = x_0 x_1 \ldots x_{k-1}$ be a word of length $k$ dividing $d$ on an alphabet $B$. Since the g.c.d. of the lengths of the cycles of the graph of $\mathcal{A}$ is $d$, one can label each state of $\mathcal{A}$ with a number in $\mathbb{Z}/k\mathbb{Z}$, in such a way that each path of length $l$ goes from a state labeled $i$ to a state labeled $i + l \text{ (mod } k\text{)}$.

We define a two block map $f$ from $A^\mathbb{Z}$ to $(B \cup \{\$\})^\mathbb{Z}$, by defining the image of a block of two letters of $A$ by $\tilde{f}$. Let $ab$ be a block of letters of length two such that $a$ is the label of an edge ending in a state $s$ labeled by $(i - 1) \text{ mod } k$ and $b$ the label of an edge starting at $s$ and ending in a state labeled by $i \text{ mod } k$, we define $\tilde{f}(a, b)$ as $x_i$. Note that $b$ is the label of an edge that can follow the unique edge labeled by $a$ in the graph. One maps other two-blocks to $\$ by $\tilde{f}$. We define $f$ from $\tilde{f}$ with a null anticipation.
If $u$ is a word of $S$, we get $f(u) \subseteq (x_0x_1 \ldots x_{k-1})^Z = (x)^Z$. Conversely $f^{-1}((x)^Z)$ is a set of bi-infinite words such that any subblock $ab$ of length two is an allowed block of $S$, that is $b$ is the label of an edge that can follow the unique edge labeled $a$ in the graph. Then $f^{-1}((x)^Z) \subseteq S$. □

As a consequence of the two previous propositions, we get the following one.

**Proposition 4** Let $S$ be a transitive shift of finite type which has a periodic word whose period divides all other periods of words of $S$, then $S \sim (x)^Z$, where $x$ is a (primitive) finite word.

**Proof:** Let $p$ be the period of a periodic word of smallest period, which is also the g.c.d of periods of words of $S$. Let $x$ be a finite primitive word of length $p$. By Proposition 2, $S \rightarrow (x)^Z$. By Proposition 3, $(x)^Z \rightarrow S$. Hence $S \sim (x)^Z$. □

### 4 Decidability of weak equivalence of flower edge shifts

In this section, we only consider flower edge shifts. These shifts are completely determined by the length distribution of the words of a finite set of words $X$. Let $S_X$ be such a shift, we denote by $s = (s_1, s_2, \ldots, s_n)$ the length distribution of $X$. We can moreover assume that $s_1 \leq s_2 \leq \cdots \leq s_n$. We denote by $< s >$ the ideal $s_1\mathbb{N} + s_2\mathbb{N} + \cdots + s_n\mathbb{N}$ of $\mathbb{N}$. It is called the spectrum of $s$ and $s$ is a generating system of $< s >$ as ideal of $\mathbb{N}$.

**Proposition 5** There is a unique (up to a permutation) minimal generating system of $< s >$.

**Proof:** Let $s = (s_1, s_2, \ldots, s_n)$ and $t = (t_1, t_2, \ldots, t_m)$ be two minimal generating systems of $< s >$, with $s_1 \leq s_2 \leq \cdots \leq s_n$ and $t_1 \leq t_2 \leq \cdots \leq t_m$. Since $< s > \subseteq < t >$, we get

$$s_1 = t_ia_i + \cdots + t_ma_m, \quad \text{with } a_i \neq 0, a_i \in \mathbb{N}.$$ 

This implies that $t_i \leq s_1$, and thus $t_1 \leq s_1$. Conversely we get $s_1 \leq t_1$ and then $s_1 = t_1$.

Let us now suppose that $< (s_2, \ldots, s_n) > \neq < (t_2, \ldots, t_m) >$ and $s_2 \leq t_2$. If $s_2$ belongs to $< (t_2, \ldots, t_m) >$, we get $t_2 \leq s_2, s_2 = t_2$. If not, $s_2$ does not belong to $< (t_2, \ldots, t_m) >$ and $s_2 \leq t_2 \leq \cdots \leq t_m$. Then

$$s_2 = s_1b_1 + t_2b_2 + \cdots + t_mb_m, \quad \text{with } b_i \neq 0, b_i \in \mathbb{N}.$$
Since \( s_2 \leq t_2 \leq \cdots \leq t_m \), we get \( b_2 = \cdots = b_m = 0 \). This implies that 
\( s = (s_1, s_2, \ldots, s_n) \) is not minimal.

We now have \( s_1 = t_1 \) and \( s_2 = t_2 \). We iterate the process with the same arguments by assuming for instance that \( s_3 \leq t_3 \). If \( s_3 \) does not belong to \(< (t_2, \ldots, t_m) >\),

\[
s_3 = s_1 b_1 + s_2 b_2 + t_3 b_3 + \cdots + t_m b_m
\]

with \( b_1 \) or \( b_2 \) non null. Since \( s_3 \leq t_3 \), we get \( b_3 = \cdots = b_m = 0 \) and \( s \) is again non minimal since \( s_3 = s_1 b_1 + s_2 b_2 \). We iterate the process for the remaining indices and get the result since both generating systems are minimal. \( \square \)

We can remark that even if the minimal generating system is unique, the decomposition in a nonnegative integral linear combination of elements of the system is not.

The minimal generating system of the system generated by the length distribution of a finite set \( X \) is called the signature of \( X \) or the signature of the shift \( S_X \).

We now prove that the weak equivalence for flower edge shifts is decidable. This is a consequence of the two following propositions.

**Proposition 6** Let \( S = S_X \) and \( T = T_Y \) be two flower edge shifts whose \( X \) and \( Y \) have respectively the length distributions \( s = (s_1, \ldots, s_n) \) and \( t = (t_1, \ldots, t_m) \). Then \( S \sim T \) if and only if \( < s > = < t > \).

**Proof:** In one direction, if \( < s > = = < t > \), we have \( s_{\min} = t_{\min} \), where \( s_{\min} \) (resp. \( t_{\min} \)) denotes the minimal generating system extracted from \( s \) (resp. \( t \)). A subcode \( X_i \) of \( X \) (resp. \( Y_i \) of \( Y \)) has \( s_{\min} \) (resp. \( t_{\min} \)) as length distribution. We define a 2-sliding block map \( f \) from \( S \) to \( T \) with a null anticipation from \( \tilde{f} \) that maps each allowed block \( ab \) of length two of \( S \), where \( b \) is the letter of index \( i \) of a word of \( X_1 \), to the letter of index \( i \) of the word of same length of \( Y_1 \). Let now \( u = u_1 \ldots u_k \) be a word of \( X \) which does not belong to \( X_1 \). Then the length of \( u \) is the sum of the lengths of words \( z_1, \ldots, z_i \) of \( Y \) (the words \( z_i \) are not supposed to be distinct). This allows us to define a mapping \( g \) which associates to each letter of \( u \) a letter of \( z_1, \ldots, z_i \) such that \( g(u) \) is an allowed block of \( T \). We then define \( \tilde{f} \) for any allowed block of length two \( ab \) of \( S \) where \( b \) is a letter of \( u \) as \( g(b) \). If \( ab \) is not an allowed block of \( S \), we define \( \tilde{f}(ab) = \$ \), where \$ is not a symbol of \( T \). We get \( S = f^{-1}(T) \). By symmetry, \( S \sim T \).

In the other direction, we consider that \( S \sim T \). By Proposition 1, we get that if \( S \) has a word of period \( k \), then \( T \) has a word of period dividing
Without loss of generality, we can assume that $s$ and $t$ are minimal generating systems of $< s >$ and $< t >$. Since the set $< s >$ is the set of values of periods of words of $S$, we get that there is a matrix $A$ with nonnegative integral coefficients such that

$$s.A / t$$

(the dividing property is satisfied coefficients by coefficients). There is also a nonnegative integral matrix $B$ such that

$$t.B / s.$$ 

We get

$$s.AB / s.$$ 

We obtain

$$< s > \subseteq < s.AB > \subseteq < s.A > \subseteq < s >.$$ 

Since $s.A / t$, we also have:

$$< t > \subseteq < s.A > = < s >.$$ 

Symmetrically, we get $< s >= < t >$. □

**Proposition 7** Let $S = S_X$ and $T = T_Y$ be two flower edge shifts where $X$ and $Y$ have respectively the length distributions $s = (s_1, ..., s_n)$ and $t = (t_1, ..., t_m)$. It is decidable if $< s >= < t >$.

**Proof:** If $< s >= < t >$, then $s_{\min}$ is equal to $t_{\min}$, where $s_{\min}$ is the minimal generating system of the spectrum of $X$. The computation of $s_{\min}$ from $s$ can be done as follows. It can be reduced to the problem of checking whether $s_1$ can be removed from $< s_2, ..., s_n >$, that is whether $s_1$ belongs to $< s_2, ..., s_n >$. This is computable since the coefficients are nonnegative integers and there only a finite number of values to check. □

**Example** The flower edge shifts $(2, 3)$, $(2, 3, 3)$, $(2, 3, 5)$ are all weakly equivalent since $5 = 2 + 3$. Remark that they all have different topological entropy. They all have the same signature $(2, 3)$.

**Corollary 1** Let $S$ and $T$ be two flower edge shifts. It is decidable whether $S \sim T$.

9
In the more general case of edge shifts that are not flower edge shifts, we have the partial following result. Let $G$ be a graph. We call the spectrum of the lengths of the cycles of $G$ the sequence $s = (s_1, s_2, \ldots, s_n)$ where $s_i = 1$ if there is a cycle of length $i$ and $s_i = 0$ if not.

**Proposition 8** Let $S$ and $T$ be two edge shifts given by two finite graphs $G$ and $H$. It is decidable whether the spectrum of the lengths of cycles of the two graphs are equal.

**Proof** Let $A$ (resp. $B$) be the adjacency matrix of $G$ (resp. $H$). The coefficient of index $ij$ of the adjacency matrix is 1 if there is at least one edge from $i$ to $j$ in the graph. The coefficients of $A$ and $B$ can be seen in the boolean ring. Checking whether the spectrum of the lengths of cycles of the two graphs are equal is equivalent to checking whether $tr(A^n) = tr(B^n)$ for each positive integer $n$, where $tr$ denotes the trace of a matrix. For any matrix $A$ in the boolean ring, there are two positive indices $i < j$ such that $A^i = A^j$. There is then a finite number of equalities to check. This proves the decidability of the problem. □

The condition given in the statement of Proposition 8 is a necessary condition for weak equivalence. But we don’t know if it is a sufficient condition. Moreover, a flower edge shift can be weakly equivalent to a non flower one as it is shown in the following example.

![Figure 3: Two weakly equivalent edge shifts: $S$ (on the left) and $T$ (on the right)](image_url)

**Example** The two edge shifts $S \subset \{a\}^\mathbb{Z}$ and $T \subset \{x, y, z, t\}^\mathbb{Z}$ given by the graphs of Figure 3 are weakly equivalent. Indeed, the graph of the edge shift $S = (1)$ is a subgraph of the other edge shift $T$. Thus we have $S \rightarrow T$ since we can take the one block map from $S$ to $T$ that maps the letter $a$ to the letter $x$. In the other direction, a 2-sliding block map with a null
anticipation \( f \) from \( T \) to \( S \) is defined by \( \tilde{f}(xx) = \tilde{f}(xy) = \tilde{f}(yz) = \tilde{f}(yt) = \tilde{f}(zz) = \tilde{f}(zt) = \tilde{f}(tx) = \tilde{f}(ty) = a \), and by \( \tilde{f}(u) = $ \) for any forbidden block \( u \) of length two of \( T \). Then \( T = f^{-1}(S) \). The equivalence \( S \sim T \) is also a consequence of Proposition 4.

References


