
Computing the pre�x of an automatonMarie-Pierre B�ealInstitut Gaspard Monge�Universit�e de Marne-la-Vall�ee Olivier CartonInstitut Gaspard Monge�Universit�e de Marne-la-Vall�eeMar
h 7, 2001Abstra
tWe present an algorithm for
omputing the pre�x of an automaton.Automata
onsidered are non-deterministi
, labelled on words, and
anhave "-transitions. The pre�x automaton of an automaton A has thefollowing
hara
teristi
 properties. It has the same graph as A. Ea
ha

epting path has the same label as in A. For ea
h state q, the longest
ommon pre�x of the labels of all paths going from q to an initial or�nal state is empty. The interest of the
omputation of the pre�x of anautomaton is that it is the �rst step of the minimization of sequentialtransdu
ers.The algorithm that we des
ribe has the same worst
ase time
omplex-ity as another algorithm due to Mohri but our algorithm allows automatathat have empty labelled
y
les. If we denote by P (q) the longest
ommonpre�x of labels of paths going from q to an initial or �nal state, it operatesin time O((P + 1)� jEj) where P is the maximal length of all P (q).1 Introdu
tionTransdu
ers are �nite state ma
hines whose transitions or edges are labelledby a pair made of an input word and an output word. They are widely usedin pra
ti
e to model various things like lexi
al analyzers in language pro
essing[14℄, operations in numeration systems [11℄ or also en
oding or de
oding s
hemesfor
hannels [2℄. As a transdu
er has input and output labels, and even if theselabels are letters, there is in general no minimal equivalent obje
t like for simple�nite state automata. It is very often required that the transdu
er has letters asinput labels and has moreover a deterministi
 input automaton. It is then
alledsequential. Used as an en
oder, this means that the output
odeword is obtainedsequentially from the input data. Transdu
ers whi
h are not sequential, butwhi
h realize sequential fun
tions,
an be �rst determinized (see for instan
e [4℄�Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee, 5 boulevard Des
artes, 77454Marne-la-Vall�ee Cedex 2, Fran
e. http://www-igm.univ-mlv.fr/~fbeal,
artong1

or [3℄). In the
ase of sequential transdu
ers, there exists a minimal equivalentsequential transdu
er, even if the output labels are variable length words.A
hara
terization of minimal sequential transdu
ers was �rst given in [7℄. Apro
edure to produ
e a minimal sequential transdu
er is there indi
ated. It is inparti
ular shown in [7℄ that the minimal sequential transdu
er is obtained in twosteps. The �rst one is the
omputation of the pre�x automaton of the outputautomaton of the transdu
er. The se
ond step is a
lassi
al minimization of thetransdu
er obtained at the end of the �rst step, seen as an ordinary �nite stateautomaton. The pre�x of an automaton
an be interpreted as an automatonwith the same underlying graph, same behaviour but produ
es its output assoon as possible. Its name
omes from the fa
t that for any state q, the longest
ommon pre�x P (q) of labels of paths going from q to an initial or �nal state isempty.The �rst algorithm of
omputation of the pre�x of an automaton appears in[12℄ and [13℄. The
onstru
tion is there
alled a quasi-determinization. It hasbeen noti
ed by Mohri that the �rst step of the minimization of sequential trans-du
ers is independent from the notion of transdu
ers. The quasi-determinizationis an algorithm that works on �nite state automata. It keeps the graph of an au-tomaton and
hanges only the labels of the edges. Roughly speaking, it pushesthe labels of the edges from the �nal states towards the initial states as mu
h aspossible. The algorithm of Mohri has a time
omplexity O((P +1)�jEj), whereE is the set of edges and P the maximum of the lengths of P (q) for all states q.We assume here that the number of states jQj is less than the number of edges.Another algorithm for
omputing the pre�x of automaton has been presentedin [5℄ and [6℄. The approa
h of this algorithm is really di�erent from ours. It isbased on the
onstru
tion of the suÆx tree of a tree and its time
omplexity isO(jQj+ jEj+S log jAj), where A is the alphabet and S is the sum of the lengthsof the labels of all edges of the automaton. Breslauer's algorithm
an thus bebetter when there is a small number of edges and Mohri's algorithm is better inthe other
ase. In pra
ti
e, S
an be very large and P
an be very small. Thismakes the algorithms of Mohri and ours almost linear. A
omparison of the two
omplexities is given in [13℄.Our algorith uses the same prin
iple of pushing letters through states asMohri's algorithm does. Main restri
tion to Mohri's algorithm is that it doesnot work when the automaton
ontains a
y
le of empty label (the system ofequations given in [13, Lemma 2 p. 182℄ does not admits a unique solution inthis
ase). Some step in Mohri's algorithm requires that the automaton has noempty labelled
y
le. However, if the starting automaton does not have any su
h
y
le, this property is kept along the pro
ess. The algorithm is therefore
orre
tin this
ase. This restri
tion is not really important for appli
ations sin
e thetransdu
ers used in pra
ti
e, like in language pro
essing, have no empty labelled
y
les in output.In this paper, we present another algorithm of
omputation of the pre�xof an automaton whi
h has the same worst
ase time
omplexity as Mohri'salgorithm, O((P + 1) � jEj), and that works for all automata. The existen
eof empty labelled
y
les a

ounts for most of the diÆ
ulty in the
oming algo-2

rithm. The time
omplexity is independent of the size of the alphabet. Thealgorithm
onsists in de
reasing by 1 the value P at ea
h step. We present ouralgorithm for sequential transdu
ers but it
an be dire
tly extended to the
aseof subsequential transdu
ers (see [7℄ or [4℄ for the de�nition of a subsequentialtransdu
er).In Se
tion 2, we re
all some basi
 de�nitions from automata theory and wede�ne the pre�x automaton of an automaton. The
omputation algorithm ofthe pre�x of an automaton is presented in Se
tion 3. The
omplexity is analyzedin Se
tion 4. In that se
tion some data stru
tures are des
ribed whi
h
an beused to get the right time
omplexity of the algorithm.2 Pre�x of an automaton and appli
ationsIn the sequel, A denotes a �nite alphabet and " is the empty word. A word uis a pre�x of a word v if there is a word w su
h that v = uw. The word w isdenoted by u�1v. The longest
ommon pre�x of a set of words is the longestword whi
h is pre�x of all words of the set.An automaton over A� is
omposed of a set Q of states, a set E � Q�A��Qof edges and two sets I; F � Q of initial and �nal states. An edge e = (p; u; q)from p to q is denoted by p u�! q, the word u being the label of the edge. Theautomaton is �nite if Q and E are �nite. A path is a possibly empty sequen
e of
onse
utive edges. Its label is the
on
atenation of the labels of the
onse
utiveedges. An automaton is often denoted by A = (Q;E; I; F). An a

epting pathis a path from an initial state to a �nal state. The language or set of wordsre
ognized (or a

epted) by an automaton is the set of labels of a

epting paths.An automaton is deterministi
 if it is labelled by letters of a �nite alphabet A,if it has one initial state and if for ea
h state p and ea
h letter a in A, there isat most one edge p a�! q for some q.We now de�ne the pre�x automaton of a given automaton A. This pre�xautomaton has the same graph as A, but the labels of the edges are
hanged.However the labels of the a

epting paths remain un
hanged and the pre�xautomaton re
ognizes the same words. Furthermore, for any state q of thepre�x automaton the longest
ommon pre�x of the labels of all paths goingfrom q to an initial or �nal state is empty.Let A = (Q;E; I; F) be a �nite non-deterministi
 automaton labelled bywords. We assume that the automaton is trim, that is, any state belongs to ana

epting path. For ea
h state q, we denote by PA(q), or just P (q), the longest
ommon pre�x of the labels of all paths going from q to an initial or �nal state.Remark that P (q) = " if q is initial or �nal.The pre�x automaton of A is the automaton A0 = (Q;E0; I; F) de�ned asfollows. E0 = fq P (q)�1uP (r)��������! r j q u�! r is an edge of Ag:One may easily
he
k that if q u�! r is an edge of A, then the word P (q) is3

by de�nition a pre�x of the word uP (r) and the previous de�nition is thus
onsistent.Note that a path labelled by w from q to r in A be
omes a path labelled byP (q)�1wP (r) from q to r in the pre�x automaton. If this path is a

epting, qis initial and r is �nal and thus P (q) and P (r) are both empty. Then the labelof the path in the pre�x automaton is the same as in A. The label of a
y
leof A is
onjugated to its label in the pre�x automaton. In parti
ular the emptylabelled
y
les of the pre�x automaton are the same as the ones of A.By
onstru
tion the longest
ommon pre�x of the labels of all paths goingfrom q to an initial or �nal state is empty in the pre�x automaton.Our de�nition of the pre�x automaton allows edges
oming in an initialstate. In most
ases, there is none and for ea
h non-initial state q, P (q) is thelongest
ommon pre�x of the labels of all paths going from q to a �nal state.The words P (q) are the longest words su
h that P (q) = " if q is initial or�nal and su
h that P (q) is a pre�x of uP (r) for any edge q u�! r. Indeed, if afun
tion P 0 maps any state q to a word su
h that these two
onditions are met,then P 0(q) is a pre�x of P (q) for any state q.
1 2

3 4ba "" aa
aFigure 1: An automaton A.
1 2

3 4baa "" a
"Figure 2: The pre�x automaton of A.Example 1 Consider the automaton A pi
tured in Figure 1 where the initialstate is 1 and the �nal state is 4. The pre�x automaton of A is pi
tured inFigure 2. 4

The main appli
ation of the pre�x of an automaton is minimization of se-quential and subsequential transdu
ers. A transdu
er is de�ned as an automa-ton, ex
ept that the labels of the edges are pairs made of an input word andan output word. A transdu
er labelled in A � B� is sequential if its input au-tomaton is deterministi
. It has been proved [7℄, [8, p. 95℄, see also [12℄ and[13℄, that among the sequential transdu
ers
omputing a given fun
tion, thereis a minimal one whi
h
an be obtained from any sequential transdu
er
om-puting the fun
tion. This minimization is performed in two steps. The �rststep is the
omputation of the pre�x automaton of the output automaton ofthe transdu
er. The se
ond step is a minimization of the resulting transdu
er,
onsidered as a �nite automaton.We refer to [12℄ for examples of minimization of sequential transdu
ers.3 Computation of the pre�x of an automatonIn this se
tion, we des
ribe an algorithm whi
h
omputes the pre�x of an au-tomaton. The automaton A = (Q;E; I; T) is a non-deterministi
 automatonwhose edges are labelled by words over a �nite alphabet A. The labels
an bethe empty word and
y
les with empty labels are allowed.We �rst des
ribe the prin
iple of the algorithm. If q is a state of A, we re
allthat P (q) denotes the longest
ommon pre�x of the labels of all paths goingfrom q to an initial or �nal state. We denote by p(q) the �rst letter of P (q) ifP (q) 6= ", and " if P (q) = ".We denote by PA the maximum of the lengths of all P (q) for all states q.If PA > 0, we
onstru
t from the automaton A = (Q;E; I; T) an automa-ton A0 = (Q;E0; I; T) whose edges are de�ned as follows:E0 = fq p(q)�1up(r)��������! r j q u�! r is an edge of Ag:It re
ognizes the same language as A and satis�es PA0 = PA � 1. By iteratingthis pro
ess, we get the pre�x automaton.We now explain the
omputation of the automaton A0. We
all "-edgeany edge whose label is ". Let A" be the sub-automaton of A obtained bykeeping only the "-edges. We �rst
ompute the strongly
onne
ted
omponentsof A". This
an be performed by depth-�rst explorations of A" [9℄. The strongly
onne
ted
omponents are stored in an array
 indexed by Q. For ea
h stateq we denote by
[q℄ a state that represents the strongly
onne
ted
omponentof q. The
all to Strongly-Conne
ted-Components(A") in the pseudo
odebelow will refer to this pro
edure that
omputes the array
.Note that all states q in a same strongly
onne
ted
omponent of A" havesame P (q) and thus same p(q).The
onstru
tion of A0 is then done with two depth-�rst explorations, �rstan exploration of A", se
ond, an exploration of A.The �rst exploration
omputes p(q) for ea
h state q of A". This symbol,either a letter or ", is stored in the
ell letter[q℄ of an array letter. As p(q)5

is
ommon to all states q in a same strongly
onne
ted
omponent of A", we
ompute it only for the states
[q℄.At the beginning of the
omputation, all
ells letter[q℄ are set to the defaultvalue > whi
h stands for unde�ned. During the
omputation, these values are
hanged into symbols of A [f"g. Let X be the set A [f";>g. We de�ne apartial order on the set X as follows. For ea
h a 2 A," < a < >:Note that ea
h subset of X has an inf in X su
h that, for all x 2 X , all a; b 2 Awith a 6= b, inf("; x) = ";inf(>; x) = x;inf(a; b) = ":We also assume that an array lo
al indexed by Q gives, for ea
h state q, either" if q is �nal or initial, or inf(S) where S is the set of letters that appear asthe �rst letter of a non-empty label of an edge going out of q. Note that ifthere is no edge with a non-empty label going out of q, lo
al[q℄ is equal to >.The array lo
al is initialized by the pro
edure Init-Table and updated withthe pro
edures Update-Table-Head and Update-Table-Tail that we shalldes
ribe later.For ea
h state q in Q, the value of letter[
[q℄℄ is �rst set to the inf of lo
al[r℄,for all states r in the same strongly
onne
ted
omponent of A" as q. This isdone by the pro
edure Init-Letter. During the exploration of the automatonA", if q has a su

essor r su
h that letter[
[r℄℄ < letter[
[q℄℄, then letter[
[q℄℄ is
hanged in inf(lo
al[q℄; letter[
[q℄℄). We
laim that the
ell of index q of the arrayletter
ontains p(q) at the end of this exploration. This exploration is done bythe fun
tion Find-Letter. It returns a boolean whi
h is true if there is at leastone state q with p(q) non-empty.We give below a pseudo
ode for the pro
edures Init-Letter, Find-Letterand Find-Letter-Visit. We follow the depth-�rst sear
h presentation of [9℄.Init-Letter(set of states Q)for ea
h state q 2 Q doletter[
[q℄℄ >for ea
h state q 2 Q doletter[
[q℄℄ inf(lo
al[q℄; letter[
[q℄℄)Find-Letter(automaton A" = (Q;E"; I; F))bool falsefor ea
h state q 2 Q do
olor[q℄ whitefor ea
h state q 2 Q doif
olor[q℄ = white thenFind-Letter-Visit(A"; q)return bool 6

Find-Letter-Visit(automaton A" = (Q;E"; I; F), state q)
olor[q℄ bla
kfor ea
h edge (q; "; r) doif
olor[r℄ = white thenFind-Letter-Visit(A"; r)letter[
[q℄℄ inf(letter[
[q℄℄; letter[
[r℄℄)if letter[
[q℄℄ 6= " thenbool trueWe now prove the
orre
tness of our algorithm.Proposition 2 Fun
tion Find-Letter
omputes p(q) for ea
h state q.Proof. For ea
h state q, \letter[
[q℄℄ � p(q)" is an invariant of the fun
tion Find-Letter. Indeed, one has lo
al[r℄ � p(q), for ea
h state r in the same strongly
onne
ted
omponent as q. This implies that \letter[
[q℄℄ � p(q)" is an invariantof the fun
tion Init-Letter(Q). Moreover, if there is an edge (q; "; r) and ifletter[
[r℄℄ � p(r), we get letter[
[r℄℄ � p(r) � p(q). Then \letter[
[q℄℄ � p(q)" isinvariant during Find-Letter-Visit(A" ; q).We now show that if there is an edge (q; "; r) between two states q and r, wehave letter[
[q℄℄ � letter[
[r℄℄ at the end of Find-Letter(A"). This fa
t is trivialif q and r belong to the same strongly
onne
ted
omponent of A". If not, theend of the exploration of state r is before the end of the exploration of q. Thenthe line 5 of Find-Letter-Visit(A"; q) implies that letter[
[q℄℄ � letter[
[r℄℄.Let us assume there is a (possibly empty) path from q to a state r whi
hhas an empty label and an edge going out of r labelled with au, where u is aword. Then letter[
[q℄℄ � a at the end of Find-Letter-Visit(A"; q). Indeed,at the end of Find-Letter-Visit(A"; q), we have letter[
[r℄℄ � a, and then alsoletter[
[q℄℄ � letter[
[r℄℄ � a.Let us assume that p(q) is a letter a in A. Then there is a (possibly empty)path from q to a state r whi
h has an empty label and an edge going out of rlabelled with au, where u is a word. As a
onsequen
e letter[
[q℄℄ � a and thenletter[
[q℄℄ = p(q). Let us now assume that p(q) is the empty word. Then thereis either a (possibly empty) path from q to a state r whi
h has an empty labeland an edge going out of r labelled with au, where u is a word, and there isa (possibly empty) path from q to a state r0 whi
h has an empty label and anedge going out of r0 labelled with bu, where u is a word, with b 6= a. In this
aseletter[
[q℄℄ � inf(a; b) = ", and then letter[
[q℄℄ = p(q). Or there is a (possiblyempty) path from q to a state r whi
h has an empty label and with r �nal orinitial. Again letter[
[q℄℄ � letter[
[r℄℄ = ". Finally, letter[
[q℄℄ = p(q) for ea
h q.� The se
ond depth-�rst exploration is an exploration of the automaton A. Itupdates the labels of A in order to de
rease the length of P (q) for ea
h state qsu
h that p(q) is non-empty. For ea
h edge (q; u; r), where u is a �nite word, thefollowing two operations are performed. The letter (or empty word) p(
[r℄) isadded at the end of u. Then the �rst letter (or empty word) p(
[q℄) is removed7

from the beginning of u. Note that these two operations are possible. If u isnonempty, then p(
[q℄) is the �rst letter of u and if u = " then p(
[q℄) = p(
[r℄)or p(
[q℄) = ". These operations
hange the labels of the edges of the automatonA and thus also the values of the array lo
al. Lines 3 and 5 of Move-Letter-Visit
hange the labels of the edge e in A. Sin
e an edge with empty label
an be
ome an edge with a non-empty label and
onversely, the edge of A"are also updated there. The values of the array lo
al are updated with twopro
edures Update-Table-head and Update-Table-Tail des
ribed later.The exploration is done during the run of pro
edure Move-Letter whosepseudo
ode is given below.Move-Letter(automaton A = (Q;E; I; F))for ea
h state q 2 Q do
olor[q℄ whitefor ea
h state q 2 Q doif
olor[q℄ = white thenMove-Letter-Visit(A; q)Move-Letter-Visit(automaton A = (Q;E; I; F)), state q)
olor[q℄ bla
kfor ea
h edge e = (q; u; r) where u is a (possibly empty) word doappend letter[
[r℄℄ at the end of the label of e in A and update A"Update-Table-Tail(e; letter[
[r℄℄)remove letter[
[q℄℄ from the head of the label of e in A and update A"Update-Table-Head(e; letter[
[q℄℄)if
olor[r℄ = whitethenMove-Letter-Visit(A; r)Proposition 3 Fun
tion transforms the automaton A in an automaton A0whose edges are:E0 =fq p(q)�1up(r)��������! r j q u�! r is an edge of Ag:Therefore, the fun
tion Move-Letter
hanges the label w of any path from qto r into p(q)�1wp(r).Proof. This follows dire
tly from the
onstru
tion. �Proposition 4 Fun
tion Move-Letter transforms the automaton A in anautomaton A0 whi
h has the same graph as A, keeps the labels of a

epting pathsand satis�es PA0 = PA � 1.Proof. Let w be the label of a path from an initial state i to a �nal state t inA. The label of the same path obtained at the end of Move-Letter in A0 isp(i)�1wp(t) = w. Thus the labels of a

epting paths are un
hanged. Moreover,for ea
h state q one has PA0(q) = pA(q)�1PA(q). It follows that PA0 = PA � 1if PA � 1. � 8

We now give a pseudo
ode of the pro
edure Make-Prefix whi
h is themain pro
edure of the algorithm.Make-Prefix(automaton A = (Q;E; I; F))Init-Table(A)Strongly-Conne
ted-Components(A")repeatInit-Letter(Q)bool Find-Letter(A")if bool thenMove-Letter(A)until bool = falseThe result of the
omputation of the automaton A pi
tured in Figure 1 isthe automaton pi
tured in Figure 2. The automaton A is su
h that PA = ".Note that this automaton has an empty labelled
y
le.Remark 5 The two pro
edures Find-Letter and Find-Letter-Visit
an beperformed on the dire
ted a
y
li
 graph obtained as the quotient of A" by therelation of being in a same strongly
onne
ted
omponent. This graph
an bemu
h smaller than A" itself. It
an be
omputed by the pro
edure Strongly-Conne
ted-Components.Remark 6 By proposition 3, the label of a
y
le is
hanged into one of its
on-jugate by the fun
tion Move-Letter. Therefore, the strongly
onne
ted
om-ponents of A" are un
hanged during the iteration of fun
tion Make-Prefix.4 Data stru
tures and
omplexityIn order to analyze the
omplexity of our algorithm, we brie
y dis
uss a possibleimplementation of stru
tures required in the
onstru
tion.A
lassi
al way for implementing the automaton A is to use jQj adja
en
ylists that represent the edges. We may assume that we have two adja
en
y listsfor ea
h state q. The �rst one represents the edges of empty label going out ofq, that is the edges that also belong to A". The se
ond one represents the edgesof non-empty label going out of q.In order to
ompute, for ea
h state q, lo
al(q) in a
onstant time, we maintainan array L indexed by Q de�ned as follows:� L[q℄ is the list of pairs (a; n) with a 2 A; n > 0 2 N, su
h that q has atleast one outgoing edge labelled by a word whose �rst letter is a and su
hthat n is the positive number of edges going out of q and whose �rst letteris a. 9

We point out that the �rst
omponent of an element of L[q℄ is a letter and never
ontains ". Thus lo
al(q) is " if L[q℄ has more than one element or if q is initialor �nal. It is the letter a if L[q℄
ontains exa
tly one pair (a; n) and q is neitherinitial nor �nal. It is > otherwise.The operation performed in the lists are the insertion of a new letter, that isa pair (a; 1), the in
rementation and de
rementation of the se
ond
omponentof an element, and the deletion of a letter, that is of a pair (a; 1). We need allthese operations to be performed in a
onstant time.We use a known te
hnique whi
h allows us to get this time
omplexity (seefor example [1℄ exer
ise 2.12 p. 71 and [10℄ exer
ise \Implantation de fon
tionspartielles" 1.14 Chapter 1). This te
hnique is based on the use of array of sizejQj � jAj whi
h is not initialized.We assume that the lists L[q℄ are doubly linked and implemented with
ur-sors. We denote by T an array of variable size. The
ells of T are used to storethe elements of the lists L[q℄. Ea
h
ell has several �elds: a �eld label whi
h
ontains the letter, a �eld number that
ontains the number of edges going outof q whose �rst letter is label, a �eld state whi
h
ontains the state q su
h thatthe
ell belongs to L[q℄, and �nally �elds next and prev that give the index ofthe next (respe
tively previous) element in the same list. The
ell of index q ofthe array L is the index in T of the �rst element of L[q℄, if this list is non-empty.Another array U , indexed by Q�A, gives for ea
h pair (q; a) the index in Tof the
ell of L[q℄ whose letter is a, if this letter is in L[q℄. This array allows usto a

ess an element of a list in a
onstant time. The operations of insertion,deletion of an element in a list are then done in a
onstant time. The operationsof in
rementation and de
rementation of the �eld number of the
ell of a givenlabel in a given list are also done in a
onstant time. Indeed, to in
rement the�eld number of the letter a in L[q℄, one in
rements the �eld number of the
ellof T indexed by U [q; a℄.The array T is initially empty and its size is 0. The size of T is in
rementedwhen a new
ell is needed in T . A
ell that
orresponds to an element of a listthat has just been removed is marked to be free. Thus the existen
e of a lettera in L[q℄ is obtained by
he
king whether U [q; a℄ is an index i in [1; size(T)℄,whether the
ell T [i℄ is not marked free, and whether the �elds label and stateare respe
tively equal to a and q. This is performed in a
onstant time.All the lists of su

essors that represent the edges of the automaton A andA", and the arrays lo
al, L, T , U are updated when the label of an edge is
hanged during the pro
ess. The arrays L and lo
al are initialized by the pro
e-dure Init-Table. The arrays L, T , U and lo
al are updated by the pro
eduresUpdate-Table-Head and Update-Table-Tail.We give below a pseudo
ode for the pro
edure Init-Table.Init-Table(automaton A = (Q;E; I; F))for ea
h q 2 Q doL[q℄ the empty listlo
al[q℄ >for ea
h q 2 Q do 10

for ea
h edge (q; au; r) where a is letter and u a word doif a is not in L[q℄ theninsert the pair (a; 1) in L[q℄else in
rement the �eld number of the letter a in L[q℄if L[q℄ has more than one element or if q is initial or �nal thenlo
al[q℄ "else if L[q℄ is not empty thenlo
al[q℄ the unique letter of L[q℄We now des
ribe the updating of the tables and lists. An update is neededas soon as the label of an edge of A is
hanged. Note that the labels of the edgesof the automata A and A" are
hanged in a
onstant time. Indeed, a label of anedge going out of a state q that be
omes empty is removed from the list of edgesof non-empty labels going out of q, and added into the list of edges of emptylabels going out of q (and
onversely). This is performed in a
onstant time inline 3 and line 5 of Move-Letter-Visit. To update the arrays L, T , U andlo
al, we distinguish the two kinds of modi�
ation of the labels of the edges. Aletter or the empty word
an be added at the end of a label. The pro
edure
alled to update is in this
ase the pro
edure Update-table-Tail. A letteror the empty word
an be removed from the head of the label. The pro
edure
alled to update is in this
ase the pro
edure Update-table-Head.Pseudo
odes for Update-table-Tail and Update-table-Head are givenbelow.Update-table-Tail(edge e = (q; u; r), letter (or empty word) x)if u = " and x 6= " thenif x is not in L[q℄ theninsert the pair (x; 1) in L[q℄else in
rement the �eld number of the letter x in L[q℄if L[q℄ has more than one element or if q is initial or �nal thenlo
al[q℄ "else lo
al[q℄ the unique letter of L[q℄Update-table-Head(edge e = (q; u; r), letter (or empty word) x)We have u = xu0, where u0 is a �nite word, whenever x 6= "if x 6= " thende
rement the �eld number of the letter x in L[q℄if this �eld is equal to 0 thenremove the pair (x; 0) from L[q℄if u0 = bu00 where b is a letter of A thenif b is not in L[q℄ theninsert the pair (b; 1) in L[q℄else in
rement the �eld number of the letter b in L[q℄if L[q℄ has more than one element or if q is initial or �nal thenlo
al[q℄ "else if L[q℄ has exa
tly one element thenlo
al[q℄ the unique letter of L[q℄11

else lo
al[q℄ >We analyze now the
omplexity of our algorithm. We denote by jSj the
ardinality of a set S. As the automaton is trim, jQj � jEj+1. We also denoteby jE"j the
ardinality of the
urrent automaton A". We always have jE"j � jEjbut the automaton A" may be mu
h smaller than A. We denote here by P themaximal length of the words P (q) for all states q.Proposition 7 Fun
tion Make-Prefix works in time O((P + 1)� jEj).Proof. Fun
tion Init-Table
an be implemented to work in time O(jQj +jEj). Fun
tions Strongly-Conne
ted-Components and Find-Letter
anbe implemented to work in time O(jQj+ jE"j). Fun
tion Init-Letter works intime O(jQj). As dis
ussed above, fun
tion Update-Table works in time O(1).Fun
tion Move-Letter works in time O(jQj + jEj). Finally the loop inMake-Prefix is exe
uted at most P+1 times. The
omplexity of our algorithmis then O((jQj + jEj) � (P + 1) + (jQj + jE"j) � (P + 1)). Sin
e the automata
onsidered are trim, jQj � jEj+1 and the
omplexity is thus O((P +1)� jEj).� Let S be the sum of the lengths of the labels of all edges of the automaton.The spa
e
omplexity of the algorithm is O((jQj � jAj) + jEj+ S).5 A
knowledgementsWe thank Christian Cho�rut and Maxime Cro
hemore for useful dis
ussions and
omments. Christian Cho�rut pointed out to us the ina

ura
y of the algorithmof [13℄ in the parti
ular
ase where the automaton has an empty labelled
y
le.We also thank the anonymous referees for their relevant remarks.Referen
es[1℄ Aho, A. V., Hop
roft, J. E., and Ullman, J. D. The Design andAnalysis of Computer Algorithms. Addison Wesley, 1974.[2℄ B�eal, M.-P. Codage Symbolique. Masson, 1993.[3℄ B�eal, M.-P., and Carton, O. Determinization of transdu
ers over �niteand in�nite words. Te
h. Rep. 99-12, I.G.M., Universit�e de Marne-la-Vall�ee,1999.[4℄ Berstel, J. Transdu
tions and Context-Free Languages. B.G. Teubner,1979.[5℄ Breslauer, D. The suÆx tree of a tree and minimizing sequential trans-du
ers. In CPM'96 (1996), vol. 1075 of Le
ture Notes in Computer S
ien
e,Springer-Verlag, pp. 116{129. 12

[6℄ Breslauer, D. The suÆx tree of a tree and minimizing sequential trans-du
ers. Theoret. Comput. S
i., 191 (1998), 131{144.[7℄ Choffrut, C. Contribution �a l'�etude de quelques familles remarquablesde fon
tions rationnelles. Th�ese d'�Etat, Universit�e Paris VII, 1978.[8℄ Choffrut, C. A generalization of Ginsburg and Rose's
hara
terization ofgsm mappings. In ICALP'79 (1979), vol. 71 of Le
ture Notes in ComputerS
ien
e, Springer-Verlag, pp. 88{103.[9℄ Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introdu
tion toAlgorithms. MIT Press, 1990.[10℄ Cro
hemore, M., Han
art, C., and Le
roq, T. Algorithmique duTexte. Vuibert, 2000. to appear.[11℄ Frougny, C. Numeration systems. In Algebrai
 Combinatori
s on Words,M. Lothaire, Ed. Cambridge, 2000. to appear.[12℄ Mohri, M. Minimization of sequential transdu
ers. In CPM'94 (1994),M. Cro
hemore and D. Gus�eld, Eds., vol. 807 of Le
ture Notes in Com-puter S
ien
e, Springer-Verlag, pp. 151{163.[13℄ Mohri, M. Minimization algorithms for sequential transdu
ers. Theoret.Comput. S
i., 234 (2000), 177{201.[14℄ Ro
he, E., and S
habes, Y. Finite-State Language Pro
essing. MITPress, Cambridge, 1997,
h. 7.

13

