
The "Object-as-a-Service" Paradigm

Sylvain Cherrier∗, Yacine M. Ghamri-Doudane†

∗ Université Paris-Est , Laboratoire d’Informatique Gaspard Monge (CNRS : UMR8049)
† L3i Lab, University of La Rochelle, La Rochelle, France.

Abstract—The increasing interest about the Internet of
Things (IoT) is almost as remarkable than its practical absence
in our everyday lives. Announced as the new breakthrough in
IT industry, the domain is characterized by a large number
of architecture propositions that are in charge of providing
a structure for applications creation. These architectures are
needed because of the heterogeneity of stakeholders involved in
IoT Applications. Programming languages, operating systems,
hardware specificities, processing power, memory, network
organization, characteristics, constraints, the world of IoT is
so diverse. Furthermore, these architectures should provide an
easy access to users that are not aware of IT technologies
involved. The Services Oriented Computing (SOC) has shown
in the past its relevance to the decoupling constraints interoper-
ability among stakeholders. The composition of loosely coupled
services facilitates the integration of very varied elements and
provides agility in the creation of new applications. But unlike
the approach inherited from the SOC in pre-existing services
are composed to obtain a specific application, we propose a
more dynamic notion of service. Our "Object-as-a-Service"
point of view is based on the notion of building dynamically
the service needed on each Object and then integrate it in
the whole composition. This paper focus on the gain of this
approach for the IoT by promoting the "Object-as-a-Service"
paradigm as a basis for the creation of dynamic and agile
user-made applications.

Keywords-Internet of Things; Services Oriented Computing

I. INTRODUCTION

With the spread of wireless communications and the rise

of the number of devices capable of processing data, the idea

of connecting everything to everything, through the universal

medium offered by the Internet, opens the way to a new

era in the computing domain, usually called the "Internet

of Things". The "Major trends in computing", as defined

by M. Weiser [31] has occurred. At the beginning, the

"mainframe" era (one computer for many users), followed

by the "personal" era (one computer for one person), we

are now entering the "ubiquitous" computing era (many

computers for one user). Desktop computers, laptops, but

also smartphones, palm, internet Boxes, and now connected

TVs, household appliances, phydgets, single-board micro-

computers, we are surrounded by "smart" objects, able to

process data, communicating through networks, and having

new capabilities of sensing or acting on the real world.

The main idea of the Internet of Things is to expand the

network, extending it into houses, buildings (walls, floor,

windows, doors, etc.) and cities (car park, traffic light, lights,

etc.). After its connection to offices, then homes, the Internet

Figure 1. The "Object-as-a-Service" architecture. A service (at the
bottom of this figure) runs on the Object, using its functionalities (sensing,
actuating, computing). This specific service is dynamically created and
tailored for user’s need, on-the-fly, following the description given by the
user on the programming layer (the top service of the figure) offered by
this Object.

now connects farther, to the Objects. But for what purpose?

Do we really need this Objects interconnection with the pub-

lic network? Users will want applications to take advantage

of their objects and their new capabilities: measuring the

real world and acting on it, processing informations, and

communicating with the network. Automatically. Without

effort. Easily.

Creating applications for the IoT is not an easy task,

because stakeholders are very varied, with multiple and

very different constraints. The idea of using a Service

approach (proposed by Services Oriented Computing, SOC)

can facilitate this integration. Combining services is a way

to easily create applications.

Our approach calls for this Service vision of an object.

But we go further. Usually, the Service provides an access to

the data, for example the sensed measure of a physical data

(or to an action, in the case of an actuator). We advocate

a generic system that allows us to understand the object

as a dynamically built services provider. This means that

the object must provide the user a way to describe the

service to be rendered (see Figure 1). In the manner of

"application server"1, we would like to consider each object

1such as Tomcat, JonAs, JBoss, WebSphere...



as a computer that can be remotely programmed. Object-

as-a-Service (OaaS) is an approach in which we can define

and create, on-the-fly, new original services on each object,

dynamically. OaaS gives the ability to remotely program

an Object in order to include its actions in a global set of

interactions.

This position paper is organized as follow: Section II

presents the interest of Services for the IoT. Section III

lists and defines the different elements usually found in IoT

architecture. A classification model of IoT architectures is

proposed in Section IV, in which some contributions are clas-

sified and compared (including OaaS). Finally, concluding

remarks are given in Section V.

II. SERVICES IN IOT

A. The needs

Most papers describing the IoT offer impressive figures

about the number of objects connected to the Internet within

a near future [6] [12] [14]: already, the number of objects

connected to the Internet exceeds the number of users, and

there will be between 16 to 50 billions devices2 connected

in 2020.

The main modes of use of these objects are limited at the

moment to simple remote controls. The user accesses his

Objects through his smartphone, gathering data collected, or

triggering actions on them. But this is a narrow conception

of IoT, in which the Internet part is used for the universal

connectivity it provides. From our point a view, the interest

of IoT increases when Objects interact with each others,

without human intervention. As introduced by M. Weiser in

his reference article [31], the "calm computing" should hide

the complexity of electronic devices settings. It should even

hide the need for a human to be involved in the chain of

reactions. IoT applications should seamlessly analyse sensed

data and drive actions on actuators following the global

instructions given by the user, automatically and without his

mediation.

As the number of connected devices increases, and be-

cause Objects can collect huge variety of data (or trigger

actions), the possibilities offered for applications are wide.

Unlike computers and their finally restricted number of

different kind of peripherals (hard disk, keyboard, mouse,

webcam), the combination of interactions and the diversity

of the effects that a user may want lead to less generic

applications than in the usual domain of data computing.

We believe that a user will not easily find applications "on-

the-shelf" fitting his needs, compared to office or home com-

puting domain in which the proposed generic and "already-

made" software are more adapted.

In facts, it seems difficult to imagine real "calm"3 IoT

applications "on-the-shelf". Generic applications won’t be

2Ericsson white pages (2012) http://www.ericsson.com/res/docs/
whitepapers/wp-50-billions.pdf

3as described by M. Weiser

able to provide sufficient flexibility and adaptability. In the

"Internet of data"4, common use-cases mimic the user’s way

of consuming services as it was before the Internet arises:

storing and accessing data, read and writing more or less

structured informations, etc. The transposition to the Internet

of services organisation and composition was quite trivial.

On the contrary, the IoT opens a new way of under-

standing interactions between services, especially because

these services relate to the real world. Despite the fact

that the global trend of proposed demonstration regarding

the IoT are often limited to "remote control" of distant

devices, we believe that there is a new and interesting

approach: comparable to Machine-To-Machine, the IoT may

propose seamless interactions between Objects, providing an

automatic and pervasive control of the real world based on

the user’s needs.

For us, the future of IoT usages, or a part of these

use-cases, is original. The needs of IoT users are varied,

specific to each of them (individual or organization, home

automation, smart building, smart cities) [23]. The proposed

solution of "on-the-shelf" applications, as in the "Internet of

Data", is much more restricted. IoT Applications must be

precisely configured according to user needs. In IoT use-

cases, the focus is on user’s objects combination. Combina-

tions settings take precedence over application algorithms

(which are not very complicated in IoT domain, mostly

actions and reactions to gathered data, or data computation).

And these settings, and the objects on which they apply, are

extremely varied. This is the reason why the proposal of "on-

the-shelf" applications is less relevant, and that we plead for

more adaptable and dynamic applications.

B. Applications creation issues

The main characteristic of IoT applications stands in

the wide variety of elements that composes it. Besides

their number, and the diversity and the specificity of the

applications in which they are involved, Objects greatest

feature is their heterogeneity.

Objects can be categorized depending on:

• Object’s Physical constraints: number and type of

varied importance (from an almost total absence of

constraints to enormous constraints in terms of memory,

processing power, and high energy resource limitation,

depending on the type of object)

• Networks Constraints: high speed, with large payload,

reliable, or unreliable, with low throughput and lim-

ited payload. Wireless Sensors and Actuators Net-

work(WSAN), often integrated to the IoT, have lot of

limitations. Their combined constraints (low through-

put, limited energy and limited reliability) have serious

consequences.

4in opposition to the notion of "Internet of Things"



As a result, the user may experience difficulties in the

creation of his specific application (lack of common tools,

absence of generic platform). And if he succeeds, the

application strong dependences on hardware, network and

software infrastructures strongly limits its re-usability. Simi-

larly, one can have serious doubts about its scalability, and its

maintainability (that can even be impossible). For example,

what happens in case of hardware failure and its replacement

by another, equivalent, offering the same capabilities, but

with different equipment?

These strong constraints (the disparity of hardware capa-

bilities and heterogeneity of components) limit the creation

and reuse of any creation. Development costs may be

important, slowing the growth of the domain. The difficulty

of creating custom applications must be solved.

C. Service approach in the IoT

The "Service" approach limits dependency between stake-

holders by introducing loosely coupled links. By providing

an interface describing the exchange and hiding its imple-

mentation (and its possible change or modification), the

dependence of the consumer to the producer is shrinking.

The service is provided universally, and the specificities

related to the real hardware are hidden. Calls to the service,

or calls between services, are executed in a standardized

manner. This facilitates interactions and limits dependences

to the mere compliance with the interface description. This

approach has been successful in the Internet of Data, where

no user wonders which kind of hardware or operating system

is running the web service he is currently using.

As part of the IoT, using the services approach would ac-

celerate the creation of applications by limiting it to generic

services calls. It would also increase the scalability as

the infrastructure, composed of many devices, may change

continuously, according to the breakdowns and replacement

of elements that constitutes it [25].

The "Service" approach allows the introduction of gener-

icity and flexibility, and thus facilitate applications creation.

Reusing a service in a new composition, creating new

service, or making it evolves while offering the same inter-

face, open new prospects for IoT applications maintenance

and their easy evolution. IoT applications using Services

approach become more hardware independent, and can be

adapted to new needs.

D. Object-as-a-service

Introducing a Service approach in the IoT means to

consider each Object as a Service Provider. This approach is

presented for example by N. Priyantha et al. [24], D. Guinard

et al. [15] [16] or E. Wilde [32]. Usually, the Service

proposed by authors gives an access to the data gathered

by Objects (sensors), or a way to trigger actions on Objects

(actuators). This data-oriented approach gives a "remote-

control" vision of the Internet of Things. Many demon-

Figure 2. The service approach is often structured as the left part of this
figure, in which the service is only able to give access to data gathered by
the sensor(or trigger an action on the actuator). On the right, the Object-

as-a-Service service gives the user a way to explain his algorithm. Then,
a dynamic service is build, using Object processing capabilities to execute
the algorithm.

strations show a user gathering data from his home with

his smartphone (temperature, energy consumption, alarm

control centre), acting on it (open/close shutters, setting the

central heating, etc), or a car driver finding an empty car park

place. Then, we can imagine a central program that will use

these services for managing a house, a smart building, some

public services in a city, etc.

What we call "Object-as-a-service" goes further than

mimicking the Data vision offered by "Service Oriented

Computing" in the Internet of Data. The IoT domain could

be an opportunity to evolve the concept of SOC to something

more valuable. Rather than being limited to Objects sensing

and actuating functionalities, the access to their processing

capabilities is certainly a great evolution that IoT should

offer. These processing capabilities are a great added value

offered by connected Objects. Nowadays, these processing

capabilities are mainly used for organizing the network, and

implementing the different protocols at work to offer access

to data or actions.

Giving remote access to the Objects processing capa-

bilities opens the way to the dynamic definition of new

services (Figure 1). This offers a wide latitude of creation.

We propose to see each Object as an application server

(such as Tomcat in the Internet), which allows deploying

and managing an application on a remote server (Figure 2).

Having this ability seems a promising path for the IoT.

"Object-as-a-service" is the possibility to access and use its

programming functions. OaaS is a service for creating new

services.

OaaS can be done with a generic programming lan-

guage, when they are available for Objects. For example,

Maté [20], a virtual machine embedded in small Objects,

can be programmed to accomplish new services. Darjeel-

ing [4] is a version of an embedded Java virtual machine

for that purpose. Our OaaS running solution is called D-

LITe [8], a very small virtual machine that gives access to

the programming, sensing and actuating abilities of Objects.

The Contiki-OS [11] version of D-LITe fits in the 48KB



Figure 3. In order to build IoT applications, the proposed architectures
often use some or all these common software components, under various
organization.

of a TelosB5 (with 6LowPAN [19] and CoAP [26]). This

OaaS is accessible through CoAP, and the logic to be run

is described with a language called SALT [9]. D-LITe is

provided for Android too, and there is a Java version for

more powerful Objects. So a user can program dynamically,

through the network, a new specific service to be executed on

his Objects. He can then make them communicate through

CoAP, starting a new genuine services interaction, with less

dependence on the characteristics of each real Object.

Consequently this distributed intelligence, focusing on

local information processing, reduces network load (and

avoid to stress networks, some of which are unreliable). This

programming service is the main feature of the "Object-

as-a-service", and could ensure the success of IoT.

III. SOFTWARE COMPONENTS

IoT applications, by using sensed data or acting on the

real world, imply a software architecture designed in order

to request, find, and access Objects that provide them.

The OaaS paradigm alters this organisation by pushing

the "intelligence" into end-devices. Generic IoT application

components (the different elements that compose them, and

their roles) have already been described [2] [28] [16]. In that

section, we propose to categorize different IoT architecture

designs regarding their usages of these common software

elements (Figure 3), including OaaS.

A. Composition Engine

The composition engine is the visible part of the whole

architecture. Its role is to help the user to express his

combination of actions, and to describe how the different

elements must interact all together. When the architecture in

based on a centralized organization, the Workflow remains

under the control of that central point of the infrastructure.

In such organizations, the central control point follows the

Workflow defined by the user, collects data from Objects (or

their representation) or triggers actions on them, computes

results and organizes the whole application. In a distributed

organization, the logic is spread over different stakeholders,

5A wireless sensor for research/experimentation http://www.memsic.com

and there is no central control. The composition engine

is still present at the conception time, to help the user to

describe his logic and the Objects interconnections. But here,

each object is in charge of its own activity and its behaviour.

B. Discovery and directory

The identification of different objects is crucial to obtain

the most relevant informations to answer the user’s needs.

This identification assumes to be both able to retrieve the

access to the object that provides data (or actions), but also

to manage the data type that the object sensed (or the type

of actions it can trigger) and how to invoke that access. The

directory needs relate to both the container and contents. It

can be considered as furnishing the same service that a DNS

can offer, added with more semantic results, such as Web

search engines.

However, we can observe differences in indexing the

Internet of Data and the IoT. On one side, the number of

accessible objects is already much higher than the number

of Internet machines managed by DNS servers. On the

other side, Objects contents are much less complex than

those hosted by web servers for example (in terms of size,

variety and complexity). Indeed, each object provides a

rather small amount of data compared to the quantity of

pages stored on a web server. However, the limited numbers

of different data (or actions) provided by objects can take

varied presentations, and therefore their format must be

detailed.

C. Drivers repository

IoT deals with a wide diversity of hardware, and the

sensing capabilities offered by a sensor (and actions trig-

gered by actuators) are also very varied. Some proposed

architectures contain a repository of drivers that give access

to all functionalities once the Object is discovered and its

type identified. If the driver is available in the repository,

the central system can build the application using this

object functionalities. The drivers repository gives an high

dynamicity to the architecture, because it is a central answer

to the stakeholders heterogeneity. As soon as a driver is

available, all Objects of this type can be involved in any

application.

D. Object virtualisation/Middleware

In most of IoT proposed architectures, the Workflow is

centralized (See composition engine above). IoT applications

created with these architectures are often under the control

of a central point. This central control point is in charge

of the execution of the overall application logic. Following

this logic, the central control point recovers data gathered

by sensors or triggers actions offered by actuators. Access

to Objects are often seen through a representation of their

instance. This allows to limit interactions with the real

Object to a simple data flow, while the central application



uses its representation. This offers also a way to bind Objects

dynamically, and to change that link if needed. This can

also be used to represent a unified data, collected from

different sources. For example, the notion of temperature or

of movement, in a given area, can be gathered from several

Objects. An application may consider that if any movement

detector wakes up, the whole zone is to be checked. In the

same manner, the temperature can be the average of all

measures provided by the sensors over a given perimeter.

These data are provided by a representation of the Object(s).

Accessing the representation of an Object can be done

through two different ways: a virtualization of the Object,

or through a middleware. The main difference between the

two solution is their impacts inside the application code.

While a virtualization hides totally the fact that it is not

the real object that runs the code, the middleware is more

invasive. Calls to the middleware specifically appear in

the program. By providing a complete replica of the real

object, the virtualization hides its presence and is agnostic

to the program that uses it. Having a virtual Object, or

a representation, provides a good (even if not transparent)

access to it and may improve the energy efficiency of the

solution [10].

IV. ARCHITECTURES

Because the Oaas paradigm alters the programming point-

of-view by providing dynamicity directly on Objects, we

propose a classification of the different IoT architectures in

order to see the impact of that organization. This classifi-

cation allows us to compare the different ways Objects are

represented in IoT architectures, how applications interact

with them, and those that offer a real programming service

in Objects (corresponding to our "Object-as-a-Service" def-

inition).

A. Architecture layers

Our classification (Figure 4) references 3 different soft-

ware layers and 3 different hardware that interact in IoT

architectures:

• Software layers are WorkFlow, Virtualiza-

tion/Middleware and Sensing/Actuating (the latter

is the specificity of the IoT).

• Hardware encountered in IoT architectures are Central

Control Point, Gateways or Proxy and Objects them-

selves.

The Worflow is in charge of the application logic, at

the higher software layer. It drives the whole behaviour

and combines services calls and accesses to the Objects.

The Workflow describes the user’s needs and can make

decisions depending on Objects responses, reactivity or

failures. The Workflow triggers actions (through actuators)

as the result of its analysis of sensed data gathered from

other Objects. This Workflow invokes functionalities offered

by Objects through the Virtualization/Middleware layer. The

Figure 4. Our architectures classification for Internet of Things applica-
tions, according to the software components organization.

Virtualization/Middleware layer represents the real Objects

(mostly a representation of this Object) and has the ability

to conduct actions or retrieve data. As seen before, it can

be accessible via a Middleware (through the addition of

some specific instructions in the software or through a

virtualization. Finally, Sensing/Actuating is really executed

on Objects, which is the measure (in the case of sensors)

or the actions (in the case of actuators). This is done at the

lower level of our software layers.

Regarding the hardware, we consider at first the Cen-

tral Control Point. The Central Control Point runs some

(or all, depending on the organization) parts described in

the previous Section: Service discovery, Driver repository,

Composition engine, etc. It can be a real computer (in home

automation, or Smart Cities), but is more and more often

virtualized in the Cloud. Gateways or Proxy interconnect

the local network to the Internet, for example 802.15.4

networks. Their processing capabilities can be used to do

some computation on data. Finally, Objects are in charge of

sensing or actuating the real world.

B. Architectures classification

When comparing the different architectures that are de-

scribed in the literature, a classification of their design

can be proposed, based on the distribution of software

components in relation to the unit responsible for its im-

plementation. The different functionalities (Workflow, Vir-

tualization/middleware) described above are executed on

different hardware following the architecture organization

proposed by the authors [25].

In Cloud oriented architectures, most of the functionalities

are executed on a central server hosted by a provider.

Even the access to Objects, by the meaning of a hardware

virtualization, is done in the Cloud. This design is described



in the first column ("In the Cloud") of our classification

Figure 4. These Cloud-oriented architectures offer an inte-

grated installation and deployment that fit the user need of

simplicity. But the distance between the virtualization and

the real Objects may have an impact in term of networks

load, especially because of the number of connected objects

involved. This network loads could be an issue for the

constrained and unreliable networks IoT applications require

(see for example IoT-6 european project [29] [33], Future

Internet FI-Ware [1] [30], i-Core [13] or Actinium [18]).

Taking into account the specificities of common Objects

Networks used in the IoT (802.15.4 for example), the Mid-

dleware/Virtualization part of the solution can be executed

closer to the Objects, for example in a router, or in the

Internet Box. This Proxy approach offers the possibility to

use different kind of protocols, different messages sizes,

with a more or less complex auto-description, adapted to

the throughput and bandwidth of the networks used. For

example, rich describing SOAP messages (on the Internet

side) are translated on the other side (the WSAN) into

small CoAP exchanges, tailored for 6LowPAN networks.

Depending on the computing capabilities of this Proxy, the

data processing can be more or less important, lightening

the workload of the various stakeholders. This design is

called "Assisted-Cloud" or "3 Tiers" in our classification

Figure 4. This approach can be found in S.K.Datta et al. [10]

or WuKong project [21].

And finally, the Fully distributed solution (last column of

Figure 4) is based on our Object-as-a-Service approach. If a

specific service can be defined on each Object, dynamically,

on-the-fly, it is possible to compose an IoT application in the

manner as a program is build in a procedural programming

language (such as the C language). This Fully distributed

organization relieves the network of transmitting data as

some computation can be directly done on the Object itself.

The Object computes data, takes decisions on acting or

invokes directly a service on another Object. Then, in cas-

cade, Objects interact depending on their sensing capabilities

or orders received from others Objects (see D-LITe [8]

for example). Even if the lack of central point of control

may lead to issues [3], the SOC [22] [5] [17] and the

IoT [27] [7] community literature propose solutions to solve

these problems.

V. CONCLUSION

While the IoT becomes a major subject of interest in

both the academy and the industry, a solid foundation still

lacks for its development in our everyday life. The Service

approach, borrowed from the Service Oriented Computing,

lightens the difficulty of developing applications, and offers

a solution to compose loosely coupled pieces of software,

hardware independent, and interoperable.

In this paper, we advocate for an IoT specific view of

the Service approach. We believe that a "services creation"

service gives a real advantage for the IoT. It offers the ability

to remotely program Objects, dynamically, in order to use

their computing capabilities to distribute the logic directly

on each of them. Then, Objects implied in the application

directly invoke other Objects services, or only send the result

of their logical computation, giving a richer information and

reducing the network load.

Our "Object-as-a-Service" approach pleads for a rich and

universal expressibility of the logic to be executed on each

Object. Composing services (their results and their actions)

helps to build fully distributed applications, in which each

element is autonomous and responsible for its actions and

measures, and also interacting with other stakeholders.

In this paper, we also propose a classification of the

different IoT software architectures. This classification is

based on the organization of the different components that

are commonly found in such solutions. This classification

describes the various IoT applications designs, how the

different parts of the architecture are spread over the stake-

holders, and includes our "Object-as-a-Service" approach.

REFERENCES

[1] Fi-ware internet of things(iot) service enablement, 2011.

[2] J. Arkko, D. McPherson, H. Tschofenig, and D. Thaler. Ar-
chitectural considerations in smart object networking. 2013.

[3] A. Barros, M. Dumas, and A. Ter Hofstede. Service interac-
tion patterns. Business Process Management, pages 302–318,
2005.

[4] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling, a
feature-rich vm for the resource poor. In Proceedings of
the 7th ACM Conference on Embedded Networked Sensor
Systems, pages 169–182. ACM, 2009.

[5] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro.
Choreography and orchestration: A synergic approach for
system design. Service-Oriented Computing-ICSOC 2005,
pages 228–240, 2005.

[6] Y.-K. Chen. Challenges and opportunities of internet of
things. In Design Automation Conference (ASP-DAC), 2012
17th Asia and South Pacific, pages 383–388. IEEE, 2012.

[7] S. Cherrier, Y. Ghamri-Doudane, S. Lohier, and G. Roussel.
Fault-recovery and coherence in web of things choreogra-
phies. WF-IoT 2014 (Soumis).

[8] S. Cherrier, Y. Ghamri-Doudane, S. Lohier, and G. Roussel.
D-lite : Distributed logic for internet of things services. In
IEEE International Conferences Internet of Things (iThings
2011), pages 16–24. IEEE, 2011.

[9] S. Cherrier, Y. Ghamri-Doudane, S. Lohier, and G. Roussel.
SALT: a simple application logic description using transduc-
ers for internet of things. In IEEE International Conference
on Communications - Communication Software and Services
Symposium (ICC’13 CSS), Budapest, Hungary, June 2013.



[10] S. K. Datta, C. Bonnet, and N. Nikaein. An iot gateway
centric architecture to provide novel m2m services. In Internet
of Things (WF-IoT), 2014 IEEE World Forum on, pages 514–
519. IEEE, 2014.

[11] A. Dunkels, B. Gronvall, and T. Voigt. Contiki-a lightweight
and flexible operating system for tiny networked sensors. local
computer networks. In Annual IEEE Conference on, 0, pages
455–462, 2004.

[12] D. Evans. The internet of things. How the Next Evolution
of the Internet is Changing Everything, Whitepaper, Cisco
Internet Business Solutions Group (IBSG), 2011.

[13] V. Foteinos, D. Kelaidonis, G. Poulios, V. Stavroulaki,
P. Vlacheas, P. Demestichas, R. Giaffreda, A. R. Biswas,
S. Menoret, G. Nguengang, et al. A cognitive management
framework for empowering the internet of things. In The
Future Internet, pages 187–199. Springer, 2013.

[14] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet
of things (iot): A vision, architectural elements, and future
directions. Future Generation Computer Systems, 29(7):1645
– 1660, 2013. Including Special sections: Cyber-enabled
Distributed Computing for Ubiquitous Cloud and Network
Services Cloud Computing and Scientific Applications-Big
Data, Scalable Analytics, and Beyond.

[15] D. Guinard and V. Trifa. Towards the web of things: Web
mashups for embedded devices. In Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the Web
(MEM 2009), in proceedings of WWW (International World
Wide Web Conferences), Madrid, Spain. Citeseer, 2009.

[16] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio.
Interacting with the soa-based internet of things: Discovery,
query, selection, and on-demand provisioning of web services.
Services Computing, IEEE Transactions on, 3(3):223–235,
2010.

[17] L. Jing, Z. Huibiao, and P. Geguang. Conformance validation
between choreography and orchestration. In Theoretical
Aspects of Software Engineering, 2007. TASE’07. First Joint
IEEE/IFIP Symposium on, pages 473–482. IEEE, 2007.

[18] M. Kovatsch, S. Mayer, and B. Ostermaier. Moving appli-
cation logic from the firmware to the cloud: Towards the
thin server architecture for the internet of things. In Innova-
tive Mobile and Internet Services in Ubiquitous Computing
(IMIS), 2012 Sixth International Conference on, pages 751–
756. IEEE, 2012.

[19] N. Kushalnagar, G. Montenegro, and C. Schumacher. Rfc
4919: Ipv6 over low-power wireless personal area networks
(6lowpans): overview. Assumptions, Problem Statement, and
Goals, 2007.

[20] P. Levis and D. Culler. Maté: A tiny virtual machine for
sensor networks. In ACM Sigplan Notices, volume 37, pages
85–95. ACM, 2002.

[21] K.-J. Lin, N. Reijers, Y.-C. Wang, C.-S. Shih, and J. Y.
Hsu. Building smart m2m applications using the wukong
profile framework. In Green Computing and Communi-
cations (GreenCom), 2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference on and
IEEE Cyber, Physical and Social Computing, pages 1175–
1180. IEEE, 2013.

[22] C. Peltz. Web services orchestration and choreography.
Computer, pages 46–52, 2003.

[23] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos.
Sensing as a service model for smart cities supported by inter-
net of things. Transactions on Emerging Telecommunications
Technologies, 25(1):81–93, 2014.

[24] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao. Tiny
web services: design and implementation of interoperable and
evolvable sensor networks. In Proceedings of the 6th ACM
conference on Embedded network sensor systems, pages 253–
266. ACM, 2008.

[25] C. Sarkar, S. Nambi, R. V. Prasad, and A. Rahim. A scalable
distributed architecture towards unifying iot applications. In
Internet of Things (WF-IoT), 2014 IEEE World Forum on,
pages 508–513. IEEE, 2014.

[26] Z. Shelby, B. Frank, and D. Sturek. Constrained appli-
cation protocol (coap). An online version is available at
http://www.ietf.org/id/draft-ietf-core-coap-18.txt, 2010.

[27] P. H. Su, C.-S. Shih, J. Y.-J. Hsu, K.-J. Lin, and Y.-C.
Wang. Decentralized fault tolerance mechanism for intelligent
iot/m2m middleware. In Internet of Things (WF-IoT), 2014
IEEE World Forum on, pages 45–50. IEEE, 2014.

[28] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé.
Vision and challenges for realising the internet of things.
Cluster of European Research Projects on the Internet of
Things (CERP-IoT), 2010.

[29] I. Thomas, S. Ziegler, C. Crettaz, L. Fedon, and S. Gaide.
Making it all work together enabling new business models in
the web of everything. In Internet of Things (WF-IoT), 2014
IEEE World Forum on, pages 526–531. IEEE, 2014.

[30] T. Usländer, A. J. Berre, C. Granell, D. Havlik, J. Lorenzo,
Z. Sabeur, and S. Modafferi. The future internet enablement
of the environment information space. In Environmental
Software Systems. Fostering Information Sharing, pages 109–
120. Springer, 2013.

[31] M. Weiser and J. Brown. The coming age of calm technology.
In Beyond Calculation, pages 75–85. Springer New York,
1997.

[32] E. Wilde. Putting things to rest. School of Information, 2007.

[33] S. Ziegler, C. Crettaz, L. Ladid, S. Krco, B. Pokric, A. F.
Skarmeta, A. Jara, W. Kastner, and M. Jung. Iot6–moving
to an ipv6-based future iot. In The Future Internet, pages
161–172. Springer, 2013.


