An Ontology-based Approach for Failure Classification in Predictive Maintenance Using Fuzzy C-means and SWRL Rules

Abstract : Within manufacturing processes, anomalies such as machinery faults and failures may lead to the outage situation of production lines. The outage of production lines is detrimental for the availability of production systems and may cause severe economic loss. To avoid the economic loss that may be caused by the outage situation, the prediction of anomalies on production lines is a crucial concern for manufacturers. Recently, data mining techniques have been applied to the manufacturing domain for predicting occurrence time of anomalies, such as the moment of machinery failure. However, existing predictive maintenance approaches have been limited to the prediction of the time of occurrence of machinery failures, while lacking the capability for identifying the criticality of the failures. This may lead to inappropriate maintenance plans and strategies. In this context, in this paper, we introduce a novel ontology-based approach to facilitate predictive maintenance in industry. The proposed approach is a combination use of fuzzy clustering and semantic technologies, where fuzzy clustering techniques are used to learn the criticality of failures based on machine historical data, and semantic technologies use the results of fuzzy clustering to predict the time of failures and the criticality of them. As results, a domain ontology for modeling predictive maintenance knowledge is developed, and a set of Semantic Web Rule Language (SWRL) predictive rules are proposed to reason about the time and criticality of machinery failures. A case study on a real-world industrial data set is followed to evaluate the usefulness and effectiveness of the proposed approach.
Complete list of metadatas

Cited literature [22 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02317601
Contributor : Qiushi Cao <>
Submitted on : Wednesday, October 16, 2019 - 10:55:13 AM
Last modification on : Monday, October 21, 2019 - 9:02:04 AM

File

k19gen-120.pdf
Publisher files allowed on an open archive

Identifiers

Citation

Qiushi Cao, Ahmed Samet, Cecilia Zanni-Merk, Francois de Bertrand de Beuvron, Christoph Reich. An Ontology-based Approach for Failure Classification in Predictive Maintenance Using Fuzzy C-means and SWRL Rules. Procedia Computer Science, Elsevier, 2019, 159, pp.630-639. ⟨10.1016/j.procs.2019.09.218⟩. ⟨hal-02317601⟩

Share

Metrics

Record views

25

Files downloads

38