Modélisation d’une installation photovoltaïque avec réflecteurs en vue de l’intégration dans un réseau intelligent - Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur Accéder directement au contenu
Thèse Année : 2020

Modeling of a photovoltaic installation with reflectors for integration in an intelligent network

Modélisation d’une installation photovoltaïque avec réflecteurs en vue de l’intégration dans un réseau intelligent

Résumé

In order to improve the performance of a photovoltaic (PV) installation, a complementary approach to improving the efficiency of PV modules is to increase the collection of photons using low concentration of the solar flux on the modules. Flat reflectors are a simple and economical solution for that purpose. They allow increasing electrical production without significant additional cost. However, the estimation of this gain requires careful consideration of the non-uniform illumination provided by these reflectors. The objective of this thesis work is to test the potential of a PV-reflector system with the possibility of periodic adjustment of the tilt angles of the plane of the reflectors and the plane of the PV modules. To this end, it was necessary to set up a PV-reflector demonstrator with industrial modules, as well as to develop a simple modeling tool and validate it experimentally. First, an estimation model of the plane of array, POA, based on Cartesian optics and hypotheses of isotropic radiation of the atmosphere and Lambertian reflection of surfaces is developed. It is based on ground measurements or satellite images inputs. This model experimentally validated allowed to optimize the geometry of a PV-reflector installation by considering a fixed installation or variable geometry, with different periodic adjustments (monthly, seasonal) of the tilt angles of the PV modules and the reflectors, as well as different lengths of reflectors. This strategy for geometrical optimization of POA irradiation has been applied in six locations around the world with very different weather conditions. An analytical estimation photoelectric model is then developed to move from POA irradiance to PV power estimation. Adding flat reflectors introduces a non-uniform distribution of the irradiance on the PV modules which can cause the activation of bypass diodes. This photoelectric model has been tested experimentally for a PV module with non-uniform illumination. Finally, a PV demonstrator is built at the GeePs laboratory (with 6 crystalline Silicon modules connected in series) and equipped with planar reflectors, POA irradiance sensors and temperature sensors. An analysis of power production of this installation was carried out over a year in the absence and presence of reflectors. The analytical model developed previously made it possible to choose the suitable fixed architecture of this demonstrator as well as to conduct performance studies. The results highlight the importance of optimizing the architecture of a PV-reflector system according to the geographic area and the season or the month of the year. They also show that an irradiation study makes it possible to optimize a local potential of such system independently of the technology of the modules, but in no case, it is sufficient to optimize the geometry of an installation. Finally, the theoretical model is simplified: not taking into account the very near horizon, assumption of infinite rows, assumption of a uniform and isotropic atmosphere, constant coefficient of mirrors reflection, pessimistic approach concerning the activation of the bypass diodes… and limited local measurements presenting uncertainties. The installation of demonstrators has made it effectively possible to provide answers and elements of discussion around these aspects.
Dans un but d’amélioration des performances d’une installation photovoltaïque (PV), une approche complémentaire à l’amélioration du rendement des modules PV est l’augmentation de la collecte des photons par faible concentration du flux solaire sur les modules. Les réflecteurs plans sont une solution a priori simple et économique. Ils permettent d’augmenter la production électrique sans surcoût important. Cependant, l’estimation de ce gain demande une prise en compte fine de l’éclairement non uniforme apporté par ces réflecteurs. L’objectif de ce travail de thèse est de tester le potentiel d’un système PV-réflecteurs avec la possibilité d’un ajustement périodique des angles d’inclinaison du plan des réflecteurs et du plan des modules PV. Dans ce but, il a été nécessaire de mettre en place un démonstrateur PV-réflecteurs avec des modules industriels, ainsi que de développer et de valider expérimentalement un outil de modélisation simple. Dans un premier temps, un modèle d’estimation de l’irradiation du plan des modules « plane of array, POA » basé sur l’optique cartésienne et des hypothèses de rayonnement isotrope de l’atmosphère et de réflexion lambertienne des surfaces est développé. Il s’appuie en entrée, sur des mesures au sol ou des images satellite. Ce modèle validé a ensuite permis d’optimiser la géométrie d’une installation PV-réflecteurs en considérant une installation fixe ou à géométrie variable, avec des ajustements périodiques différents (mensuels, saisonniers) des angles d’inclinaison des modules PV et des réflecteurs, ainsi que différentes longueurs de réflecteurs. Cette stratégie d’optimisation géométrique de l’irradiation POA a été appliquée dans six lieux dans le monde ayant des conditions météorologiques très différentes. Un modèle d’estimation analytique est ensuite élaboré pour passer de l’irradiance POA à la puissance PV. L'ajout de réflecteurs plans introduit une distribution non uniforme de l’irradiance sur les modules PV pouvant provoquer l’activation de diodes bypass. Ce modèle photo-électrique a été évalué expérimentalement pour un module PV avec éclairement non uniforme. Finalement, un démonstrateur PV est construit au laboratoire GeePs (avec 6 modules au Silicium cristallin connectés en série) et équipé de réflecteurs plans, de capteurs d’irradiance POA et de température. Une analyse de la production de cette installation a été conduite sur une année en absence et en présence de réflecteurs. Le modèle analytique développé précédemment a permis de choisir l’architecture fixe de ce démonstrateur ainsi que de mener des études de performances. Les résultats soulignent l’importance d’optimiser spécifiquement l’architecture d’un système PV-réflecteurs selon la zone géographique et la saison ou le mois de l’année. Ils montrent également qu’une étude en irradiation permet d’optimiser un potentiel local indépendamment de la technologie des modules mais en aucun cas elle, n’est suffisante pour optimiser la géométrie d’une installation. Enfin, le modèle théorique est nécessairement simplificateur : non prise en compte de l’horizon très proche, hypothèse de rangées infinies, hypothèse d’une atmosphère uniforme et isotrope, coefficient de réflexion des miroirs constants, approche pessimiste concernant l’activation des diodes de bypass… et les mesures localisées nécessairement limitées et présentant des incertitudes. La mise en place des démonstrateurs a notamment permis d’apporter des réponses et des éléments de discussion autour de ces aspects.
Fichier principal
Vignette du fichier
81373_ABDEL_NOUR_2020_archivage.pdf (17.38 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-03014229 , version 1 (19-11-2020)

Identifiants

  • HAL Id : tel-03014229 , version 1

Citer

Christine Abdel Nour. Modélisation d’une installation photovoltaïque avec réflecteurs en vue de l’intégration dans un réseau intelligent. Energie électrique. Université Paris-Saclay, 2020. Français. ⟨NNT : 2020UPASS146⟩. ⟨tel-03014229⟩
523 Consultations
741 Téléchargements

Partager

Gmail Facebook X LinkedIn More