Skip to Main content Skip to Navigation
Journal articles

Low-frequency resolvent analysis of the laminar oblique shock wave/boundary layer interaction

Abstract : Resolvent analysis is used to study the low-frequency behaviour of the laminar oblique shock wave/boundary layer interaction (SWBLI). It is shown that the computed optimal gain, which can be seen as a transfer function of the system, follows a first-order low-pass filter equation, recovering the results of Touber & Sandham (J. Fluid Mech., vol. 671, 2011, pp. 417–465). This behaviour is understood as proceeding from the excitation of a single stable, steady global mode whose damping rate sets the time scale of the filter. Different Mach and Reynolds numbers are studied, covering different recirculation lengths L. This damping rate is found to scale as 1/L, leading to a constant Strouhal number StL as observed in the literature. It is associated with a breathing motion of the recirculation bubble. This analysis furthermore supports the idea that the low-frequency dynamics of the SWBLI is a forced dynamics, in which background perturbations continuously excite the flow. The investigation is then carried out for three-dimensional perturbations for which two regimes are identified. At low wavenumbers of the order of L, a modal mechanism similar to that of two-dimensional perturbations is found and exhibits larger values of the optimal gain. At larger wavenumbers, of the order of the boundary layer thickness, the growth of streaks, which results from a non-modal mechanism, is detected. No interaction with the recirculation region is observed. Based on these results, the potential prevalence of three-dimensional effects in the low-frequency dynamics of the SWBLI is discussed.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03681588
Contributor : Compte De Service Administrateur Ensam Connect in order to contact the contributor
Submitted on : Monday, May 30, 2022 - 2:15:57 PM
Last modification on : Friday, August 5, 2022 - 2:54:00 PM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2022-10-01

Please log in to resquest access to the document

Identifiers

Citation

Benjamin Bugeat, Jean-Christophe Robinet, Jean-Camille Chassaing, Pierre Sagaut. Low-frequency resolvent analysis of the laminar oblique shock wave/boundary layer interaction. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2022, 942 (A43), ⟨10.1017/jfm.2022.390⟩. ⟨hal-03681588⟩

Share

Metrics

Record views

39