
HAL Id: hal-01430117
https://hal.science/hal-01430117

Submitted on 9 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of a helicopter’s main gearbox semiactive
suspension with bond graphs

Benjamin Boudon, François Malburet, Jean-Claude Carmona

To cite this version:
Benjamin Boudon, François Malburet, Jean-Claude Carmona. Simulation of a helicopter’s main gear-
box semiactive suspension with bond graphs. Multibody System Dynamics, 2016, 39 (1), pp.60-64.
�hal-01430117�

https://hal.science/hal-01430117
https://hal.archives-ouvertes.fr


Simulation of a helicopter’s main gearbox semi-active suspension 
with bond graphs 

 

Benjamin BOUDON, François MALBURET, Jean-Claude CARMONA 

 
Abstract   
 
This paper presents a bond graph model of a helicopter’s semi-active suspension and the associated simula-

tions. The structural and modular approach proposed with bond graph permits a systematic modeling of mecha-
tronic multibody systems. The model is built as an assembly of components or modules (rigid bodies and kinematic 
joints) by following the structure of the actual system. 

The bond graph model of the passive suspension with fixed flapping masses has been verified with another 
multi-body tool for three different excitations (pumping, roll and yaw). Next, the passive model, augmented with 
electrical actuators and controllers, is called the semi-active suspension model. Simulations on the semi-active 
suspension model have been conducted. 

 
Keywords Multibody systems (MBS), Closed kinematic chain (CKC), Bond graph (BG), Helicopter, Mechanical 
vibrations, 20-sim 
 

1 Introduction 
Mainly due to the operation of the rotor, the helicopter is subject to important vibration levels affecting namely 

the flight handling, the fatigue of the mechanical parts and the crew’s comfort. The considered vibrations created 
by the aerodynamic and inertia forces acting on the rotor excite the main gearbox and next the fuselage at a specific 
frequency bΩ where b is the number of blades of the main rotor and Ω the rotational velocity of the main rotor. 
Suspensions between the main gear box (MGB) and the fuselage help to filter theses problematic vibrations. Dif-
ferent passive technical solutions exist for the completion of this joint. In this paper, the MGB-Fuselage suspension 
with a SARIB system (Suspension Antivibratoire à Résonateur Intégré dans les Barres in French) is studied. This 
anti-vibratory system creates an anti-resonance phenomenon at the bΩ frequency. The principle of this system will 
be described in section 2. Even if the passive SARIB MGB-Fuselage suspension is efficient compared to more 
classical suspensions such as flexible suspension, the passive solutions show their limits when different types of 
external forces (pumping force and roll / pitch torque) are combined and when some fluctuations of the variable 
engine speed occur during the flight. So, to address these challenges, intelligent active solutions are proposed so 
that the filtering can be adjusted according to the vibration sources.  

The studies of such systems still suffer from a lack of tools and methods that are necessary to the design of 
complex mechanical systems and also to the development of an intelligent joint. The system model is a complex 
mechatronic multi-body system (according to definitions given in [1]) because of the numerous bodies and joints, 
the mechanical forces applied on the MGB, and the presence of several kinematic loops and electronics actuators. 
The design and the analysis of such complex systems are usually conducted with analytical methods based on 
physical equations or signal-flow methods based on transfer functions written on a block diagrams form. Unfortu-
nately, these two classical approaches may cause a loss of the physical sense and the visibility of the modeling 
assumptions [2, 3]. Moreover, reusing models and taking account increasing complexity can be cumbersome and 
prone to errors because of the need of manual transformations so as to build physics-based model libraries with 
block diagrams [3]. 

In this context, we present a bond graph (BG) approach [4] that permits a structural and modular approach of 
a complex mechatronic system. These well-known features [5, 6]: graphic, object-oriented, multiphysic and 
acausal can be exploited for this class of multibody system with embedded electronics. Mainly with its graphical 
nature, the bond graph brings a more global view and comprehension of complex mechatronic system which lead 
to more sustainable solutions. Based on oriented-object and acausal features, bond graphs also permit a modular 
approach which allows a better knowledge capitalization to better store and reuse your modeling works. Moreover, 
it would facilitate the automation of the modeling task. Particular attention will be given in showing the interest 
of the bond graph tool relative to more conventional tools. 
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In the 90’s, thanks to the multibond graph formalism (an extension of bond graphs where the scalar power 
bonds become vectors bonds and the elements multiports), the bond graph was extended to the study of multibody 
systems with three dimensions [7] [8]. Nevertheless, few complex multibody systems with kinematic closed loops 
have been simulated. In the last twenty years, computer science and software dedicated to bond graphs such as 20-
sim software1 have considerably progressed and give back many interest to bond graph [9]. First, the graphical 
aspect of bond graph can be fully exploited. Indeed, friendly environments enable the entering, modifying or in-
terpreting of bond graphs. Secondly, the automatic generation of equations from a bond graph enables the engi-
neers to avoid the solving equations. Consequently, this step is less cumbersome and prone to errors. Moreover, 
the simulation software mentioned are now equipped with performing numerical solvers. 

The MGB-Fuselage suspension with SARIB system studied here is a complex mechanical closed kinematic 
chain (CKC) system. The dynamics equations of such a CKC system are a differential-algebraic equation systems 
(DAE) which are difficult to treat and which require specific solving methods. The method of singular perturba-
tions [10] [11] [12] used in this paper appears to be an elegant and easy solution to derive the simulation of a CKC 
system. 

This paper has two main objectives. The first one is to model and simulate a helicopter semi-active suspension 
between the main gear box (MGB) and the aircraft fuselage with bond graph. The second one is to show that bond 
graphs allow the modeling of such a class of systems with a structural and modular approach.  

The paper is organized as follows. In section 2, we present the context and purpose of the suspension studied. 
Section 3 details the modeling and simulation framework based on a bond graph approach. Section 4 describes 
first the kinematic structure and the mechanical assumptions retained for the suspension model. Secondly, the 
modeling and simulation framework is applied and the bond graph model of passive suspension is detailed. Sim-
ulation results and a validation based on experimental results will be presented in Section 5. Finally, the conclusion 
will be given in the last Section. 

 

2 Overview of the MGB-Fuselage suspensions 

2.1 Context 

The rotor of a helicopter is a powerful vibration generator that can generate various vibration phenomena. Let 
us consider:  
- forced vibrations, 
- resonances "ground and air", 
- dynamic problems of the power chain. 

Blades undergo periodic and alternating inertia and aerodynamic forces whose fundamental frequency is the 
rotation frequency of the rotor as explained in [13]. These efforts on the blades cause forces and torques on the 
hub which then becomes a mechanical excitation of the fuselage. It is always shown in [13] that these forces and 
moments transmitted from the rotor to the fuselage have frequencies whose are frequency harmonics (kbΩ) with 
b the number of blades of the main rotor and Ω the rotation speed of the main rotor. Moreover, most of the time, 
the first harmonic bΩ is preponderant. 

Therefore, its behavior depends on its dynamic characteristics and the filtering systems placed between the 
rotor and the fuselage (as shown in Fig. 1). In this sequel, we will focus on one of these filtering systems: the 
SARIB system (called Suspension Antivibratoire à Résonateur Intégré dans les Barres in French).  

1 http://www.20sim.com/ 
                                                           

http://www.20sim.com/
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Fig. 1 - Helicopter suspension between the MGB and the aircraft structure 

2.2 Interest and functions 

The MGB-Fuselage suspension must ensure several important functions. Firstly, the joint allows the transmis-
sion of the static force necessary to the sustentation of the helicopter with a limited static displacement. Moreover, 
the suspension helps to reduce the mechanical vibrations transmitted to the fuselage according to the force and 
displacement aspects. In this paper, we will focus on this latter function. 

2.3 Operating principle 

The classical MGB-Fuselage suspension is composed of four MGB bars and a main membrane as shown in 
Fig. 2a. The MGB bars can rigidly suspend the fuselage without flexibility to the rotor and thus transmit the lift 
from the rotor to the structure. 

The membrane is a flexible suspension with the following observed behavior: 
- a low stiffness for angular movements around the roll and pitch axes and the linear vertical pumping displace-

ment, 
- a very high stiffness for linear movements perpendicular to the vertical direction and for the yaw movement. 
Thus, the membrane allows the angular movement of the MGB around the pitch and roll axes. The flexibility 

of the membrane around these axes allows a strong filtration of the dynamic moments around these axes. In addi-
tion, the membrane transmits the main rotor torque thanks to its very high stiffness around the yaw axis. In con-
clusion, the conventional suspensions allow filtering pitch and roll dynamic moments without filtering the pump-
ing dynamic efforts.  

 
                                (a)                                                                                                               (b) 

Fig. 2 – (a) Flexible classical MGB-Fuselage suspension, (b) MGB-Fuselage suspension with SARIB system. 
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The suspension equipped with SARIB system is a vibration absorber. Its purpose is to render the filtering of 
these pumping dynamic efforts possible. On the SARIB solution, beaters with flapping masses are added between 
the MGB bars and the fuselage Fig. 2b. They permit a vertical degree of freedom to the MGB with regard to the 
fuselage. The principle of the SARIB system is to tune, for an accurate defined frequency, these flapping masses 
on each SARIB bar so as to create inertial forces on the fuselage opposite to the force of the MGB bars on the 
beaters. The equilibrium of a SARIB bar enables to better understand this principle. In other words, there is an 
anti-resonance phenomenon on the transmissibility function between the excitation applied to the MGB. Hence, 
the forces transmitted to the fuselage can be strongly reduced at this anti-resonance frequency. 

In the semi-active suspension, the flapping masses on the beaters can be translated and be consequently called 
tuning masses.  The idea of the semi-active suspension will be to tune the positions of the moving masses so that 
the anti-resonance frequency of the structure corresponds to the frequency of the excitation forces on the MGB. 

 

2.4 Overview of the experimental setup 

According to helicopters engineers, two types of experiments can be conducted in order to test the flight be-
havior of the MGB-fuselage system: either directly on a helicopter or on an experimental setup. The first type of 
test is more expensive and is carried out mainly in the validation phase of the system. The research work presented 
in this paper is focused on the pre-sizing phase.  

It was thus decided to develop an experimental setup on a small scale so as to conduct the experimental tests. 
The geometry and mass properties correspond to a light helicopter with a scale of approximately ½ (see appendix). 
The models proposed in this paper have been simulated with the data of this experimental setup. This experimental 
setup preserves the 3D feature of the real system by the use of four MGB bars. It allows the simulation of a semi-
active system with SARIB beaters equipped with tuning masses. The experimental setup has to represent the flight 
behavior of the helicopter in different operating phases: hover, up / down or turn. In these operating phases, the 
MGB is subjected to pumping, pitch and roll excitements. On the experimental setup, the rotor action, provided 
by the aerodynamic forces and the blades stiffness, applied to the MGB will be approximated by a sinusoidal 
excitation at the frequency bΩ obtained with a vibration equipment. 

 
Fig. 3 - Experimental setup of the semi-active suspension 
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3 Modeling and simulation framework 

3.1 Classical bond graph modeling 

3.1.1 Brief review 

The concept of energy is fundamental in the description of the evolution of technological systems. Energy is 
present in all areas of physics and is the link between them. From this observation, a number of tools with energetic 
representations for modeling complex systems have been defined. One of the main tools is the bond graph. The 
bond graph was created by H. Paynter [4] in 1959 and developed by R. Rosenberg and D. Karnopp [14] in the 
United States. 

The bond graph is based on a study of the transfer of power in a system modeled by lumped parameters. The 
bond graph is a graphical modeling tool that covers all physical systems (mechanical, hydraulic, electronic, ther-
mal...) regardless of their condition (linear, nonlinear, continuous …). It is represented as an oriented graph show-
ing dynamic variables and power bonds between these variables. The bond graph systematically associates two 
different variables for each bond: a generalized effort variable (which is a force or a torque in mechanics) and a 
generalized flow variable (which is a translational or rotational velocity in mechanics) on each side of the half-
arrow link. Each bond has therefore power information, obtained by the product of these two variables, and allows 
direct access to the energy transferred by a simple integration of power. The bond graph approach enables thus, 
the representation of mechatronic systems in a graphical form that describes the exchange of power between basic 
elements like inertia, compliance, dissipation, conservative power transformation, gyrator actions and sources.  

More details on bond graphs can be found in [5, 6] on the basis, the operation and the construction of classical 
bond graphs. The classical bond graphs mentioned in this paragraph 3.1 also called 1D bond graphs deals with 
mechatronics system with elementary motions (translation and rotation around fixed axis) and without 3D move-
ment.  

3.1.2 Benefits of bond graphs 

The major benefits of bond graphs developed mainly in [5] [6] are well-known in mechatronics communities. 
They are thus only recalled here but not detailed for space reasons. As mentioned previously, the bond graph is a 
unified and energetic language covering almost all physical domains. The bond graph facilitates a systemic ap-
proach necessary to design a mechatronic system thanks to its features as graphical display, object-oriented lan-
guage and acausality (in a similar manner as Modelica [15]).  

In addition, bond graphs also enable the use of new features such as structural analysis [16] of a system from 
the bond graph structure (causality, controllability, observability, inversibility, etc).  While these characteristics is 
not utilized in this paper, the exploitation of bond graphs is mentioned here since it constitutes of a perspective of 
this work. 

3.2 Modeling of multibodies system with bond graphs 

3.2.1 Brief review 

The aim of this section is to recall the main contributors concerning methodologies for modeling the dynamics 
of three-dimensional multibody systems (MBS). More detailed reviews specifying applications of BG modeling 
for MBS can be found in [5], [6] and [17]. 

The first bond graph models of multibody systems have been proposed by D.C Karnopp and R.C Rosenberg 
[18, 19] thanks to an analytical approach based on an appropriated choice of generalised coordinates, the construc-
tion of junction structure for the formulation of the kinematic laws and a lagrangian formulation. 

In the 90’s, thanks to the multibond graph (MBG) formalism [20] [21] (an extension of bond graphs where the 
scalar power bonds become vector bonds and the elements multiports), the application fields of the bond graph 
were extended to the study of multibody systems with three dimensional movements. 

The bond graph approach used for multibody systems was introduced by A. M. Bos  [7, 8]. In his PhD, he 
developed bond-graph models for three-dimensional multibody systems and discussed how to derive the equations 
of motion from the bond-graph in several different forms. At this time, although he managed to conduct simula-
tions of a 3D motorcycle, the equations had been derived with a manual process. 

5 
 



6      Simulation of a helicopter’s main gearbox semi-active suspension with bond graphs 
 

Library models for a rigid body and for various types of joints have been provided in [10] so that bond graph 
models of rigid multibody systems can be assembled in a systematic manner.  

J. Felez [22] developed a software that helps with modeling multibody systems using bond graphs. To handle 
derivative causalities with this software, he proposes a way to introduce Lagrange multipliers into the system so 
as to eliminate derivative causality.  

In [23, 24], different methods for simulating BG models have been presented. Simulations have been conducted 
with a predecessor of 20-sim software and numerically compared mainly on the computing time and accuracy. 
Even if the possibility of using multibond graph was evocated, the difficulty of implementing bond graphs with 
vector bonds were not mentioned.     

Furthermore, W. Marquis-Favre and S. Scavarda [25] propose a method to simplify bond graph models for 
multibody systems with kinematic loops. Nevertheless, few complex multibody systems with kinematic closed 
loops have been simulated. 

3.2.2 Discussion on the use of bond graphs for multibody systems 

In [6], [26], some difficulties in using bond graphs for multidomain applications namely multibody systems 
have been pointed out. Even if some of these difficulties such as ( the use of frame-dependent vectors and gener-
ation of constraints at velocity level) are persistent, other points described hereafter have been improved or solved 
thanks to the evolution of dedicated software for bond graphs and the use of appropriated methods. 

Firstly, the multibond graph allows to simplify the bonds between the bond graph elements and the readiness 
of the model. Nevertheless, the causality analysis of multibond graphs can be considered as a difficult task as 
mentioned in [6].  Multibond graphs do lead to causality constraints as mentioned in [27] and [28]: 1) each dimen-
sion of a vector bond must have the same causality, 2) the causality of transformers implied in cross product and 
the causality of gyrators is imposed. However, some methods for dealing with these two constraints (namely sin-
gular perturbations or Lagrange multipliers, …) have been proposed [27] and are efficient to resolve these diffi-
culties.  

Secondly, thanks to the use of the word bond graph (WBG), the multilevel representation is permitted and 
allows for the concatenation of the bond graphs’ bodies and joints. This technique makes it possible to "zoom in / 
out" on different parts of the system, such as in a Simulink model. However, with bond graphs, the hierarchical 
decomposition is not made in mathematical functions as in block diagrams but in models of subsystems. As defined 
in [5], the structural models are defined as an assembly of models of physical elements or subsystems following 
the same architecture as the real system without prior analysis on how to connect the various subsystems. From 
the authors’ points of view, bond graphs thus belong to this class of structural modeling tools. As a consequence, 
it is possible to obtain a global representation of the system built from subsystems which facilitates the manage-
ment of interactions and/or couplings. 

Thirdly, the modularity allowed by the bond graph method enables the model to evolve and meet the levels of 
complexity required for each design problem by the addition or modification of new components and subsystems 
and by replacing behavior laws.  

Fourthly, even if it is true that bond graphs for multibody systems require a certain level of expertise, the 
generation of equations from the bond graph models can be done automatically by dedicated softwares to bond 
graphs such as 20-sim and even for complex bond graph models as it will be shown in this paper through the 
MGB-Fuselage suspension. Naturally, it is important to note that methods such as the singular perturbation method 
used in this paper must be used to tackle constraints due to vector bonds and derivative causalities which can 
appear on some inertial elements. 

3.2.3 Approach chosen : the BOS and Tiernego method 

In order to keep a modular approach, the principal method for modeling multibody system with bond graphs 
is the Bos and Tiernego method [7]. This method enables a multibody system to be built as an assembly of bodies 
and joints. The principle of this method is based on the use of absolute coordinates systems and Newton-Euler 
equations. Indeed, in such a way, the dynamic equations of a rigid body depend on, obviously, his mass/inertia 
parameters and also on geometric parameters defined only for the considered body. Consequently, the dynamic 
equations of the complete system consist of a sum of the dynamic equations of each body depending only on its 
own parameters.  
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3.3 MBG modeling of closed kinematic chains (CKC) 

3.3.1 Problem statement 

The simulation of mechanical systems with kinematic loops requires specific methods. This difficulty does not 
come from the bond graph tool but from the application of dynamics equations to such systems where some kine-
matic variables are linked together because of the kinematic constraints. Regardless the analytical method em-
ployed (fundamental principle of dynamics or Lagrange equations with multipliers), when no preliminary kine-
matic works is done, the equations obtained are differential algebraic equations (DAEs) whose numerical 
resolution requires specific numerical integration methods. In bond graphs, this class of constrained mechanical 
systems that leads to differential-algebraic equations present inertial elements with derivative causality whose 
variables are dependent on others variables considered as independent through algebraic constraints. 

In this paper, in order to keep a modular approach as mentioned in the previous section, absolute coordinates 
are selected. Consequently, in this case (absolute coordinates selected), it is important to notice that open chain 
(OC) and closed kinematic chain (CKC) systems both lead to a DAE formulation. Consequently, one of the nec-
essary priorities of the simulation method exposed in this paper will be to handle DAEs. 

3.3.2 Resolution methods 

These difficulties to solve numerically differential equations are developed, for example, in W. Marquis-Favre 
[29]. A recent and concise review of the methods for solving DAEs can be also found in [30]. To sum up, one can 
find three groups of methods: the direct resolution of the DAE thanks to specific solvers, the reduction of the DAE 
in an ODE like the coordinates partitioning method or minimal coordinates and the conversion to an ODE by 
modifying the model system. The singular perturbation method which is used in the paper belongs to the last 
category of these methods that is to say the conversion to an ODE by modifying the model system.  

3.3.3 Approach chosen : the singular perturbation method 

The bond graph simulation with the singular perturbation method is quite easy to implement compared to 
conventional techniques used during an analytical study. We thus decided to use the method of singular perturba-
tion which, from our point of view, keeps a physical insight and permits to keep a modular approach without the 
need to use additional stabilization techniques to circumvent the drift of the constraints.   

The singular perturbation method consists in augmenting the bond graph of the joints with parasitic elements 
[31] [32] also called virtuals springs in [12]: stiffness and damping elements corresponding to C energy store 
element and R resistive element.  

The enforcement of constraints through parasitic C and R elements instead of using ideal flow sources can 
circumvent the two multibond constraints mentioned in 3.2.2 thanks to the effort-out causality permitted by the 
parasitic elements. Firstly, it allows the same causality assignments for all the bonds of a multibond. Secondly, it 
allows to suppress the causality conflict which may appear because of the imposed causality of the transformers 
implied in the cross product and gyrators [27].  

If the kinematic constraints modeled by the bond graph where the joints are rigidly imposed, derivative cau-
sality appears at the multibonds connected to the translational inertia elements. The derivative causality, due to 
constraints, requires that the equations derived from the bond graphs to be differential algebraic equations (DAEs). 
The resolution of such equations is quite complex from a computational point of view as we explained before. The 
singular perturbation method relaxes the kinematic joint constraints. The dynamic equations are in an ODE form 
with no geometric constraints to deal with. It leads thus to a bond graph with integral causality which can be 
simulated easily using explicit solvers.   

The values of the compliant elements must be chosen carefully. To our knowledge, two methods for selecting 
these elements exist : 1) the eigenvalues decoupling between the parasitic frequency and the system frequency, 2) 
the use of activity metric [31]. These parameters can be chosen so as to model the joint compliances which exist 
in all mechanical joints. Thus, this point gives to this method a physical significance. The stiffnesses introduced 
should be high enough so as not to change the dynamic of the system but not too high so as to prevent the numerical 
difficulties of stiff problems (with high-frequency dynamics). This method leads to a necessary compromise be-
tween the accuracy of the results and the simulation time: the stiffer the system is, the more numerical errors are 
reduced but the more simulation time remains important. However, the increase of the simulation time can be 
balanced by parallel processing as the mass matrix in a block-diagonal form can enable to decouple the system as 
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it is explained in [12]. As T. Rayman recommends, adding a damping element (R resistive element) in parallel 
with the stiff spring (C energy store element) enables to dampening of the high eigen frequency associated with 
the high stiffness. The exact influence of these parameters still remains a research work in which the authors are 
particularly interested in.  

4 Modeling of the passive suspension 

The bond graph modelling steps described above will now be applied to model the MGB-fuselage suspension 
equipped the with SARIB device. First, the mechanical model of the MGB-fuselage suspension and the associated 
assumptions will be presented. Secondly, the construction of the bond graph model of the MGB-fuselage suspen-
sion will be detailed. 

4.1 Modeling assumptions of the MGB-Fuselage suspension 

The 3D MGB-fuselage suspension with free fuselage is a set of 14 rigid bodies (the MGB, four MGB bars, 
four SARIB beaters, four intermediate bodies and the fuselage) and includes eighteen kinematic links (four revo-
lute joints, eight spherical joints and two prismatic joints). The kinematic scheme of the 3D MGB-fuselage sus-
pension is shown in Fig. 4. 

 

 
Fig. 4 - Kinematic scheme of the 3D joint between the main gearbox and the fuselage 
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For the sake of clarity, the different kinematic joints are also described in the joints graph Fig. 5.  
 

 
Fig. 5 - Joints graph of the 3D SARIB passive suspensions 
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The revolute joints between SARIB beaters and the fuselage have a torsion spring dimensioned such that the 
antiresonance frequency in the efforts transmitted to the fuselage is positioned on the rotor excitation frequency 
while taking up enough the effort to lift the helicopter with a small displacement between the MGB and fuselage.  
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Given the physical phenomena observed, the main membrane between the MGB and the fuselage is modeled 
by two revolute joints with orthogonal axes (also called universal joint) and a prismatic joint in serial. The flexi-
bilities of the membrane in pumping, roll, and pitch are modeled by the degrees of freedom of these joints com-
bined with stiffness. A torsion spring with low stiffness at each revolute joint of the universal joint and a linear 
spring, also with low stiffness along the z-axis will model the filtering carried out by the membrane. The rigidities 
of the membrane are modeled by rigid joints or, in other words, by a lack of degree of freedom around or along 
the movements considered. 

These bodies are assumed to be rigid. The intermediate parts (called Int1 and Int2) are supposed with negligible 
masses. As previously mentioned, absolute coordinates have been chosen for modularity reasons. Some local mov-
ing reference frames are attached to these bodies: 

( ), , ,FF FF FF FF FFR O x y z=
    attached to the fixed frame, 

( ), , ,MGB MGB MGB MGB MGBR G x y z=
  

attached to the MGB, 

( ), , ,SB SB SB SB SBR G x y z=
  

attached to the SARIB Beaters, 

( ), , ,MB MB MB MB MBR G x y z=
    attached to the MGB Bar, 

( ), , ,F F F F FR G x y z=
    attached to the fuselage and ( )int int int int, , ,

i i i iF i F F FR A x y z=
    also attached to fuselage so as to 

facilitate the definition of the axis of the revolute joints. 

4.2 Modeling assumptions of the suspension environment 

As previously mentioned in section 1, the action of the rotor on the MGB in the experimental setup is approxi-
mated by a sinusoidal excitation with a frequency bΩ. 

The external mechanical actions applied to the MGB are the forces applied by the vibrating shakers. The de-
scription of the experimental setup shall be specified in Section 5.2 of this paper. These excitations will be applied 
along or around the joints of the “attach” joint between the fixed frame and the MGB. They allow the MGB to be 
subjected to pumping, pitch and roll excitations. These mechanical actions will only consist of a dynamic compo-
nent to analyse the vibration behaviour of the suspension. 

For the pumping excitation, the wrench applied by the actuator at the mobility of the prismatic joint is: 

 ( ) ( ) ( ) ( )
0

Bati

Bati

O

f t z
actuator along vertical axis prismatic joint avec f t F g tτ

  → = = × 
  



   (1) 

For roll excitation, the wrench applied by the actuator at the mobility of the revolute joint around roll axis is:  

 ( ) ( ) ( ) ( )0

BTP

r
r BâtiA

Actuator around roll axis roll revolute joint avec m t M g t
m t y

τ
  → = = × 
  



   (2) 

For pitch excitation, the wrench applied by the actuator at the mobility of the revolute joint around pitch axis 
is: 

 ( ) ( ) ( ) ( )0

BTP

p
p int AA

actuator around pitch axis pitch revolute joint avec m t M g t
m t x

τ
  → = = × 
  



   (3) 

Different types of excitation are used by modulating the amplitude of each excitation by a dimensionless 
function g(t): constant, sinus type or swept sine. The constant excitation permits to ensure that the equilibrium 
position of the system under its own weight is physically acceptable. The sine excitation permits to get more 
accurate frequencies of the anti-resonance frequencies.  

The swept sine excitation is used to analyze the frequency behaviour of the system including resonances 
and anti-resonances frequencies. 

For the swept sine excitation, a modulation function was constructed, as shown in four parts: 
- within [0, t1], a progressive increase to a sinusoidal excitation at a frequency of startf  de 5Hz is carried out 

with a linear amplitude variation, 

 

( ) ( )

( ) ( )

2
1

2
1

2
1 1 1

1 2
11

0, , 4 sin
2 2

2 2 1, , sin
2 2 2 2

start

start

t tt g t t
t

t t tt t g t t t t
tt

ω

ω

   ∀ ∈ =      
       ∀ ∈ = − − + − +             

  (4) 
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- within [t1, t2], the sine excited mode at startf is preserved the necessary time so that the transient mode 
disappears and there is only permanent regime,  

 [ ] ( ) ( )1 2, , sin startt t t g t tω∀ ∈ =   (5) 

- within [t2, t3], a linear swept sine is used with a sweep frequency from startf  (5Hz) to endf  (25Hz). The 
expression of the chirp signal is given in [33] and recalled below :   

 [ ] ( ) ( ) ( )2 3 2 2, , sin
2startt t t g t t t t t

T
ωω

 ∆ ∀ ∈ = + − × −  ∆  
  (6) 

With end startω ω ω∆ = − and 3 2T t t∆ = −  

- within [t3,+], the sine excited mode at 
2

end
endf

ω
π

=  (25Hz) is kept. 

 [ ] ( ) ( )3 , , sin endt t g t tω∀ ∈ +∞ =   (7) 
For the conducted simulations, the time intervals were defined with the numerical following values: t1=3s, t2=5s 

and t3=25s. 

 
Fig. 6 - Modulation function of the excitation g(t) 

4.3 Construction of the bond graph model of the MGB-Fuselage joint 

4.3.1 Components modeling 

The components modelling (rigid bodies and kinematic joints) of the system will be now be presented.  

4.3.1.1 Rigid bodies 

A reminder of the general rigid body modelling 
 
Let us remember the architecture of a rigid body multibond graph model based on [5], [8], [25],  [34].  
This bond graph architecture is based on the Newton-Euler equations with the inertia matrix (modeled with a 

multiport energy store element 
i iS ,G i

  I in the upper part) associated with gyroscopic terms respectively (modeled 
with a multiport gyrator element also called Eulerian Junction Structure about mass-center of body i expressed in 
its frame 

iG i
  EJS and the mass matrix modeled with a multiport energy store element [ ]i 0

m  in the lower part).  
The upper part of the bond graph represents the rotational dynamic part expressed in the body frame while the 

lower part is for the translational dynamic part expressed in the inertial reference frame (or Galilean frame). The 
two corresponding 1-junctions arrays correspond respectively to the angular velocity vector of body i ( )/ 0 iiΩ


and 

the translational velocity vector of the center of mass of body i ( )00/iV G R


expressed in these two coordinate 
frames.  

The central part of the MBG describes the kinematic relations between the velocities of the two points of the 
body i ( ( )0/

i

jV M R


and ( )0
0/kV M R


) and the velocity of the center of mass ( )0/ i

iV G R


resulting from the for-
mula of the rigid body.  

0 5 10 15 20 25 30
time {s}

-2

-1

0

1

o ct o  de odu at o  de a p tude de e c tat o

( )g t

[s]t

Progressive increase 
of magnitude

Sweep frequency

Excited mode at 5Hz Excited mode at 25 Hz
0 3 5 25
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Fig. 7 - Bond graph model of the rigid body 

As the translational dynamic is expressed in the inertial reference frame, a modulated transformation element 
(MTF) between ( )0/ i

iV G R


and ( )00/iV G R


permits the coordinate transformation between the body frame and 
the inertial frame. The rotation matrix can be calculated from Euler angles. In this paper, the XYZ Cardan angles 
have been employed. The angular velocity components of the considered body expressed in the body frame (called 
the pseudo-velocities or Euler angles rates of changes) are used to determine the body’s orientation and the corre-
sponding coordinate transformation matrix. This classical process is reminded in Fig. 8. It should be noted that the 
initial conditions used for the integration of time derivatives of the Euler angles must be consistent in regards to 
the kinematic constraints.  

 

 
Fig. 8 - Calculation of the Euler angles and rotation matrix from the angular velocity 

 
The MGB 
 
The MBG representation of the construction is given in Fig. 9. The bond graph representation shows as many 

branches in the structure junctions as kinematic joints for the determination of the velocities of corresponding 
points. From the linear velocity of the center of mass GMGB and the instant rotation velocity ( )/ Fixed frameMGBΩ



, the linear velocity of the point OMGB, the linear velocity of AMGB point of the MGB and the linear velocities Ci 
point at the ball joints between BTP and BTP bars are calculated. 

0 0

1

: TF TF :

MSe

111
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:
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I I   :
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( )0/ i
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
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i
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( )( ) ( ) ( )( )
0

/ 0 / 0 / 0
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i
i ii i i i

G G G
h

dM I i i I i
dt
    = Ω +Ω ∧ Ω     

∑
   

Kinematic relations
( ) ( ) ( )

( ) ( ) ( )

00 0 0
0 0

00 0 0
0 0

/ / / 0

/ / / 0

j i i i j

k i i i k

V M R V G R S G M
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( )( )0 00
h i pes i i i 0
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Frame transformation
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0

0 0 0/ . /
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i iV G R P V G R=
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0y
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O
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
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Fig. 9 - Bond graph modeling of the MGB with its environment 

The fuselage 
With a similar approach, the bond graph modelling of the fuselage is given in Fig. 10. 
 

 
Fig. 10 - Bond graph model of the fuselage with its environment 
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The SARIB beaters 
 
The bond graph model of a SARIB beater kinematically linked to the fuselage and the MGB bars is given in 

Fig. 11. 
 

 
Fig. 11 - Bond graph model of a SARIB beater i kinematically linked to its environment 

The MGB bars 
 
The bond graph model of a MGB bar beater kinematically linked to the MGB and a SARIB bar is given in Fig. 

12.  

 
Fig. 12 - Bond graph model of MGB bar i kinematically linked to its environment 
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4.3.1.2 Kinematic joints 

The joint modelling will now be detailed. The singular perturbation method is here implemented by the addition 
of parasitic elements which were presented in the previous section. The joint models permit the expression of the 
constraints that are introduced when rigid bodies are connected. As the bond graph model of the rigid body, the 
joint models have been built in a modular way in the sense that they have links with rigid bodies and their modelling 
does not change when the whole model of the system is assembled. 
 

The revolute joints 
 
Eight revolute joints are present in the system: two for the universal joint in the attach joint between the fixed 

frame and the MGB, two for the universal joint in the membrane between the MGB and the fuselage, and four 
between each SARIB beaters and the fuselage. The bond graph modelling between the SARIB beaters and the 
fuselage is given in Fig. 13. The bond graph models of the other revolute joints are designed in a similar manner. 

 

 
Fig. 13 - Bond graph model of the revolute joint between the SARIB beaters and the fuselage 

   The upper part of this joint’s model corresponds to the angular velocities. The lower part of this joint’s model 
corresponds to the translational velocities. The R/C elements in this model are functionally different. On the one 
hand, the R/C elements corresponding to the stiffness and damping around the y axis (revolute joint’s axis) model 
the behaviour of the torsional spring. On the other hand, the R/C elements with high stiffness and some damping 
around the other axes model the virtual springs since there are no physical springs in these directions. They permit 
to block the degree of freedom along and around these axes and make the numerical simulation possible (as ex-
plained in section 3).  

 
The spherical joints 
Eight spherical joints are present in the system: four between the SARIB beaters and the MGB bars and also 

four between the MGB bars and the MGB. The bond graph modelling of the spherical joint between the SARIB 
beater and a MGB Bar is described in Fig. 14. The latter shows the blocking of the translational degree of freedom 
in which the relative translational velocities are close to zero thanks to the virtual springs. The other spherical 
joints are built in the same manner.  

 
Fig. 14 - Bond graph model of the spherical joint between a MGB bar i and a SARIB beater i 
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The prismatic joints 
 
The bond graph model of the prismatic joint between the MGB and an intermediate body is given in Fig. 15. 
 

 
Fig. 15 - Bond graph model of the prismatic joint between the MGB and a intermediate body 

4.3.2 Excitation models 

The mechanical actions developed by the actuators are modelled by an effort source connected to the junctions 
1 which are free in the attach joint. The example of the implementation of an excitation by a swept sine at the pitch 
joint is shown in Fig. 16. 

 

 
Fig. 16 - Bond graph model of the actuators of the excitation 
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nected either to the free junction of the prismatic joint, or the revolute joints around the roll or pitch axis. Three 
choices of excitation forms may also be selected: constant for a natural mode excitation (if this constant is zero) 
or a static study, sinusoidal or swept sine for excited modes. 

The practical realization of these actuators will be conducted using vibration shakers as we will detail in the 
experimental validation section. 
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These rigid bodies and joints models, as described above, are then connected together according to the archi-
tecture defined in the kinematic diagram. The bond graph model of the 3D MGB-fuselage suspension is given 
below in Fig. 17. As expected, the structural aspect of the model is explicit in so far as the structure of the model 
is similar to the joints graph of the system. 

 

 
Fig. 17 Bond graph model of the passive MGB-fuselage suspension 

4.3.4 Simulation protocol 

Getting equations 
 
The step of generating the mechanical equations is fully automated and transparent to the user using the 20-sim 

software. In this step, the solver reads data corresponding to the bond graph model and builds a mathematical 
problem: the equations of the system. 

 
Resolution of the equations 
 
The used bond graph software (20-sim) then solves the equations. With the method of singular perturbation, 

this step resolution can be performed simply using classical integration schemes for solving differential equations 
ODE solver such as Runge Kutta 4 (RK4). However, the integration scheme that has been used is the Backward 
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Differentiation Formula (BDF). It was preferred as it allows a simulation of a stiff problem which is much faster 
than explicit solvers (like RK4). 

 
Post-processing 
 
From the mathematical solution, the solver computes and communicates the results requested by the user. 20-

sim allows the user to evaluate and easily plot any of the physical quantities involved in the bond graph model of 
the system. In addition, graphs can be exported to various types of image-formats or data with .csv or .xls file. The 
data exportation allows for the comparison of results from different sources in the same graphic interface (for 
example Matlab). 

5 Simulation and validation of the passive suspension 

5.1 Validation protocol 

So as to validate the suspension’s model, a process based on two steps has been conducted.  
The first step is a verification step by comparison of the simulation results with MapleSim software which 

contains a library dedicated to multibody systems.  
The second step is a validation step by comparing the simulation results with those provided from the experi-

mental setup. This step will be presented in future works since the electronic devices and the vibration equipment 
are not yet installed. 

5.2 Complementary description of the experimental setup 

The experimental setup was performed by maintaining the architecture of a real device (Fig. 3). The corre-
spondence between the different mechanical elements of a helicopter and the experimental setup will be detailed 
in this paragraph. 

To reproduce the effects of the rotor lift, the set {BTP-link-fuselage} has been suspended from the fixed frame 
(Fig. 3). This joint has to lift up the entire weight suspended by analogy to the static force of lift, it was performed 
by the use of pneumatic components. They were designed so that the natural frequency induced by the overall 
stiffness is below 2Hz. 

The fuselage was replaced by a rigid mass called fuselage mass (Fig. 3). 
A single body has replaced the set {rotor shaft-MGB} and the rotation has been deleted. This single body is 

composed of a shaft equipped with a recessed tray (Fig 18).  
 

  
Fig 18 - Position of the fixtures  to the fuselage 
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The overall joint between the fuselage mass and the system equivalent to the set {rotor shaft-MGB} has four 
bars, four semi-active SARIB beaters and a system representing the usually existing membrane on the helicopter. 

The MGB bars consist of threaded rods that have a spherical joint without backlash at each end.  
Each SARIB beater is linked by a revolute joint to the fuselage, which are themselves clamped to the fuselage 

mass as shown in Fig 18. Each SARIB beater is fitted with a moving mass (Fig.19) connected with a prismatic 
joint along the SARIB beater. The translational movement is controlled by means of a screw-nut system and a DC 
motor. It should be noted that, in this section, the moving masses are fixed on the SARIB beaters. 

 

 
Fig.19 - Revolute joint between a SARIB beater and the fuselage 

5.3 Use of MapleSim for BG model verification 

The simulation parameters used for both the bond graph simulation and Maplesim simulation are summarized 
in the following table. 

Table 1. Simulation comparison 

Software MapleSim Bond graph conducted with 20-sim 
Solver Rosenbrock (stiff) Backward Differentiation Formula (BDF) 
Method Linear graph theory Singular perturbation 
Number of coordinates 84 (14 bodies) 84 (14 bodies) 

Number of constraints 
74  
(8 spherical joints, 8 revolute joints,  
2 prismatic joints)  

0 

DoF 10 (6 + 4) 84 

5.4 Comparison between simulation numerical results and experimental result 

The vibration analysis of the system is mainly evaluated by analyzing the acceleration of the fuselage points 
and forces transmitted from the MGB to the fuselage at the SARIB beater/ fuselage joint. Simulation results with 
different types of excitation (pumping, roll, pitch) are the following and will permit to analyze the dynamic be-
havior of the suspension. The results presented were compared with a multibody software MapleSim. 

5.4.1 Dynamic behavior with pumping excitation 

5.4.1.1 Acceleration of the point OF of the fuselage 
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The point OF is defined as the intersection of the MGB’s axis and the upper plane of the fuselage. It is a central 
point on the fuselage that can be measured.  

The vertical component of the acceleration of this point is given in Fig. 20 

 
Fig. 20 - Vertical component of the acceleration of the point OF for a pumping excitation 

An anti-resonance frequency is observed at 18.5 Hz. 
The curve obtained with Maplesim is very close to the curve obtained with the simulation of the bond graph 

model with 20-sim. 

5.4.1.2 Forces transmitted to the fuselage 

The forces transmitted to the fuselage at the revolute joints between the SARIB beaters and the fuselage ex-
pressed in the intermediate pins fuselage were determined as shown in Fig. 20. 

As shown in the above figures, the curves of the vertical forces transmitted at the revolute joints are logically 
similar to the curve of the acceleration of the point OF. Through the action of inertial forces, the transmission forces 
of the MGB to the fuselage are reduced at a certain frequency called antiresonance frequency. They present an 
antiresonance at about 18.5 Hz. SARIB beaters thus play their roles.  

 
Fig. 21 - Vertical force transmitted to the fuselage at the revolute joint A1 for a pumping excitation 

We can observe in Fig. 22 that the anti-resonance phenomenon observed in the force along x-axis in the inter-
mediate fuselage frames does not occur at the same frequency as the one which had been observed for the trans-
mission of vertical forces to the fuselage (for reminding around 18.5Hz). The frequency of anti-resonance is around 
16.3Hz. The designer will have to monitor the amplitude of the component along x-axis of these forces which are 
not minimal at the anti-resonant frequency for the vertical forces transmitted to the fuselage. 
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Fig. 22 - Force along x axis in the intermediate fuselage frame at the revolute joint A1 for a pumping excitation 

5.4.2 Dynamic behavior with roll excitation 

The vertical force transmitted to the fuselage at the revolute joint A1 between the SARIB beaters and the fuse-
lage expressed in the intermediate fuselage frames was determined as shown in Fig. 23. As previously, an anti-
resonance phenomenon is observed at the frequency of 18.5 Hz. 

 
Fig. 23 - Vertical force at the revolute joint A1 for a roll excitation 

In Fig. 24, we can notice the phase shift between the vertical force at the revolute joint A1 and the revolute joint 
A2 when the MGB is submitted to a roll excitation. 

 
                                                   (a)                                                                                                               (b) 

Fig. 24 – (a) Vertical forces at the revolute joints A1 and A2 with a roll excitation, (b) zoom 

5.4.3 Dynamic behavior with pitch excitation 

Similar results are observed for a pitch excitation but are not presented for the sake of concision. 
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6 Modeling and simulation of the semi-active suspension 
In this part, the multiphysic properties of the bond graph approach will be illustrated by the addition of electrical 

actuators directly in the multibody system. Next, a control command structure of the mechatronic model will be 
proposed through the semi-active suspension. This section will thus show how structural (for the model of the 
mechatronic system) and functional (for the model of the command) approach can be conducted in a unique 20-
sim model.   

6.1 Operating description  

The objective of a semi-active suspension is to improve the reduction of vibrations despite some fluctuations 
of the frequency of the rotor excitation. The principle of the semi-active device is to maintain the positioning of 
the anti-resonant frequency of the suspension on the rotor excitation frequency. This tuning of the anti-resonant 
frequency can be obtained by changing the inertia of the assembly properties {SARIB beaters + moving masses}. 
More specifically, these inertial properties are altered by changing the position of the moving masses on SARIB 
beaters. For this purpose, the movement of the moving masses is actuated by a rotating DC motor and a screw-nut 
system. Contrary to an active system, the mechanical energy brought by the actuators is only used to change the 
system parameters (inertia of SARIB beaters). The actuators produce no effort to oppose directly to incoming 
efforts. Therefore, such a system is referred to as semi-active. 

6.2 Integration of the electromechanical actuators models 

The models of moving masses in prismatic joint with regard to the SARIB beaters are added to the bond graph 
model of the passive suspension previously built with fixed masses as shown in Fig. 25. 

 

 
Fig. 25 - Bond graph model of the MGB-fuselage joint with moving masses (in dotted rectangles) 

The model of the device {DC motor + screw nut} will first be presented in a model allowing the movement of 
a mass along an axis and then integrated into the system MGB-fuselage joint. Inspired from [5], the bond graph of 
a rotating DC motor has been incorporated. A controllable voltage source u is imposed across the rotor’s winding. 
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The electromagnetic coupling is characterized by a torque constant kt. For the mechanical part of the actuator, the 
inertia of the motor Jm is considered. A screw-nut system allows a reduction of the velocity with a ratio 1/KSCREW 
as well as the transformation of the rotational movement into a translational movement. The operating scheme of 
the actuation of the moving masses is given in Fig. 26. 

 

 
Fig. 26 - Operating scheme of the actuators’ moving masses 

The bond graph model of the actuated prismatic joint is achieved by connecting the model of the set {DC mo-
tor + screw nut} at the junction 1 of the degree of freedom related to the movement along the axis of the pris-
matic joint. Fig.27 details the modeling of the actuated prismatic joint used to drive the moving masses on 
SARIB beaters.  

 

 
Fig.27 - Bond graph modeling of an actuated prismatic joint 
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6.3 Controller design 

Our control is composed, for each branch, of two loops: 
- A strategy control loop for calculating the position setpoints of the moving masses on SARIB beaters. It is the 
trajectory generation. We used herein a gradient algorithm. 
- A position regulation loop for controlling the action of the motors for moving the masses to the positions previ-
ously calculated. The objectives of the control loop are to get, in terms of static performance, a response with zero 
static error and, in terms of dynamic performance, fast enough solution without overshoot. 
We begin by discussing the settings of the position control loops prior to the trajectory generation. 

6.3.1 Position regulation loop 

The servo-control of a mass position on an axis is achieved by a control architecture which consists of three 
nested loops: a current loop, a velocity loop and a position loop. In electrical engineering, this technique is quite 
classical but recognized as effective because it enables to control easily quantities that do not necessarily have 
the same dynamic behaviour. The values of the proportional-integral PI correctors used are calculated with the 
method of poles compensation and the time constant imposition of the transfer functions in closed loops. The 
values used for the PI controllers are given in the appendix.  

The position control loops are used to control the position of the four mobile masses on each SARIB beater. 
Fig. 28 shows how the four position control loops are linked to the model of the MGB-fuselage joint. The details 
of a position control loop on a prismatic joint is shown in Fig. 28. 

 
 
 

 
 

Fig. 28 – Structure of the axis commands 
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subjected only to pumping excitation. The vibration level noted NV was defined as the magnitude of the vertical 
acceleration of point OF of the fuselage. This vibratory level is expressed as follows: 

 
 ( ) ( )NV A amplitude a (t)z zt= =   (8) 
The acceleration of the fuselage center depends on the position of the four moving masses. The four moving 

masses are displaced together synchronously. The vibration level is a non-linear function that depends on the 
position taken by the masses. Thus, the objective of the control algorithm, expressed in terms of optimization is to 
determine the position of moving masses (identical outlet for four masses) which minimizes the vertical magnitude 
of the fuselage center. 

In this part, we choose to use an control algorithm already used for the semi-active MGB-fuselage suspension 
and taken here as the cost function to be minimized: an algorithm based on the constant pitch gradient method. 
The objective of this study is not here to make a new algorithm for minimizing the vibrational level but to check 
the ability of the bond graph tool to be used for control of complex mechatronic systems and analyze the benefits 
of this latter with respect to the methods used so far.  

 
The starting point for the construction of the selected gradient algorithm is the use of a Taylor series expansion 

truncated to the first order. 

 
A (x(t))A (x(t) dx(t)) A (x(t)) dx(t)z

z z x
∂ + = +  ∂ 

  (9) 

The complexity of the function does not allow to express analytically the gradient. Therefore, this function is 
evaluated by measuring the acceleration for two different positions of the moving masses in the following manner 
during the simulation: 

 
1

1

A A (x ) A (x )
x x

k k
z z z

k kx

+

+

∂ −  = ∂ − 
  (10) 

k is the index related to the discretization. The positions of the moving masses at iteration k+1 are obtained as 
follows: 

 1 Asign
k

k k z

x

x x p
x

+  ∂ = − ×   ∂  
  (11) 

 With p a step of progress of the mass [mm] 
The control algorithm has been programmed in discrete time as follows: 
 

 
Fig. 29 - Gradient algorithm 

The control device comprising the control algorithm and the axis controls of the moving masses is shown in 
Fig. 30.  
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Fig. 30 - Command architecture 

6.4 Results and analysis  

In the case where the MGB is subjected to a sinusoidal excitation in pumping, it is observed that the control 
algorithm optimizes the level of vibration of the fuselage (Fig. 31). After obtaining a minimum, the moving masses 
oscillate without diverging around the optimal positions (Fig. 32). 
 

 
Fig. 31 - Acceleration (a) and magnitude (b) of this acceleration for Ofus 
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Fig. 32 – Evolution of the position setpoints and position measures of the moving mass (on SARIB beater 1) 

The magnitude of the vertical component of the acceleration as a function of the excitation frequency is plotted 
in two cases: with the moving masses in arbitrary initial positions on the beaters and with the moving masses well-
tuned on the beaters (Figure 5.61). These curves confirm the correct positions of the moving masses found by the 
algorithm. Indeed, when the moving masses are in the position determined by the control algorithm, the anti-
resonance frequency of the vertical component of acceleration of the fuselage is positioned on the excitation fre-
quency of the MGB. Therefore, the vertical magnitude of the acceleration of the fuselage is minimal at the excita-
tion frequency of the MGB. 
 

 
Fig. 33 - Magnitude of the vertical component of the acceleration in function of the excitation frequency 

The performed modeling allows to take into account the dynamics of the engines. With the motor data selected 
for the test bench, the time response is approximately one second. It is easy to estimate the sampling period to 
choose for the control algorithm and estimate the overall response time of the algorithm. 

Moreover, the BG tool permitted to test the command found directly on the nonlinear simulation model. 

7 Conclusion 

A structural and modular approach with bond graph has been presented in this paper so as to model and simulate 
the dynamics of a complex mechatronic multibody systems: an helicopter’s semi-active suspension. The core sys-
tem is a multibody system with closed kinematic loops. On the top of this, DC motors and and controllers have 
been implemented. 

The proposed methodology consists in the assembly of modules (these components are rigid bodies and kine-
matic joints) in a similar manner to the real structure of the physical system. This assembly can be easily conducted 
with the help of a well-structured library of components. Therefore, the constructed multi-body dynamic models 
permits the representation of a complex system and the bond graph model highlights the topology of systems. To 
deal with the constraints linked to the vector bonds and the kinematic constraints provided by the joints, the sin-
gular perturbation method (adding parasitic compliant elements in the kinematic joints) is used. The singular per-
turbation method employed in the bond graph model enables to avoid dealing with kinematic constraints equations 
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and consequently to have only ODE systems to solve instead of DAEs. Moreover, the simulation of multibody 
systems with closed kinematic chains may appear easier to conduct than the classic analytical method. 

The simulation results of the bond graph model of the studied suspension have been conducted with a dedicated 
software for bond graphs such as 20-sim. The model of the passive suspension with SARIB system has been 
verified with another multi-body tool (MapleSim) for three excitations (pumping, roll and yaw) and validated on 
an experimental setup for the pumping excitation. These simulations have permitted to identify and quantify the 
anti-resonance which were sought so as to filter the vibrations coming from the rotor to the fuselage.  

Finally, the ability to integrate models of electrical systems and controls device to the multi-body model model 
in the same modeling environment have been tested. For that purpose, the bond graph model was used for the 
establishment of a semi-active control device. This model has also been developed with 20-sim and allows to 
adjust the position of the moving masses in operation so as to minimize the level of vibration of the fuselage. The 
control algorithm (gradient algorithm) enables to calculate the setpoint positions of the moving masses on the 
DAVI beaters. The position of the moving masses driven by an electric DC motor and a screw-nut system has 
been optimized and PI controllers have permitted to position the moving masses to the setpoints generated by the 
control algorithm. Due to the intrinsic characteristics of bond graph, this tool provides a detailed vision of the 
modeled system where decomposition of the modules elements shows the selected role models and modeling 
assumptions made explicit. For example, it would be easy to take into account the influence of the engine friction 
behavior law on its dynamics and its impact in the control set up. Finally, bond graphs can be used to test the 
control command directly on the non-linear simulation model. 

Acknowledgments 
This research work received support from the Chair "Dynamics of complex mechanical systems - EADS Cor-

porate Foundation - Arts et Métiers ParisTech and Ecole Centrale de Marseille.".  
Thanks to Paul B.T. Weustink working as Controllab Products  for his help on the use of complementary 

tools of 20-sim software. 

Appendix : modeling data of the experimental setup of the semi-active suspension 

Geometry 
 

Fuselage 

 X (mm) Y (mm) Z (mm) aFi (rad) aFi (deg) Rfi 

GFus  0.000 0.000 0.000    
Fittings ARD (A1) 460.718 222.399 217.054 0.45 25.77 511.588 
Fittings ARG (A2) 460.718 -222.399 217.054 -0.45 -25.77 511.588 
Fittings AVG (A3) -460.718 -222.399 217.054 3.59 205.77 511.588 
Fittings AVD (A4) -460.718 222.399 217.054 2.69 154.23 511.588 
OFus 0.000 0 56.054   0.00 

MGB 

 X (mm) Y (mm) Z (mm)    
GMGB 0.00 0.00 0.00    
Attach center ARD (C1) 99.992 70 -199    
Attach center ARG (C2) 99.992 -70 -199    
Attach center AVG (C3) -100.008 -70 -199    
Attach center AVD (C4) -100. 008 70,00 -199    
AMGB 0.000 0.000 336.0    
OMGB -0.008 0.000 -449.0    

MGB bars 

BC (mm) 400   
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BGMB (mm) 200   
SARIB beaters 

AB (mm)   50   
 X (mm) Y (mm) Z (mm) 
GSB 0.00 0.00 0.00 
A -106.174 0 -28.195 

 
Initial conditions 
 

MGB 

Initial position GMGB [m]  [0.7000000000e-5, 0, -.5359930000]T 

Euler angles MGB [rad] [0, 0, 0]T 

Fuselage 
Initial position GF [m] [0., 0., -1.160006000] T 
Euler angles F [rad] [0, 0, 0]T 

MGB bars 
Initial position GMB1 [m] [0.2578448918, 0.1353314307, -0.8390038188] T 
Euler angles MB1 [rad] [-0.2591385106, 0.4880132457, 0.4656506145] T 
Initial position GMB2 [m] [0.2578448918, -0.1353314307, -0.8390038188] T 
Euler angles MB2 [rad] [0.2591385106, 0.4880132457, -0.4656506145] T 
Initial position GMB3 [m] [-0.2578448917, -0.1353314307, -0.8390038188] T 
Euler angles MB3 [rad] [0.2591385108, -0.4880132457, -2.675942039] T 
Initial position GMB4 [m] [-0.2578448917, 0.1353314307, -0.8390038188] T 
Euler angles MB4 [rad] [-0.2591385108, -0.4880132457, 2.675942039] T 

SARIB beaters 
Initial position GSB1 [m] [0.3651023145, 0.1762431458, -0.9712044772] T 
Euler angles SB1 [rad] [0.00001423717080, -0.00002949348177, 0.4497304165] T 
Initial position GSB2 [m] [0.3651023145, -00.1762431458, -00.9712044772] T 
Euler angles SB2 [rad] [-0.00001423717080, -0.00002949348177, -0.4497304165] T 
Initial position GSB3 [m] [-0.3651023144, -0.1762431459, -0.9712044772] T  
Euler angles SB3 [rad] [-0.00001423717081, 0.00002949348177, -2.691862237] T 
Initial position GSB4 [m] [-0.3651023144, 0.1762431459, -0.9712044772] T 
Euler angles SB4 [rad] [0.00001423717081, 0.00002949348177, 2.691862237] T 

 
Masses and inertia 
 

Parameters MGB Fuselage SARIB beaters MGB bars 
Mass (kg) 128.347 987.686 4.756 0.001 
Ixx (kg.m²) 7.720 38.210 0.005 0.001 
Iyy (kg.m²) 7.598 327.303 0.079 0.001 
Izz (kg.m²) 2.251 362.421 0.077 0.001 

 
Stiffnesses and damping 
 

Joints Description Stiffness  Damping  

Attach joint 
Pumping 100000 (N/m) 5000 (N.s/m) 
Yaw 0.001 (N.m/rad) 2 (N.m.s/rad) 
Roll 0.001 (N.m/rad) 2 (N.m.s/rad) 
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Membrane 
Pumping 0.001 (N/m) 2 (N.s/m) 
Yaw 0.001 (N.m/rad) 2 (N.m.s/rad) 
Roll 0.001 (N.m/rad) 2 (N.m.s/rad) 

4 revolute joints between 
SARIB beaters and fuselage  
 

Torsion springs  1190 (N.m/rad) 2 (N.s/m) 

Other    
Virtual springs  1010 (N/m) or (N.m/rad) 200 (N.s/m) or (N.m.s/rad) 

 
Actuators 

 
Les principales grandeurs du dispositif qui proviennent des composants choisis pour le banc d’essai sont don-

nées dans le tableau suivant : 
 

Components Parameters Values Units 

DC motor 

Resistance R 12.4 Ω 
Inductance L 0.488 mH 
Torque constant kt 0.0181 N.m.A-1 

Friction coefficient cω  0.0027 N.m.rad-1.s-1 

Inertia Jm 2.25.10-7 kg.m² 

Screw-nut Reduction ratio Kvis 0.019 -- 
 

 
PI controllers’ values 

 
Feedback loops Current Velocity Position 
Gain Kc = 124 Kv = 78.1 Kx = 13.3 
Time constant Tic = 3.935.10-5 (s) Tiv = 0.187 (s) -- 
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