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a b s t r a c t

Numerical simulations of composite structures are generally performed using multi-layered shell ele-

ments in the context of the finite elements method. This strategy has numerous advantages like a low

computation time and the capability to reproduce the comportment of composites in most of cases.

The main restriction of this approach is that they require an approximation of the comportment in the

thickness. This approximation is generally no more valid near the boundary and loading conditions

and when non linear phenomena like delamination occurs in the thickness. This paper explores an alter-

native to shell computation using the framework of the Proper Generalized Decomposition that is based

on a separated representation of the solution. The idea is to solve the full 3D solid problem separating the

in-plane and the out-of-plane spaces. Practically, a classical shell mesh is used to describe the in-plane

geometry and a simple 1D mesh is used to deal with the out-of-plane space. This allows to represents

complex fields in the thickness without the complexity and the computation cost of a solid mesh which

is particularly interesting when dealing with composite laminates.

1. Introduction

Most of shell structures simulations are based on the shell the-

ory. A 3D shell structure is described from its mid-plane surface

adding variables (angular coordinates in the classic shell theory)

to treat the comportment in the thickness. Many models have been

developed for multilayered structures: some use the Equivalent

Single Layer approach where the variables concern the whole lam-

inate and others use a Layerwise approach where the layers are

described with different variables (see [17,4] for a detailed review

of these kinds of models). Shell models help reducing the compu-

tational cost required by full 3D finite element modeling but they

require an approximation of the comportment in the thickness. The

shell approximation is generally no more valid when increasing the

thickness, near the boundary and loading conditions and when non

linear phenomena like delamination occurs in the thickness.

Another restriction is that the loads are applied on the mid-plane

surface with no distinctions between a load applied on the top

and on the bottom of the structures. However, this kind of models

is largely widespread because it has proved its predictive ability in

many cases and because of the difficulty to use full 3D strategies.

The number of degrees of freedom needed to perform a full 3D

finite elements simulation is damning. If one wants to keep a suf-

ficient number of nodes in the thickness to allow a good precision,

he will be constrained to add an important number of nodes in the

mid-plane surface in order to avoid bad quality elongated ele-

ments. This becomes quickly unmanageable.

An alternative to shell elements for reducing the computational

time is to use model reduction strategies based on a separated rep-

resentation of the solution. For example, a separated representa-

tion of a function u defined on a 2D domain is:

uðx; yÞ �
XN

i¼1

F iðxÞ GiðyÞ ð1Þ

We can distinguish two approaches to build this separated

representation.

The first one is to postulate a set of bases functions defined on a

specified space (for example the space generated by y) and to solve

the problem over the orthogonal complement (for example the

space defined by x) considering this restricted number of bases

functions. This strategy has been initially introduced in fluid

mechanics [12] and has been widely used for space–time problems

where the basis is set over the spacial domain. The number of basis

functions is not related to the number of nodes like in the classic

finite element method and is generally very restricted. The basis

functions are determined ‘‘a posteriori’’ using for instance some

results coming from a full computation or experimental data or

just postulated from physic. The most common way to extract

the basis functions from data is to perform a Proper Orthogonal

Decomposition (POD) which gives the most significant modes.

http://dx.doi.org/10.1016/
j.compstruct.2014.06.039 .

E-mail address: e.pruliere@i2m.u-bordeaux1.fr

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2014.06.039&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2014.06.039
mailto:e.pruliere@i2m.u-bordeaux1.fr
http://dx.doi.org/10.1016/j.compstruct.2014.06.039
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


This strategy is close to shell finite elements modeling in the

fact that the solution is postulated over one subspace (describing

the thickness in the case of shell elements). It is possible to build

a set of basis function defined in the thickness that represents rigid

rotation and membrane displacement and to solve the problem in

the orthogonal complement of this subspace (the mid-plane sur-

face). This strategy leads to a solution similar to the one given by

the classic shell theory with a similar computational cost.

The second approach is to build the separated representation ‘‘a

priori’’ i.e. without making any approximation [19,20]. An appeal-

ing method is the A Priori Hyper Reduction method (APHR). It con-

sists in controlling and enriching the basis only if needed. This

techniques is particularly well adapted to treat space/time prob-

lems because the validity of the basis can be checked on some cho-

sen time steps.

Another method lies in the use of the Proper Generalized

Decomposition (PGD). The algorithm builds the reduced separated

approximation and solves the problem at the same time. It may be

applied for multi-dimensional problems and can treat a high vari-

ety of problems. This method has been introduced by Ladeveze

with space–time problems in the context of the LATIN method

under the name of ‘‘radial approximation’’ [10,11]. It has been gen-

eralized for multi-dimensional problems with some applications in

models encountered in the kinetic theory description of complex

fluids (Ammar et al. [1,2], Mokdad et al. [13]). It has also been

applied for thermal problems [7,16] and for parametric mechanical

problems [6,14]. Recently, Vidal et al. [21] have used the PGD to

simulate beam structures separating the axis of the beam from

the section. The PGD has also been successfully applied to treat

plate structures in [3] in the case of rectangular parallelepiped

domains. Until now, the PGD approach has been mainly restricted

in rectangular domains for 2D problems or hyper-rectangular

domains for higher dimensional problems. This is due to the sepa-

rated representation. In the case of non hyper-rectangular

domains, a fully separated representation has been performed [9]

but it involves some technical points and leads to a loss of overall

performance. So the PGD method is a priori not well adapted to

model complex shell structures.

The idea of this article is to use the PGDmethod to perform sim-

ulations of shell structures with complex shapes and curvatures

without any a priori knowledge of the comportment in the thick-

ness and using the PGD efficiency.

2. A reduced strategy adapted to shell structures mechanical

simulation

2.1. Mechanical model

The model used is based on the classical momentum conserva-

tion equation:

divrþ f ¼ qC ð2Þ

where r denotes the stress tensor, div denotes the tensorial diver-

gence, f is the volume force, q is the density and C is the accelera-

tion. r is linked to the deformation by the constitutive relation:

r ¼ He ð3Þ

where e is the strain tensor and H is the fourth order rigidity tensor.

This relation can be written using matrix notations:
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e is the symmetric gradient of the displacement u ¼ ðu;v ;wÞ.

The weak formulation of the equilibrium equation Eq. (2) with-

out dynamic effect is:
Z

X

eðuHÞ : ðHeðuÞÞ ¼

Z

X

uH � f þ

Z

@X

uH � ðr � nÞ ð5Þ

X is the domain taken by the structure.

It can be notice that the left part of this formulation can be

developed in a sum of integrals whose number depends on the

non-zero terms of H.

2.2. A model for shell structures

2.2.1. An adapted separated representation

The idea is to use the PGD method separating a solid shell struc-

ture in two spaces: the mid-plane surface and the thickness. The

shell structure occupies a region X ¼ S � T where S describes

the mid-plane surface and T ¼ � e
2
; e
2

� �
is an interval containing

all the positions in the thickness defined by a signed distance from

the mid-plane. e denotes the thickness of the shell (or the maxi-

mum thickness in the case of a non constant thickness). In the fol-

lowing, the curvature is assumed to be the same in all the

thickness. This assumption is adapted for shell with small thick-

ness or law curvature. The global Cartesian coordinates are noted

X ¼ ðX; Y; ZÞ with ðeX ; eY ; eZÞ the corresponding basis. A local basis

ðex; ey; ezÞ is also defined at each point of S. We denote x ¼ ðx; y; zÞ

the local coordinates where x and y are the coordinates along two

directions parallel to the mid-plane surface and z is the perpendic-

ular direction. In local coordinate, the mid-place surface is defined

by z ¼ 0. u ¼ ðu;v ;wÞ denotes the local displacement.

Then, a separated representation related to shell structures lies

in:

uðx; y; zÞ �
XN

i¼1

Fu
i ðx; yÞG

u
i ðzÞ

vðx; y; zÞ �
XN

i¼1

Fvi ðx; yÞG
v

i ðzÞ

wðx; y; zÞ �
XN

i¼1

Fw
i ðx; yÞG

w
i ðzÞ

8

>>>>>>>>>><

>>>>>>>>>>:

8ðx; y; zÞ 2 X ð6Þ

The vector functions Fi ¼ Fu
i ; F

v

i ; F
w
i

� �
are defined over the mid-

plane surface S and the vector functions Gi ¼ Gu
i ;G

v

i ;G
w
i

� �
are

defined over the thickness of the shell structure (related to the

local out-of-plane coordinate z). Practically, a shell or plate mesh

is used to describe the mid-plane space and a simple 1D mesh is

used to treat the out of plane space. The nodes of the shell mesh

are generally defined in global coordinates and the shell elements

are treated in local coordinates using a change of basis.

For sake of clarity, the PGD method will be described consider-

ing the weak form of Eq. (5) without volume force and acceleration

and in the case of a linear isotropic homogeneous material. The

shell structures will be considered as infinite along ey. A 2D plane

strain model is assumed in the plan ðex; ezÞ. The local basis and the

mid-plane surface can then be described in 2D (Fig. 1). 1D element

can be used to describe the mid-plane surface S.

All the following development can be generalized for more

complicated 3D cases without theoretical difficulties. The 2D plane

strain comportment law is in the local system:
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with for an orthotropic material:
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Then the weak form becomes:
Z

X

eHxxðH11exx þ H13ezzÞ þ
Z

X

eHzzðH13exx þ H33ezzÞ þ
Z

X

2eHxzH55exz

¼

Z

@X

uH � ðr � nÞ ð9Þ

and the PGD approximation reduced to:

uðx; zÞ �
XN

i¼1

Fu
i ðxÞG

u
i ðzÞ

wðx; zÞ �
XN

i¼1

Fw
i ðxÞG

w
i ðzÞ

8ðx; zÞ 2 X

8

>>>><

>>>>:

ð10Þ

The expression of the gradient of displacement and then of

the strain tensor e in the local basis needs the use of the

covariant derivative to account for the curvature over an

element.

It can be noticed that the local basis depends only on the posi-

tion in the mid-plane surface x. It does not evolve in the thickness

so that @ex
@z

¼
@ey
@z

¼ @ez
@z

¼ 0.

With the thin-shell assumption, the strain tensor writes:

exx ¼
@u

@x
� ex ¼

@

@x
ðuex þwezÞ � ex ¼

@u

@x
þw

@ez

@x
� ex

� �

ð11Þ

and also:

ezz ¼
@u

@z
� ez ¼

@w

@z
ð12Þ

2exz ¼
@u

@z
� ex þ

@u

@x
� ez ¼

@u

@z
þ
@w

@x
þ u

@ex

@x
� ez

� �

ð13Þ

Remark 1. The expression of the strain tensor can be generalized

for deep shells. However, in the case of deep shells, the separated

formulation of the problem needed to use the PGD become more

complicated and not very efficient in a computational point of

view.

The terms @ex
@x

and @ez
@x

represent the evolution of the local

basis. An interpolation of the local basis is defined on each ele-

ment, and this interpolation allows to compute the evolution of

the local basis. In practical, the local basis is defined at nodes

and is interpolated over the element. The local basis can be

set independently of the element geometry though it should

reasonably be related to it. For instance, plate elements may

be used to model a curved geometry even if there is no

curvature over this kind of elements. The local basis varies

and follows the curvature of the real geometry and is then con-

tinuous in the whole geometry. Therefore, elements with plate

or shell geometry may be used indifferently.

We denote f ðxÞ ¼ @ez
@x

� ex

� �
and gðxÞ ¼ @ex

@x
� ez

� �
.

Considering Eqs. (11)–(13), the weak formulation writes:

Z

X

H11
@uH

@x
þ fw

H

� �
@u

@x
þ fw

� �

þ

Z

X

H33
@wH

@z

@w

@z

þ

Z

X

H13
@uH

@x
þ fw

H

� �
@w

@z
þ

Z

X

H13
@wH

@z

@u

@x
þ fw

� �

þ

Z

X

H55

2

@uH

@z
þ
@wH

@x
þ guH

� �
@u

@z
þ
@w

@x
þ gu

� �

¼

Z

@X

uH � ðr � nÞ

ð14Þ

The left part of this equation can be developed in 18 simple

integrals.

2.2.2. Enriching the approximation basis

At the iteration N the approximation is assumed known

under the form given by Eq. (10). To enrich this approximation,

4 functions must be determined (6 in the general 3D case):

Fu
Nþ1; G

u
Nþ1; F

w
Nþ1 and Gw

Nþ1 (or FNþ1 and GNþ1 if we use vector

functions).

uðx; zÞ �
XN

i¼1

Fu
i ðxÞG

u
i ðzÞ þ Fu

Nþ1ðxÞG
u
Nþ1ðzÞ

wðx; zÞ �
XN

i¼1

Fw
i ðxÞG

w
i ðzÞ þ Fw

Nþ1ðxÞG
w
Nþ1ðzÞ

8ðx; zÞ 2 X

8

>>>><

>>>>:

ð15Þ

Remark 2. In the first iteration step, no function is known. F1 and

G1 have then to be determined.

To determine FNþ1 and GNþ1 a non-linear problem has to be

solved. An alternate directions strategy has given excellent results

in our precedent studies (for example in [15]). This method is per-

formed in two steps:

� Step 1: GNþ1 being known, we are looking for FNþ1.

� Step 2: FNþ1 being known, we are looking for GNþ1.

Starting with an arbitrary tentative functions GNþ1, step 1 is per-

formed and then step 2, and again both steps until reaching con-

vergence. The convergence is obtained when the norms of the

difference between the two last values of FNþ1 and GNþ1 are suffi-

ciently small.

Step 1. In step 1, GNþ1 is assumed known. So the trial function uI

is given by

uHðx; zÞ ¼ Fu
Nþ1

HðxÞGu
Nþ1ðzÞ

wHðx; zÞ ¼ Fw
Nþ1

HðxÞGw
Nþ1ðzÞ

(

8ðx; zÞ 2 X ð16Þ

The function GNþ1 depends only on the position z along the thick-

ness and the function FNþ1 depends only on the position in the

mid-plane surface.

With the thin-shell assumption, the derivative with respect to

the local coordinate x does not depend on the position in the thick-

ness and the integrals can be separated.

Then, we define the function A such as:

Fig. 1. Local basis definition.
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With this function, the weak form using the separated representa-

tion reads:

A FH

Nþ1; FNþ1;GNþ1;GNþ1

� �
¼

Z

@X

uH � ðr � nÞ

�
XN

i¼1

AðFH

Nþ1;Fi;GNþ1;GiÞ ð18Þ

In the right part of this equation, every terms are known. In Eq.

(17), the integrals over the thickness can be approximated numer-

ically because the functions Gi are known 8i. It remains only a

problem defined over the mid-surface space. It reduces signifi-

cantly the complexity of the problem. In practical, a finite element

approximation is used over each sub domain.

Step 2. In step 2, FNþ1 is assumed known. So the trial function uH

is given by

uHðx; zÞ ¼ Fu
Nþ1ðxÞG

uH
Nþ1ðzÞ

wHðx; zÞ ¼ Fw
Nþ1ðxÞG

wH

Nþ1ðzÞ

(

8ðx; zÞ 2 X ð19Þ

Now, the weak form using the separated representation becomes:

A FNþ1;FNþ1;G
H

Nþ1;GNþ1

� �

¼

Z

@X

uH � ðr � nÞ �
XN

i¼1

AðFNþ1;Fi;G
H

Nþ1;GiÞ

ð20Þ

The integrals over S can be approximated numerically because

the functions Fi are known 8i. It remains only a problem defined

over T which can be solved using a finite element solver.

The convergence criterion is based on the norm of the residual.

The residual is computed from the Finite Element operators after

discretization on each subspace. See [8] for more detail on this

criterion.

Remark 3. A projection step helps sometimes to improve the

convergence of the algorithm as proposed in [1]. This step is not

compulsory though.

3. Results

3.1. Validation of the method

A simple numerical test is performed to test the accuracy of the

method. It consists on a laminated cylindrical shells in cylindrical

bending. The geometry is described Fig. 2. The exact solution is

given by J.G. Ren in [18]. The shell is considered as infinite along

the z axis so that a plane strain assumption is used. The shell is

simply supported on its edges and the upper surface is loaded with

a normal traction rr ¼ qðhÞ with qðhÞ ¼ q0 sinð3hÞ.

The boundary conditions on the edges are:

wðr;0Þ ¼ w r;
p
3

� �

¼ 0 ð21Þ

Here wðr; hÞ denotes the displacement in the r-direction (along ez in

the shell local basis) and uðr; hÞ denotes the displacement in the h-

direction (along ex in the shell local basis).

To suppress rigid body motions, another condition may be

added:

u r;
p
6

� �

¼ 0 ð22Þ

This condition is not compulsory to make the PGD converges but if

it is omitted there is an infinite number of possible solutions and

only one will be obtained by the fixed point algorithm used in the

PGD solver.

For the test case, a symmetric [0/90/0] CFRP laminate with uni-

directional plies is considered. The materials properties are the

ones used in [18]:

EL ¼ 172 GPa ET ¼ 6:9 GPa

GLT ¼ 3:4 GPa GTT ¼ 1:4 GPa

mLT ¼ mTT ¼ 0:25

ð23Þ

L is the direction parallel to the fibers and T is the transverse

direction.

Fig. 2. Laminated cylindrical shell.



The results are obtained with the PGD using only 1D quadratic

elements for the mid-plane surface and for the thickness. For this

test case, there is 100 elements in the mid-plane and surface and

60 elements in the thickness. In Table 1 the displacement and

stress are normalized by:

ð�rxx; �rzzÞ ¼
1

q0S
2
ðrxx;rzzÞ �rxz ¼

1

q0S
rxz �u ¼

100ETu

q0hS
3

�w ¼
10ETw

q0hS
4

ð24Þ

where S ¼ R=h. A normalized z-position is also used in the display:
�z ¼ z=h.

The Table 1 shows a rather good agreement between the PGD

and the exact solution. No shear and membrane locking can be

observed (even if linear elements are used instead of quadratic ele-

ments). The error decreases when S increases. This can be

explained with the assumption that the curvature is the same in

the thickness (small thickness assumption). The error on maximal

stresses and displacements is about 10% for S ¼ 4 and 0.3% for

S ¼ 100. Figs. 3 and 4 shows the good agreement between the

PGD method and the exact solution for S ¼ 50. For this problem

the convergence of the PGD is obtained with only 2 or 3 enrich-

ment iterations.

The presented method gives reliable results in the case of rea-

sonably thin thickness shell. For value of S higher than 10 the

results are acceptable. The stress field obtained for S ¼ 10 and

the error with the exact solution is depicted in Fig. 5.

3.2. A 3D test case

The results obtained by the PGD for a full 3D test case are com-

pared with the ones obtained by the FEM using 3D solid elements.

This test case is a square panel of 100 mm side length and 5 mm

thickness. This panel is curved with different curvatures along

the two axis. The geometry and the nodal local basis are depicted

Fig. 6. The edges of the panel are clamped and a normal force of

100 kN is applied at the center of the upper face (a concentrated

force in the sense of the finite element approximation which is

in reality distributed over the adjacent elements). To ease the com-

parison with the FEM an isotropic linear elastic constitutive law is

used (E ¼ 70 GPa and m ¼ 0:3) and the domain is homogeneous.

The deformed geometry (with a displacement increased for

sake of visibility) is depicted in Fig. 7. This figure shows also that

the error on the displacement between the reduced approach

(PGD) and the full FEM simulation is relatively small all over the

panel. The mean relative error on displacement is 0.58% and 3%

on each component of the stress field. The profile of rxx at the cen-

ter of the panel is depicted for both methods in Fig. 8. The two

methods give similar results. Here again, the difference can be

explained by the thin shell assumption used for the PGD and also

by the difference of interpolation function between the PGD and

the finite element method. It can be noticed that the longitudinal

stress is mainly compressive because of the curvature of the shell

(the model does not account for large displacements).

Table 1

Results of the PGD compared with the exact solution for stresses and displacement.

S �rxx �rxx �rzz �rxz �u �w

ðz; hÞ ð� h
2 ;

p
6Þ ðh2 ;

p
6Þ ð0; p6Þ ð0; 0Þ ð� h

2 ;0Þ ð0; p6Þ

Exact

4 �1.761 1.36 �0.00103 0.478 8.217 0.457

10 �0.993 0.895 �0.0121 0.526 6.063 0.144

50 �0.798 0.783 �0.0033 0.525 14.56 0.081

100 �0.786 0.779 �0.00169 0.523 27.31 0.0788

PGD

4 �1.37 1.39 �0.0041 0.429 7.368 0.411

10 �0.904 0.893 �0.0117 0.501 5.792 0.137

50 �0.785 0.781 �0.00328 0.521 14.42 0.0802

100 �0.781 0.777 �0.0017 0.524 27.18 0.0784

Fig. 3. Stress for S ¼ 50: (a) �rxx over the thickness for h ¼ p
6
. (b) �rzz over the

thickness for h ¼ p
6
. (c) �rxz over the thickness for h ¼ 0.



4. A problem dependent shell approximation

4.1. Strategy

As already said, the main advantage of the PGD is that it is based

on the full 3D model with a 2D complexity. However, shell models

are generally more efficient in a computational point of view

because they require only one 2D calculation when the PGD

requires many 2D calculation (with less degrees of freedom

though).

In this section, a global strategy is proposed to combine the

advantages of the PGD and the advantages of shell elements.

The PGD algorithm builds the solution on a separated form

given in Eq. (6). This separated approximation is close to the Carre-

ra Unified Formulation [5] from which most of shell models can be

derived. In the Carrera Unified Formulation, the functions related

to the thickness depend on the chosen model and are defined prior

to the calculation.

The PGD algorithm presented in this paper can be used to com-

pute these basis functions. Actually, the PGD can be used on a given

problem to determine a set of functions Gi related to the thickness.

Once these functions are known, they can be used as basis func-

tions on a different (but close enough) problem. In general, there

is no evidence that a set of functions computed for a given problem

will be adapted to treat another problem. But in the context of shell

structures, the functions related to the thickness have physical

sense. They represent a combination of modes related to bending,

rigid displacements, compression of the normal fiber and also more

complex modes related to boundary effects. Of course, the use of a

basis has no sense if the laminate is not the same. In particular, this

strategy can’t be used to optimize a laminate. An appropriate basis

is build with a former problem (or with many former problems)

including all the solicitations that are required in the model.

A set of functions Gi with i ¼ f1;2; . . . ;Ng is assumed known

from a previous problem. It remains to determine the set of asso-

ciated functions related to the mid-plane surface Fi. Then the vir-

tual field writes:

uHðx; zÞ ¼
XN

i¼1

FuH
i ðxÞGu

i ðzÞ

wHðx; zÞ ¼
XN

i¼1

FwH

i ðxÞGw
i ðzÞ

8ðx; zÞ 2 X

8

>>>><

>>>>:

ð25Þ

Fig. 4. Displacement �u over the thickness for h ¼ 0 and S ¼ 50.

Fig. 5. �rxx field obtained with the PGD for S ¼ 10 (left) – Error in comparison with the exact solution for S ¼ 10(right).

Fig. 6. Curved geometry (left). Mid-plane surface and local basis at nodes (right).



And the displacement is approximated by:

uðx; zÞ ¼
XN

i¼1

Fu
i ðxÞG

u
i ðzÞ

wðx; zÞ ¼
P

Fw
i ðxÞG

w
i ðzÞ

8ðx; zÞ 2 X

8

><

>:

ð26Þ

With the weak formulation Eq. (14) and using the function A

defined in Eq. (17) it finally gives:

XN

i;j¼1

A FH

i ; Fj;Gi;Gj

� �
¼

Z

@X

uH � ðr � nÞ ð27Þ

This system can be solved using a finite elements discretization,

the unknown being the nodal values of all the functions Fi for

i ¼ f1;2; . . . ;Ng.

Once these functions are determined, it is possible to compute

the residual error related to the finite element operators (see [8]

for more details). The error criterion used for the standard PGD

can be applied here. If the error is not satisfying, new terms can

be added with the standard PGD algorithm in order to converge

toward a better solution. Then, it is easy to improve the basis by

adding the new z-functions and making a Singular Value

Decomposition.

The computational cost of the proposed strategy when the func-

tions Gi are known should be in the same order as Layerwise

approaches if the number of DOF is the same. The total number

of DOF is related to the number N of basis functions considered.

The computational cost increases drastically when N increases.

Therefore, the proposed strategy remains efficient since N is suffi-

ciently small. The initial PGD strategy mat be a better choice if the

numbers of basis functions is to high (higher than 10 for instance).

In addition, if the number of basis functions becomes higher than

the total amount of nodes in the thickness, a 3D solid approach

is probably more appropriate.

4.2. Illustration

To illustrate the above strategy, a new problem is firstly consid-

ered. It consists in a 2D shell (shell model using plane strain

assumption) with uniform curvature. The mid-plane surface is

described with a quarter of circle whose radius is set to 100 mm.

The thickness of the shell is set to 10 mm. The shell is clamped

on the left side and a 20 mm radial displacement is enforced on

the right side.

A [0/90/0] laminate with unidirectional plies is considered with

the properties given in Eq. (23).

The displacement of the shell is depicted in Fig. 9.

The results are obtained with the PGD using only 1D quadratic

elements (see Fig. 10).

For this case, the PGD converges with 19 enrichment iterations.

A Singular Value Decomposition of the solution gives an optimized

decomposition with only 4 terms.

Now another problem based on an equivalent geometry is trea-

ted but with a different curvature (the radius of curvature is set to

200 mm) and with a different boundary condition: a 20 mm tan-

gential displacement is enforced on the right side. The displace-

ment is depicted (Fig. 11). Finally the problem to solve is really

Fig. 7. Left: deformed shape and norm of displacement (mm). Right: error of the displacement between FEM and PGD (mm).

Fig. 8. rxx over the thickness at the center of the panel.

Fig. 9. Initial shape (dark grey) and deformed shape (light grey).



different from the previous one. This time, the solution is not

determined with a new PGD algorithm but the functions Gi for

i ¼ f1;2;3;4g are taken from the first calculus. Then, it remains

to solve the 2D problem related to find Fi for i ¼ f1;2;3;4g.

The results are compared with the solution obtained with the

PGD method. The stress profiles are given in Fig. 12 on the most

critical point that is on the bottom left of the structure for rxx

and rzz, and on the right extremity of the structure for rxz. The

mean relative error (given as global indicator) is 0.08% for the dis-

placement and around 3% for the different stress components. Of

course, locally, the error is more important as it can be seen in

Fig. 12.

Fig. 10. rXX field (MPa) obtained with the PGD.

Fig. 11. Initial shape (dark grey) and deformed shape (light grey).

Fig. 12. Stress profile: (a) rxx over the thickness on the bottom left of the structure.

(b) rzz over the thickness on the bottom left of the structure. (c) rxz over the

thickness on the right of the structure.



5. Conclusion

This article presents a new approach to treat shell structures

between the use of shell elements and the use of 3D solid elements.

The main interest of this approach is that it can treat complex phe-

nomena like damaging in composites structures that are difficult to

model with shell elements. Another advantage is that the compu-

tational cost is keep much lower than a full 3D finite elements

modeling. Further work needs to be performed but this method

is promising in the sense that it may bring in future significant

advances in composites simulation.
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