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1. Introduction 

Controlling the behaviour and the energy yield of turboshaft engines for each of the different 

operating regimes is essential to ensure that the desired power is achieved. One way to 

improve the performance of these turboshaft engines is to control the geometric variability of 

the turbine, and more particularly the clearance between the blade tips and the stator. 

In the preliminary design phase, several alternative turbine architectures are envisaged. These 

alternatives are often based on different component shapes and dimensions, with several 

technical solutions being proposed for joints between components and different materials. In 

this article we propose a model which will define clearance between blade tips and stator for 

different turbine architectures, taking the following variabilities into account: 

- processes for obtaining parts, 

- processes for assembling parts, 

- thermomechanical behaviour of the turbine. 

The model described in this article is based on a variational approach, manipulating sets of 

geometric constraints that formalise polytopes [1].  

A polytope is the bounded intersection of a finite set of closed half-spaces of n  of which the 

boundaries are hyperplanes of 1n  [2]. A polytope is used to define all the positions of a 

surface within a tolerance zone (geometric polytope) and all the relative positions between 

two surfaces potentially in contact (contact polytope). By applying operations (Minkowski 

sums [3], [4] and intersections) to geometric and contact polytopes it is then possible to 

characterise the relative position between the rotor and the stator in a turbine. These 

operations are deduced from the topological structure of the turbine defined by a contact 

graph for one connected component [5]. 

There are models that characterise geometric variations by sets of constraints; these include 

the domain [6], the T-Map [7] and the polyhedron [8]. In contrast to the polytope, in domains 

and T-Maps the boundaries of the half-spaces are generally not linear. 

Clearance between the rotor and the stator in the turbine is defined in terms of a reference 

model with a reference behaviour. In the reference behaviour, all the parts are at 20°C and are 

modelled by infinitely rigid solids [9]. In the reference model any geometric variability due to 

manufacturing and assembly processes can be shown. 

The turbine's operating cycle is discretized into several distinct thermomechanical behaviours 

which correspond respectively to different thermomechanical specifications [10]. No 

transitional regime is considered. Clearance between the rotor and the stator in the turbine is 

characterised by a thermomechanical model based on a reference model and incorporating 

thermomechanical strains in the parts and the contacts. The thermomechanical model is then 

used to define geometric variability due to manufacturing and assembly processes and also 

variability inherent in the thermomechanical behaviour of the turbine. 

Two performance criteria are formulated with which to qualify the proposed turbine 

architectures: risk of touching and leakage section between rotor and stator. This work is part 

of a general series of studies into decision support systems to assist the designer in choosing a 

qualified turbine architecture that performs better than any other. 

In the first part, the procedure for modelling different geometric variabilities is described. In 

the second part the qualification criteria for turbine architectural solutions are presented. In 

the third part, we describe an application of this work to a sub-unit of a turbine of turboshaft 

engine. 

Finally, after drawing the principal conclusions, future developments for this work are 

presented. 



2. Modelling geometric variability 

The geometric variability in processes for obtaining parts and in assembly processes are taken 

into account by 3d dimension chain simulation tools. However, most of these tools model the 

different parts as infinitely rigid solids, so to make up for this, the thermomechanical strains 

on the parts must be integrated into 3d dimension chain simulations. This is essential in order 

to control clearance at the tip of the turbine blade in different operating phases in a turboshaft 

engine [9]. 

2.1. Variability due to manufacturing and assembly processes  

The geometric models used in 3d dimension chains are generally based on the following 

hypotheses: no defect in the shape of the real surfaces, no local strain on surfaces in contact 

and no flexible parts. These hypotheses define the reference behaviour of a system. The limits 

for geometric defects in a part (defined by specification) are defined by a geometric polytope; 

the acceptable limits for relative displacement between two surfaces in contact (defined by 

clearance) are defined by a contact polytope. A functional condition expressed between any 

two surfaces of a mechanism is characterised by a functional polytope. Respecting a 

functional condition is simulated by including a calculated polytope in the functional polytope 

[1], [11] and [12]. The calculated polytope is the result of operations (Minkowski sums and 

intersections) between geometric polytopes and contact polytopes. 

Let us consider figure 1a: surfaces 1,2 and 1,3 of part 1 are in contact with surfaces 2,2 and 

2,3 of part 2 respectively. 
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Figure 1: Transfer of FC. 

 



Contact between two surfaces, i.e. a joint, can be defined using a set of parameters. There 

have been several studies on this subject [13], [14], [15]. Hereafter we will use the definition 

proposed in [16], which is a direct application of that described in [15]. 

A joint is defined according to the following parameters: 

- type: planar pair, cylindrical pair, ball and cylinder pair, etc. 

- situation element(s): plane, straight line, point 

- nature: fixed, sliding or floating 

- clearance: minimal clearance and maximal clearance: min max,J J . 

The type of joint conforms to those defined in [17] and is determined according to the types 

of the two surfaces in contact and their relative position. 

The situation elements position the joint in space, and thus define the directions of degrees of 

mobility [5], [18]. A cylindrical pair joint will be defined by a straight line; a planar pair joint 

by a plane, etc.The nature of the contact determines the behaviour of the joint in the following 

three configurations: floating, sliding or fixed [15]. 

In the case of a cylindrical pair joint, ball and cylinder joint or spherical pair joint, clearance is 

defined as the difference between the diameter of the hole and the diameter of the shaft. 

Clearance may be positive, null or negative. In the case of a ball and plane pair, cylinder and 

plane pair or planar pair joint, clearance is the distance between the two surfaces potentially in 

contact. In this case clearance may be positive or null. 

The contacts between surfaces 1,2 and 2,2 and between surfaces 1,3 and 2,3 are defined in 

figure 1a. 

Let us suppose that functional condition FC, limiting the relative position of surfaces 1,1 and 

2,1, must be respected. There is coaxiality such that the displacement e  of point A on the axis 

of surface 1,1 in relation to the axis of surface 2,1 respects FC for all directions orthogonal to 

axis x.  

min maxFC : e ee   (1) 

The graph in figure 1b shows the topological structure of the system illustrated in figure 1a. 

This is sometimes called the joint graph or contact graph [5]. The two parts, 1 and 2, are 

represented by the two large circles while the surfaces of parts 1 and 2 are represented by the 

small circles inside the large circles 1 and 2 respectively. The designation ,i j  inside a small 

circle means surface j  of part i . The two contacts are defined by the two edges linking 

vertices 1,2 : 2,2 and 1,3 : 2,3 respectively. The functional condition FC is defined by an edge 

between surfaces 1,1 and 2,1 labelled FC. 

In figure 1c, the location specifications for surfaces 1,1 and 2,1 in relation to reference 

systems A B and C D respectively, are specifications that are influent on the FC. Similarly, 

the diameter specifications for surfaces 1,2 and 2,2 are also influent on the FC. These 

specifications are compliant with ISO standards [19], [20] and [21]. Generally, location and 

diameter specifications are the result of transferring the FC to parts 1 and 2. These 

specifications are also shown in the graph in figure 1d. In the representation of the two 

location specifications the point of the arrow indicates the toleranced element while the 

triangle indicates the reference system. The diameter specifications are intrinsic to surfaces 

1,2 and 2,2 and are represented by an arc attached to the same vertex. 

In this example, respect for the FC can therefore be defined by the following equation where 

the calculated polytope, written as 1,1/2,1D , must be included in the functional polytope, written 

f

1,1/2,1D  : 

f

1,1/2,1 1,1/2,1D D  (2) 

 

 



The calculated polytope is defined by equation (3) where: 

- 
g

1,1/1,3-1,2D  and 
g

2,3 2,2/2,1D  represent the locations of parts 1 and 2 respectively, 

c

1,2/2,2D  and 
c

1,3/2,3D  represent the cylindrical pair and planar pair joints respectively. 

 g c c g

1,1/2,1 1,1/1,3-1,2 1,2/2,2 1,3/2,3 2,3 2,2/2,1D =D + D D +D  (3) 

The limits for the positions of the surface 1,1 axis in the tolerance zone TZ enable us to define 

all the half-spaces of the geometric polytope 1,1/1,3-1,2

gD : see figures 2a and 2b.  
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Figure 2: Localisation modelled by a geometric polytope. 

 

The geometric polytope 1,1/1,3-1,2

gD  is defined by [1]: 

1,1

1,1/1,3 1,2 N,1,1/1,3 1,21,1: . with normal unit vector to 1,1 at point 
2

g

N N

t
N N 

 
     
 

ε n nD  (4) 

,1,1/1,3 1,2N ε  is the translation vector of 1,1 with respect to 1,3-1,2 at point N .  

 

As surface 1,1 is cylindrical, equation (4) can be written: 
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According to the property of small displacement fields, this gives: 

  ,1,1/1,3 1,2 ,1,1/1,3 1,2 1,1/1,3 1,2, with : N MN M N M       ε ε NM ρ  (6) 

1,1/1,3 1,2ρ  is the rotation vector of 1,1 with respect to 1,3-1,2. 

 

 

 

 



Finally, 1,1/1,3 1,2

g

D  is written at point A giving consideration to (5),(6): 
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Figure 2c shows a graphic representation of 1,1/1,3 1,2

g

D , the 4d polytope defined in (7), 

projected in 2 . The translation deviations at point A following y  are projected onto axis 

Ay  and the rotation deviations following z  are projected following z . The interior of the 

polytope (boundary included) represents the geometric deviations that comply with the 

location specification in figure 2a. The definition of the geometric polytope 2,1/2,3 2,2

g

D  

defining the location of part 2 is analogous with that of 1,1/1,3 1,2

g

D . 

The definition of a contact polytope characterising a contact specification is deduced from 

non-interference strains from which all the half-spaces of the contact polytope 1,2/2,2

cD  can be 

defined: see figure 3a.  
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Figure 3: Cylinder pair contact modelled by a contact polytope. 

 

Polytope 1,2/2,2

cD  is defined as: 

 1,2/2,2 ,1,2/2,21,2 : . with normal unit vector to 1,1 at point c

N N N NN d N   ε n nD  (8) 

,1,2/2,2Nε  is the translation vector of 1,2 with respect to 2,2 at point N . Nd  is the local distance 

in N between the two surfaces potentially in contact following Nn  in the specific position 

where the situation deviations between the two surfaces are null. In the example, the distance 

Nd  is defined as a function of clearance J  between surfaces 1,2 and 2,2: 

2
N

J
d   (9) 

As this is a cylindrical pair contact, equation (8) can be written: 
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Using the property of small displacement fields defined in (6), in the same way as polytope 

1,1/1,3 1,2

g

D , 1,2/2,2

cD  can be written at point A (see figure 3): 
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1,2/2,2ρ  is the rotation vector of 1,2 with respect to 2,2 at point N . Figure 3b shows a graphic 

representation of 1,2/2,2

cD , 4d polytope defined by (11) in the configuration where maxJ J  

(i.e. the most unfavourable configuration for the FC), projected in 2 . We then have (see 

figures 1c and 1d):  

   max 2,2 2,2sup 1,2 1,2infn nJ D d D d     (12) 

The translation deviations at point A following y  are projected onto axis 
Ay  and the rotation 

deviations following z  are projected following z . 

Figure 4a shows how polytope 1,1/2,1D  is determined from equation (3) projecting into 2  in 

the configuration where maxJ J . Figure 4b shows in 2  that the FC is respected, in that the 

calculated polytope 1,1/2,1D  (2-dimension) must be contained inside the functional polytope 

f

1,1/2,1D  (1-dimension). The following equations, characterising compliance with the FC, have 

therefore been deduced: 
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Figure 4: Respect of a functional condition by operations on polytopes in rigid behaviour. 

2.2. Variability due to thermomechanical behaviour 

Several studies have been carried out to manage compliant structure: [22], [23], [24], [25]. 

These take into account geometric variations induced by the assembly process and 



manufacturing dispersions. Mandil et al. show the usefulness of considering functional 

requirement variations throughout the various phases of the product life cycle, by taking 

thermomechanical phenomena into account [26]. Simulation of the thermomechanical 

behaviour of the system studied is based on finite element digital simulations. Benichou et al. 

present a tolerance analysis method taking into account thermal dilatation, but this work does 

not integrate thermomechanical deviations of parts dependent on contact conditions with 

other parts [27]. The model produced in this article is based on a reference behaviour 

described in the preceding paragraph, with the system modelled using infinitely rigid parts. 

Each thermomechanical behaviour is characterised by a change in the reference behaviour. 

The following hypotheses are postulated for each thermomechanical behaviour: 

- invariance of the topological structure of the (contact) graph, 

- variations in the form and dimensions of the parts are taken into account, 

- no local strain on surfaces in contact. 

The invariance of the topological structure of the graph means that there is no additional 

contact and no suppression of contact between two behaviours. In addition, each contact type 

remains the same: a cylindrical pair remains a cylindrical pair, a planar pair remains a planar 

pair, etc. However, the different parameters that define contact (minimal clearance, maximal 

clearance, nature of contact, ...) may change. 

The thermomechanical behaviour of the system is presumed to be elastic; it is modelled in 

small strains and small displacements. 

Let us consider figure 5a which shows a thermomechanical change in our system. For each 

part, a thermomechanical simulation by finite elements is carried out in a free state. The 

purpose of a simulation is to determine geometric variations of thermomechanical origin in a 

part, while considering no contact stress with the surrounding parts, and thus determine 

changes in contacts between parts. 
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Figure 5: Geometric deviations between two deformed surfaces potentially in contact. 

 

A method commonly used in 3d metrology will enable us to assess the geometric variations of 

thermomechanical origin in a part in a free state. A part under strain is modelled by a finite 

number of points, each one corresponding to a  node in the mesh of this part. An ideal surface 

(plane, cylinder, cone, ...) is associated to the mesh nodes using the least squares criterion. 



Thus the cylindrical surfaces 1,2 and 2,2 are associated to the nodes of strains on two nominal 

cylindrical surfaces. 

Simulation of a joint between two parts that are potentially in contact consists of determining 

the contact polytope in the event that the surfaces in contact are under thermomechanical 

strain. The condition of non-interpenetration defined in (8) no longer depends solely on 

clearance between the two surfaces due to manufacturing deviations but also on local 

clearance due to dimension and form deviations of thermomechanical origin. Local clearance 

Nd  at point N  is defined as a function of clearance J  between the two substituted surfaces 1,2 

and 2,2 and as a function of form deviations of thermomechanical origin
 N-1,2 thdev 

 and 

N-2,2 thdev 
 in surfaces 1,2 and 2,2 respectively (see figure 5b) : 

  N N-2,2 N-1,2
2

th th

J
d dev dev     (14) 

In this case, clearance J  between the two substituted surfaces is defined in the following: 

 

   2,2 1,2 2,2 2,2_ma 2,2_th 1,2 1,2_ma 1,2_th

1,2 2,2

1,2_ma 2,2_ma
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D D D D

with:
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, : diameter deviation du to manufacturing process

, : diameter deviation du to thermom

n n

n n

J d d d d

d d

d d

   + + + +

echanical strains

 (15) 

The least favourable configuration for the FC in relation to manufacturing deviations is that 

which corresponds to:  

    max 2,2 2,2sup 2,2_th 1,2 1,2inf 1,2_thD Dn nJ d d d d + + + +  (16) 

Finally, for the CP joint in its least favourable configuration, equation (8) is written at point A: 

   max
1,2/2,2 1,2/2,2 N-2,2 N-1,2

1,2

.
2

2
with: cos . sin . : . ,0

A N th th

N

J
NA dev dev

i i i n
n

  

 

 
     

 

 
      

 
θ

ε ρ n

n y z


  

 (17) 

The polytope defined in (17) is generally expressed 
c,th

1,2/2,2D . There are two possibilities:  

- (a) the intersection between the half-spaces defined by (17) generates a polytope, 

- (b) the intersection between the half-spaces defined by (17) generates an empty set. 

Case (a) is illustrated in figure 6 where the polytope 
c,th

1,2/2,2D , represented in two specific 

projection planes, defines the relative positions of surfaces 1,2 and 2,2 at point A.  
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Figure 6: Contact polytope between two deformed surfaces without clamping. 



Case (b) corresponds to a local clamping phenomenon, also called local tightening, between 

the two parts. No movement between the two surfaces relative to one another is possible: the 

specifications state that the joint has fixed contact. The contact polytope 
c,th

1,2/2,2D  is a vertex 

that coincides with the origin: see figure 7. 
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Figure 7: Contact polytope between two deformed surfaces with clamping. 

 

Let us consider the functional condition defined in equation (1) characterised by the 

functional polytope 
f

1,1/2,1D . Equation (3), which defines respect of the functional condition, 

remains the same, given that the topological structure of the system between one 

thermomechanical behaviour and the reference behaviour is presumed to be invariant. 

A thermomechanical study of the complete system has to be carried out so as to take into 

account the contact conditions between the parts in the thermomechanical behaviour. The 

clamping or non-clamping phenomena are modelled in the contact limit conditions between 

parts using finite element modelling. Figure 8 shows the result from a thermomechanical 

calculation on the complete system.  
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Figure 8: Characterisation of the thermomechanical behaviour of the complete system. 

 

The aim of the thermomechanical simulation is to define the polytope 
th

1,1/2,1D  with which it 

will be possible to determine deviations of thermomechanical origin between surfaces 1,1 and 

2,1. The same method is used here as was used previously to determine deviations of 

thermomechanical origin on a part under stress in a free state: see figure 8. 

 



From (3), equation (18) defines determining polytope 1,1/2,1D  with: 

- 
th

1,1/2,1D  : polytope characterising deviations of thermomechanical origin between surfaces 1,1 

and 2,1, 

- 
g

1,1/1,3-1,2D , 
g

2,3 2,2/2,1D : geometric polytopes characterising geometric variations limited by the 

location specifications, 

- 
c,th c,th

1,2/2,2 1,3/2,3D ,D : contact polytopes characterising geometric variations induced by diameter 

specifications and the thermomechanical behaviour of the parts. 

We thus obtain: 

  th g c,th c,th g

1,1/2,1 1,1/2,1 1,1/1,3-1,2 1,2/2,2 1,3/2,3 2,3 2,2/2,1  D D D + D D +D  (18) 

Figure 9a shows the construction of the polytope 1,1/2,1D  defined by equation (18). The 

inclusion of the calculated polytope in the functional polytope shown in figure 9b 

characterises compliance with the functional condition. It therefore follows: 
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Figure 9: Respect of a functional condition by operations on polytopes in thermomechanical 

behaviour. 

3. Turbine performance criteria 

In this part we define the relationship between two performance criteria (energy yield and risk 

of the blades touching the stator) and the geometric variability of a turbine stator. The 

different turbine architectures that will be analysed in relation to the two performance criteria 

in §4 will all have the same rotor. We hypothesise that the geometric variability of the rotor 

will not be discriminant in this example. This variability will therefore not be described in 

detail. 



3.1. Correlation of performance criteria with geometrical criteria 

The correct functioning of a turbine relies on two performance criteria: energy yield and the 

risk of the blades touching the stator. These two performance criteria depend on the clearance 

between the turbine blades and the stator. Turbine energy yield is correlated with the flow of 

gas between the blade tips and the stator. This flow rate depends on the leakage section, the 

difference between the rotor and the stator sections; in order to guarantee optimal yield, it 

must not exceed a maximal value: maxS . 

To maximise the turbine’s energy yield, rotor-stator clearance should be as small as possible 

while ensuring that in all of the turbine’s operational phases the blades are not too close to the 

stator (which could damage the turbine and risk damaging the engine in operation). The risk 

of touching is correlated with a minimal clearance value that must be respected: minC . 

3.2. Geometrical criteria 

Local clearance between the blades and the stator  C   should be sufficient to avoid 

touching any part of the periphery of the turbine (see figure 10). 

The touch criterion can be expressed by the following equation, where minC  is the minimum 

clearance that guarantees that the turbine functions correctly. 

   0;2minC C     (20) 

The leaking of gas between the stator and the rotor is determined by the leakage section S (see 

figure 10). 
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Figure 10: Sections of rotor blades and stator. 

 

The criterion for power in a turbine is correlated with the leakage section. To maximise 

turbine power the leakage section must be minimised, as defined in the following equation: 

max

with stator rotor

S S

S S S



 
 (21) 

statorS  defines the section of the ring that is close up to the rotor, with the section of the rotor 

expressed as rotorS . 

3.3. Stator variability  

 ,stator M δ  defines the position of a point on the real profile, with M  the centre of the least 

squares circle and according to angle  , in relation to the reference axis (figure 11). The 



reference axis is the nominal axis of the stator, which coincides with the nominal axis of the 

rotor. 
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Figure 11: Parameters of a nominal circular surface. 

 

The position  ,stator M δ  is written: 

     1,1 1,1

1,1 1,1

D
, , .

2 2

n

stator

d
M M dev M  

 
    

 
δ e n  (22) 

The preceding equation is defined as follows: 

-  1,1 Me : location deviation of the centre of the substitute circle in relation to the reference 

axis,  

- 1,1nD
: nominal diameter, 

-
1,1d : dimension deviation between the nominal diameter and the substitute circle diameter, 

-  1,1 ,dev M  : form deviation of the real profile in relation to the substitute circle. 

In the same way,  ,rotor M δ  defines the position of a point located on the profile of the real 

rotor at the tip of the blades. 

By integrating equation (22) into equation (20), the touch criterion can be defined as follows: 

         1,1 1,1

1,1 1,1

D
, . , with : 0;2

2 2

n

rotor

d
M dev M M    

 
      

 
C e n δ  (23) 

By combining equation (22) with equation (21), which describes the stator, the energy yield 

criterion is then defined as:  

 
2

2
1,1 1,1

1,1
0

D1
. , .

2 2 2

n
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d
S dev M d S



 
 
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 

  (24) 

The deviations in dimension and shape are very small compared with the nominal diameter of 

the stator section. The integral which formalises the area of the stator section in equation (24) 

can then be linearised: 

 
2

2
1,1 1,1 1,1

1,1
0

D D
, .

2 2 2

n n

stator

d
S dev M d



  
   

       
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  (25) 



4. Application to a simplified turbine model 

4.1. Description of the simplified turbine 

The simplified turbine model (figure 12) consists of two sub-units: a stator (parts labelled 1 

and 2) and a rotor (part labelled 3), with a turning pair contact around x : see figure 12. Part 3 

forms a revolution, where the largest diameter corresponds to the diameter of the blade tips.  
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Figure 12: Simplified geometric model of a turbine. 

 

When the engine is in operation, a flow of hot gases (1000°C approx.) is created by the 

combustion chamber (not shown in figure 12) and as a result parts 1, 2 and 3 undergo strain. 

In this example, only the thermomechanical strains on part 1 are taken into account when the 

engine is in operation. 

In the following part of the article, parts 2 and 3 are assumed to be infinitely rigid and 

geometrically perfect. Moreover, the turning pair contact between part 2 and part 3 is 

considered to have no defects and no clearance. 

The criteria defined in §3 will be studied for two different turbine architectures. Two variants 

of a technical solution will be considered, the aim being to produce a clamping contact 

between part 1 and part 2 (see figures 13 and 14): 

- Architecture 1: planar pair contact with five short centring plugs located on a diameter D 

and distributed equiangularly. 

- Architecture 2: planar pair contact with one short centring plug. 
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Figure 13: Turbine architectures. 
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Figure 14 : Graph representations. 

4.2. Defining parameters and formulating performance criteria 

According to the hypotheses defined in the previous paragraph, the geometric variabilities of 

the two technical solutions considered depend only on the processes of obtaining part 1, and 

assembling parts 1 and 2 together, and the thermomechanical behaviour of part 1. 

Equation (23) defines the touch criterion; this then becomes: 

   

     

 

0
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. ,
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, .
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d
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e n

δ n

 (26) 

Equation (24) defining the energy yield criterion then becomes: 
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 C   and S  are dependent on the architecture variants. 0C  and 0S  are variables that are 

independent of the architectures by hypothesis. 

4.3. Geometric characterisation 

In the first phase, the turbine is modelled in a reference behaviour where all the solids are 

infinitely rigid: only manufacturing defects and clearance in the different contacts is taken 

into account. In phase two, a thermomechanical behaviour is considered, where there are 

strains due to the flow of hot gases from the combustion chamber at a point when the turbine 

is operating in a steady regime. Thermomechanical strains are then integrated into the 

reference model as described in §2.2.  

4.3.1. Characterisation of the variability of 

production and assembly processes 

Figures 13 and 14 describe the two architectures considered. 

For architecture 1, clamping contact consists of a planar pair contact and five ball and 

cylinder pair contacts, with clearance, by means of five centring slugs. For architecture 2, 

clamping contact consists of a planar pair contact and one ball and cylinder pair contact, with 

a clamping screw. 

In both architectures, bolts are used to keep parts 1 and 2 in position. They are not considered 

in the modelling process as they do not affect the relative positioning of parts 1 and 2. 

Determination of:    1,1/3,1 1,1/3,1 .e M M  e n  is based on a 3d dimension chain formalised by 

operations on the polytopes (intersections and Minkowski sums). 

The polytope that defines the displacement limits of surface 1,1 in relation to surface 3,1 is 

expressed by the following Minkowski sum: 

1,1/3,1 1,1/ / /2,2 2,2/3,2 3,2/3,1

g c g c g

AB AB CD CD    D D D D D D  (28) 

/

c

AB CDD  is the contact polytope defined by the planar pair contact and the five ball and 

cylinder pair contacts for architecture 1 and the one ball and cylinder pair contact for 

architecture 2. 1,1/

g

ABD  is the geometric polytope characterised by the location of surface 1,1 in 

relation to reference system AB according to ISO standards [19], [20] and [21] for the two 

architectures (see figure 15).  
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Figure 15: Definitions of parts 1. 

 



Polytopes /2,2

g

CDD  and 3,2/3,1

gD  characterise the geometric polytopes for parts 2 and 3 

respectively, and polytope 2,2/3,2

cD  characterises the contact polytope for the turning pair 

contact between parts 2 and 3. 

According to the hypotheses advanced in §4.1, equation (9) then becomes: 

1,1/3,1 1,1/ /

g c

AB AB CD D D D  (29) 

The calculated polytopes 
1,1/3,1D  resulting from the Minkowski sums defined by equation (29) 

are shown in figure 16, where maxJ  represents clearance in the five ball and cylinder pair 

contacts and 
1,1t  the dimension of the tolerance zone for the location specification of surface 

1,1. 

From figure 16 we can determine the values of the location deviation between surfaces 1,1 

and 3,1.  
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Figure 16: Geometric polytope of location of surface 1,1 at point A. 

 

Equations (30) and (31) define the minimal and the maximal values of this deviation for 

architecture 1 and architecture 2 respectively: 

 1,1 1,1max max
1,1_ 1

2 2 2 2
A

t tJ J
e M       (30) 

 1,1 1,1

1,1_ 2
2 2

A

t t
e M     (31) 

As seen in the definition drawing for part 1, the dimension deviations for surface 1,1 in the 

two architectures are given in equations (32) and (33). 

1,1_inf 1,1_A1 1,1_supd dd   (32) 

1,1_inf 1,1_A2 1,1_supd dd   (33) 

By definition, deviations in form due to manufacture are not taken into account, which gives: 

   1,1_A1 1,1_A2, = , =0dev M dev M   (34) 

4.3.2. Characterisation of 

thermomechanical variability 

Thermomechanical strains caused by a flow of gases from the combustion chamber and 

illustrated in figure 17 have to be integrated into the geometric variability of the stator. 
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Figure 17: Thermal marginal conditions. 

 

As described in §2.2, thermomechanical studies were made of different parts in the free state. 

This was to detect whether any clamping was present in the contacts. In this example, only 

part 1 was studied in the free state since parts 2 and 3 are considered to be infinitely rigid 

from the hypotheses formulated in §4.1. Thermomechanical calculations were made using 

Abaqus software. 

In architecture 1, radial displacement of the slugs in their housing uses up all the clearance 

(see figure 18).  
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Figure 18: Radial displacements of the slugs. 

 

This represents clamping between parts 1 and 2 with positioning by joints BCP1-i. 

The planar pair contact / short centring used in the technical solution for architecture 2 

remains without clearance, however, clamping caused by tightening of surface B on surface D 

appears in joint BCP2. 

Lastly, in architecture 1, a thermomechanical analysis of part 1 was carried out using the 

thermal limit conditions defined in figure 17, the mechanical limit conditions defined in figure 

14 and incorporating clamping in joints BCP1-i as shown in figure 18. 

A similar thermomechanical analysis was carried out for architecture 2 with the same thermal 

limit and mechanical limit conditions and incorporating clamping in joint BCP2. 

From these two thermomechanical analyses, strains in surface 1,8 could be characterised for 

architectures 1 and 2 in a plane section: see figure 19. 
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Figure 19: Thermomechanical strains of surface 1,1 in plane (A, x). 

 

From figure 19 we can determine location deviation, dimension deviation and form deviation, 

due to thermomechanical strain for both architectures. 

When changes in contacts, changes in geometry, and the different deviations defined in 

equations (30) to (34) are incorporated, this gives: 

 1,1 1,1

1,1_ 1
2 2

A

t t
e M     (35) 

 1,1 1,1

1,1_ 2
2 2

A

t t
e M     (36) 

1,1_inf 1,1_A1_th 1,1_A1 1,1_sup 1,1_A1_thd d d dd     (37) 

1,1_inf 1,1_A2_th 1,1_A2 1,1_sup 1,1_A2_thd d d dd     (38) 

 1,1_A1_th_min 1,1_A1 1,1_A1_th_maxdev , devdev M    (39) 

 1,1_A2 , =0dev M   (40) 

4.4. Defining the two architectures 

All the parameters defining the variability of clearance at the blade tips as a function of 

geometric and architectural variability have been defined. These different parameters are then 

exploited to compare the two architectures one with another in terms of thermomechanical 

situation. 

From equations (41) and (42), for thermomechanical behaviour, we can compare variations in 

minimal clearance for the two architectures.  

1,1

1,1_inf 1,1_A1_th

1,1_A1_th_min 0

d d
2 min

t

C

dev C


    


  

 (41) 

1,1

1,1_inf 1,1_A2_th 0d d
2

min

t
C C      (42) 

From equations (43) and (44) we can compare the energy yield of the two architectures, from 

variations in the leakage sections. 

1,1_inf 1,1_A1_th

0 max

d +d
D

2
stator S S      (43) 



1,1_inf 1,1_A2_th

0 max

d +d
D

2
stator S S      (44) 

To compare the two architectures in terms of thermomechanical behaviour, only dimension 

deviations and shape deviations are determinant in relation to the two performance criteria. 

Thermomechanical calculations give the following results: 

1,1_A1_th 1,1_A2_th 1,1_A1_th_mind d and dev 0   (45) 

Where the risk of touching predominates over energy yield, architecture 2 is the most 

efficient.  

Where energy yield predominates over the risk of touching, then architecture 1 performs best. 

Thus the preponderance of one or other of the two performance criteria determines which is 

the more efficient solution. 

5. Conclusions-Future developments 

The geometric variability described in this article is based on a variational approach 

formalised by operations on polytopes. This enables us to take into account the multiphysical 

behaviour of a mechanical system by incorporating variabilities inherent in processes relating 

to obtaining parts, assembly processes and the thermomechanical behaviour of the system, all 

in the same model. 

With this model we were able to determine variations in rotor/stator clearance at the tips of 

the blades in the high pressure turbine of a turboshaft engine under two different behaviours: 

a reference behaviour (parts at 20°C) and a thermomechanical behaviour (combustion 

chamber at approximately 1000°C). The variations in rotor/stator clearance gave rise to two 

different turbine architectures in relation to two performance criteria: energy yield and the risk 

of touching the blade. This model can be used at a very early stage in the design cycle and 

will enable the designer to focus on turbine architecture at the architectural design phase. 

Only two operational cycle behaviours are dealt with in this article, but there are several 

others that can be considered, especially in the most critical phases of turbine operation, such 

as starting up, for example. In addition, only two types of joint between the ring support and 

the turbine housing were analysed. In future work, other joints will be studied between 

different parts which could have different forms and dimensions, and in the near future, 

thermomechanical strains in several parts of the stator will be considered. 

Finally, geometric variations resulting from residual strains from manufacturing processes 

(e.g. welding metal parts or RTM injection of parts made of composite materials) have an 

important role to play and will be incorporated into these studies. 
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