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Many researches show that the ability of independent, heterogeneous enterprises’ information 

systems to interoperate is related to the challenges of making their semantics explicit and formal, 

so that the messages are not merely exchanged, but interpreted, without ambiguity. In this paper, 

we present an approach to overcome those challenges by developing a method for explication of 

the systems’ implicit semantics. We define and implement the method for the generation of local 

ontologies, based on the databases of their systems. In addition, we describe an associated method 

for the translation between semantic and SQL queries, a process in which implicit semantics of the 

EIS’s databases and explicit semantics of the local ontologies become interrelated. Both methods 

are demonstrated in the case of creating the local ontology and the semantic querying of OpenERP 

Enterprise Resource Planning system, for the benefit of the collaborative supply chain planning. 

Keywords: Ontology; Systems Interoperability; Database semantics; Enterprise 

Information System; OpenERP. 
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1.   Introduction 

Traditional approaches for configuring high-speed, low-cost collaborative 

enterprises and corresponding technical requirements for tight systems integration 

appeared ineffective in the age of growing demand for product customization. 

Today, new enterprise collaborations with short lifecycles, such as virtual 

enterprises [1] and virtual breeding environments [2] or organizations [3] are 

often formed to meet the increasing demand for engineer-to-order products. Such 

loosely-coupled and temporary collaborations need to be facilitated by 

corresponding IT infrastructure, which exhibits the similar behavior. Hence, it is 

made of interoperating autonomous, heterogeneous Enterprise Information 

Systems (EIS), instead of mash-up of physically or functionally integrated 

systems. 

ISO/IEC 2382 [4] defines interoperability as the “capability to communicate, 

execute programs, or transfer data among various functional units in a manner that 

requires the user to have little or no knowledge of the unique characteristics of 

those units”. The notion of interoperability refers to the ability of heterogeneous, 

autonomous EISs to perform interactions, namely to exchange information and 

services [5]. Such paradigm is related to the federated approach, which implies 

that systems must accommodate on the fly in order to interoperate; in other words, 

no pre-determined assets for interoperability are assumed. 

There is an agreement in the research community that ontologies can be used for 

the reconciliation of the interoperating EISs. Even so, there are opinions [6] that 

the main conditions for making two loosely coupled systems interoperable are: 1) 

to maximize the amount of semantics which can be utilized and 2) to make it 

increasingly explicit.  

While “traditional” interoperability research is oriented to the use of ontologies as 

facilitators for reconciliation, the semantic interoperability focuses on data 

interpretation rather than mere data exchange, independently of implementation 

details [7]. Semantic interoperability means ensuring that the precise meaning of 

exchanged information is uniquely interpreted by any system not initially 

developed for the purpose of its interpretation [8][9]. It enables systems to 

combine and process received information with other information resources and 

even, to improve the expressivity of the underlying ontologies and consequently – 
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to increase the relevance of the data models which are formalized by those 

ontologies [10]. 

Domain ontology provides a general context for semantic interoperability of 

systems, namely, the language which they are going to use to communicate. Local 

ontologies introduce actual enterprises contexts to a collaboration environment. 

The capability of enterprises to efficiently collaborate between each other depends 

on the correspondence between their local semantics and the abovementioned 

general context. While this general context or the common language may be 

found in large number of relevant enterprise domain ontologies [11,12,13], the 

local semantics is not easily accessible, due to diversity and heterogeneity of the 

EISs landscape. 

Three main problems for unveiling this local semantics are identified: it is hidden 

behind some design and development patterns, it is specified in implicit form and 

it is represented by using arbitrary syntax. As a motivation to resolve these 

problems, it is assumed that the corresponding solution will facilitate easier 

reconciliation of the local and domain dictionaries and hence, it will reduce the 

effort needed for achieving the semantic interoperability of the systems.  

The main focus of the work, presented in this paper, is on the analysis of the 

source of the local semantics of the EISs, that is, relational database management 

systems and, consequently, its explication. Hence, the objectives of the research 

presented in this paper are to answer on the following questions: Where can the 

semantics of EISs be found? How can it be transformed to an explicit form? How 

can the common business concepts of the different explicit models be uniquely 

accessed and, consequently, processed? 

In defining the methodological approach for answering these questions, we 

assume that: 1) the enterprises’ realities are represented by the corresponding 

EISs’ models, and 2) enterprises’ message models (crucial for flexible economic 

integration) are based on EISs’ data models, represented implicitly in their 

databases. The approach described in this paper aims at making this representation 

- explicit. 

The research addresses some of the identified weaknesses of the existing 

approaches (see Section 2.2) to database to ontology mapping and aims at using 

the expressivity of OWL (The Web Ontology Language) language for enriching 

the implicit semantics of ER (Entity-Relationship) models. It delivers a method 
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and a corresponding software tool which: 1) imports the database structure and 

classifies ER entities; 2) classifies (infers) OWL types and properties; 3) enables 

lexical refinement and 4) generates a local ontology. The concepts of the local 

ontology are then mapped backwards to the corresponding concepts of the 

intermediary models, for enabling the transformation of semantic to SQL queries. 

The method is described in Section 2.3.  

Semantic querying of the databases cannot be considered independently from the 

method used to transform the database schema to a formal model. The main 

reason for this constraint is the dependence on the approach to mapping the 

concepts of the formal model to database data. Thus, the method for execution of 

semantic queries on the local ontology, namely, instantiation of its concepts 

according to the content of the relevant database, is developed and presented in 

Section 2.4. 

The approach for generating a local ontology is implemented on the case of the 

OpenERP Enterprise Resource Planning information system. OpenERP is an open 

source suite of business applications including sales, CRM, project management, 

warehouse management, manufacturing, accounting and human resources. It is a 

client-server suite, where the client communicates with the server by using XML-

RPC interfaces. It uses PostgreSQL relational database for data storage. 

The case considers the generation of a local ontology, based on an ER schema of 

the OpenERP’s database (Section 3.1) and querying of this local ontology 

(Section 3.2). 

Previous work of the authors [14] introduced a theoretical perspective for an 

ontological framework for semantic interoperability of EISs in supply chain 

networks. The current paper extends this perspective by: providing the expanded 

details on the implementation of the methods for explication and semantic 

querying; discussing about the meaning of different constructs and design patterns 

of database development; validating the method in a case study. Finally, the 

discussion and experiences from the case study are used now to precisely define 

some research gaps that will emphasize the future directions of work. 

It is important to note that the scope of the presented approach is limited only to 

selected ER patterns which are associated to semantics, expressed by the OWL 

constructs. Although the process overcomes some of the gaps, identified in the 

current state-of-the-art in database to ontology mapping, its end result typically 
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requires a considerable amount of customization and additional work. Since direct 

mapping is unlikely to produce a useful ontology, the result of this analysis may 

be considered as intermediary. Thus, a complementary work can be done for 

semantically enriching this intermediary ontology by using some approaches as in 

[15]. 

2.   Theoretical background 

One of the major challenges in the efficient use of computer systems is the 

interoperability between multiple representations of reality (data, processes, etc.) 

stored inside the systems, or actual representations and reality itself – systems’ 

users and their perception of reality [16]. Where the latter can be formalized by 

the domain ontologies, as shared specifications of the conceptualizations, the 

former relies upon the local ontologies – wrappers for heterogeneous sources of 

individual enterprises’ information, business logic and rules. 

The local ontologies formalize the implicit data from the heterogeneous sources in 

order to facilitate the semantic interoperability of the systems that store these data. 

In order to cope with the implicitness of semantics of the enterprises’ realities, we 

assume that these realities are represented by the corresponding EISs, and that the 

enterprise message models are based on EISs’ data models, represented implicitly 

in their databases. The proposed approach aims at making this representation - 

explicit. We employ a database-to-ontology method in order to transform implicit 

Entity-Relationship (ER) models to explicit OWL representations, namely, local 

ontologies. 

Then, these local ontologies can be mapped to a common, shared knowledge of 

the enterprise collaboration environment, such as a formal model of supply chain, 

while other contexts may also be added. Each of the contexts corresponds to a 

domain ontology, whose concepts are logically related to the concepts of the local 

ontologies. Thus, each domain ontology becomes a dictionary – a common 

knowledge of particular enterprise perspective which can be used to query the 

hidden, implicit knowledge stored in EISs. Then, single and integrated access to 

the multiple contexts of the particular enterprise concept becomes possible. 

The above assumptions about correlations between local ontologies and ER 

models are made for the purpose of making the process of local ontology creation 

– automatic. Otherwise, the precondition for this process would be a detailed 
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analysis of the involved EISs. An example of the work which follows this 

approach was provided by Castano and Antonellis [17]. The authors “analyzed the 

process descriptions for the aspects related to information and operation 

similarity, to evaluate semantic correspondences between processes and identify 

activity replication and overlapping, as well as for the aspects related to 

interaction/cooperation, to evaluate the degree of coupling between processes and 

identify the type and the nature of exchanged information flows”. 

In our work, the range of semantic interoperability is clearly set to EISs. The 

semantic interoperability of the enterprises is considered as a more complex 

problem and is not addressed in this paper. The conceptualization of their 

information systems is made also on the basis of business logic, which is hidden 

in the actual code, in most cases, and data models, represented by the 

corresponding relational database structure. Obviously, the business logic which 

is encapsulated in the EIS’ will remain hidden – only the underlying data model is 

exposed by ontology. The exceptions are database triggers, which can be 

considered as business rules, if they are not implemented only to enforce 

referential integrity of the database. Even so, they represent some “kind of” 

semantics that has to be taken into account in the local ontology. 

Another issue with the above assumptions is that, in the case of this approach, the 

domain of the conceptualization is restricted to database schemas. Sometimes, ER 

models, namely database schemas, do not capture the semantics of the application 

functionality and underlying data models; when information systems are highly 

generic, the application semantics is actually captured in the populated table rows. 

For example, in Business Process Management systems, the structure of the 

enterprise processes, i.e. activities, associated data structures (messages), 

compensation and error handling blocks, etc., are defined by a system user and are 

not expressed by the database schema. Moreover, those schemas are, sometimes, 

adapted to cope with implementation constraints and thus, they are losing part of 

their semantics. 

This issue is evident even in trivial cases. For example, the attribute of “type” is 

often used by database developers to describe some entity. It is typically 

transformed to hasType(string) property. In this case, the meaning of this property 

is unknown, because of the ambiguity of the linguistic term of “type”. A similar 

remark can be made also for often used notion of “status”. However, sometimes, 
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the meaning of the ambiguous notion can be determined if the list of associated 

data (strings) in database rows is semantically analyzed in the context of the 

domain (entity) of the property above. For example, if OWL is used as a 

formalism, the “hasType some bNode” construct may be used to model this 

property, where bNode is an anonymous class that contains enumerated 

(owl:oneOf) elements which correspond to data associated to the attribute. In a 

more formal approach, the values of those attributes may be considered as 

classifiers of the subsumed classes. For example, the property hasType(string) of 

the concept Machine tool, asserted with one of the following values: “turning”, 

”milling” and ”drilling” may enable the inference of the respective sub-concepts 

of the Machine tool concept - Lathe, Mill and Drill. 

In the above cases, the intervention of the domain expert in enriching the 

conceptual model is inevitable [15]. Some research tackles this issue by providing 

the tools to automatically or semi-automatically discover the semantics buried into 

existing data patterns [18]. 

Although the conceptualization of the ER model is not a novel topic, the existing 

results did not provide the method which delivered a usable conceptual model. 

This is argued in the following subsections. It seems that most of the past work is 

motivated by the problems of database interoperability, which does not 

necessarily consider the semantics of the ER model. Systems interoperability, on 

the other hand, needs somewhat different approach; it aims at conceptualizing the 

intent of the schema developer and, thus, at making the reality of the enterprise 

information system – explicit. 

2.1.   Schema integration 

Current research and practices of database interoperability are based on the earlier 

efforts in schema integration. Schema integration typically occurs [19] in the 

context of view integration (during database design) or in database integration (in 

distributed database management). The process of schema integration implies the 

development of a single - federal schema [20], expressed by using a common data 

model, for the purpose of integrating the schemas of existing or proposed 

databases into a global and unified one [19]. 

The mismatch between the schemas is caused by the fact that a single concept in 

the universe of discourse is sometimes represented in different ways, while there 
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are also cases where the single representation is associated to the meaning of 

different concepts. Typically, schema integration assumes that these conflicts are 

resolved in the process of schema transformation. This process is formalized by 

McBrien and Poulovassilis [21]. Its outcomes are equivalent schemas, which may 

then participate in the database federation. 

It is important to note that most of the approaches to schema integration do not 

make an attempt to interpret or formalize the implicit semantics of the schemas. 

Instead, they are using a notion of common data model (which does not 

necessarily reflect an ontological commitment) to enable the federation of 

databases and thus, to make those interoperable. 

With the development of the formalisms for semantics representation, the new 

approaches to database interoperability are increasingly focused on the 

transformation of the implicit semantics of the database schemas to explicit 

conceptual models. Many researchers have worked on schemas mapping [22][23] 

or data integration in ontology [24]. William et al [25] considered different groups 

of semantic relations between schema objects in order to find the corresponding 

similarities. Zhao and Ram [26] took into account the instance information in the 

process of integrating heterogeneous data sources. In one of the recent efforts, 

Ozgul and Afsarmanesh [27] used a variety of metrics and algorithms from the 

domains of Natural Language Processing and Graph theory for schema matching. 

In general, the existing approaches suffer of their applicability on existing large 

data sets. Moreover, the most of these approaches cannot be implemented in real 

cases because of the large amount of manual intervention. Some of the examples 

of the existing but practical work in database to ontology mapping are presented 

below. 

2.2.   Existing database to ontology mapping approaches and tools 

The review of the relevant literature shows that many researchers dealt with the 

problem of database-to-ontology mapping, for different purposes and with 

different approaches. In this section, we present the main features of four 

distinctive frameworks, made with different objectives, and we identify gaps, in 

terms of the selected criteria. In particular, we are interested in how the existing 

frameworks address three specific aspects related to the database-to-ontology 

process: 1) semantic interpretation of E/R patterns, i.e. a level of database schema 
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conceptualization; 2) instance population, i.e. ontology concepts instantiation; and 

3) use of the framework, i.e. translation of semantic to database queries. As the 

latter two are mostly related to the technical challenges, we consider the level of 

database schema conceptualization as the most important. 

The work on DB2OWL mapping facility is a part of development of a general 

interoperability architecture [28] that uses ontologies for the explicit description 

of the semantics of information sources, and web services for facilitating the 

communication between the different components of the architecture. DB2OWL 

[29] looks for some particular cases of database tables to determine which 

ontology component has to be created from which database component. 

According to these cases, the conversion process is performed (table → class, 

column→ property, constraint → relation) where the set of correspondences 

between database and ontology components is conserved, thus enabling the 

translation of ontological to SQL queries and retrieval of corresponding entities. 

However, it remains unclear how this translation will be implemented. More 

important, the semantics of existential constraints of the columns and cardinality 

of relations is not taken into account. The major feature of this approach, as 

claimed by the authors, is that it aims at separating data mapping from schema 

mapping. Any data manipulation with a database will not affect the ontology; the 

consistence of two corresponding data and sets of individuals will be maintained 

by the queries which will populate the ontology with instances at the moment of 

the semantic query execution. This method is referred to as a query-driven 

population, in contrast to a massive export (also referred to in literature as 

“massive dump”), which maintains the full correspondences between ontology 

individuals and database tables’ data. The latter approach is taken by the 

Relational.OWL model. 

Relational.OWL [30] is a candidate for data and schema representation format, 

relevant for database-to-ontology mapping, developed with a primary motivation 

to facilitate data and schema exchange in the Peer-To-Peer (P2P) database 

environment. It provides a meta-model, which describes the components of the 

relational database. In contrast to DB2OWL, it does not attempt to interpret the 

semantics of the E/R patterns. It does not conceptualize the E/R model but only 

provides its replica. However, it can be used as an intermediary in the process of 

database-to-ontology mapping, instead of a document with correspondences, used 
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by DB2OWL. In that sense, it can be considered as a complementary work. 

Unfortunately, as it is the case for DB2OWL, it does not model multiplicity of the 

foreign keys. Thus, it is not possible to use it to assign source and destination 

cardinality to OWL properties.  

Where DB2OWL and Relational.OWL are used to create new ontologies from 

existing schemas, there are tools that take a different approach by facilitating 

automatic, semi-automatic or manual mapping between existing ontologies and 

schemas. In this paper, we refer to the work of Konstantinou et al [31], and Xu et 

al [32]. 

Vis-A-Vis tool [31] uses the Protégé libraries for graphically representing 

ontology, a database model (MySQL or PostgreSQL) and it facilitates manual 

establishment of the mappings between them. Hence, it is not relevant to discuss 

conceptualization on the level of ER schema as it mainly depends on the 

outcomes of the manual work. The Protégé plug-in allows queries to be asked to 

the ontology and returns results from the database; it takes a query-driven 

approach to instance population. The key motivation of this approach is to keep 

the instances stored in a database while maintaining a link to the dataset, so 

ontologies become smaller. 

In contrast to Vis-A-Vis that only facilitates manual mapping, D2OMapper [33] is 

a tool for automatic or semi-automatic creation of the mappings between database 

schema and existing ontology. This work is based on the authors’ experience in 

developing ER2WO [32] tool for translating ER schema into OWL ontology. The 

key motivation of the authors was to develop a framework which would facilitate 

the generation of ontological annotations for dynamic Web pages, extracted from 

the database. D2OMapper outputs express the conceptual, in specific element 

(naming matching) and structural (predefined heuristic rules), correspondences 

between the schema and ontology. Although it is not explicitly mentioned in the 

reported work, the purpose of the approach implies that a query-driven approach 

to data population is taken. 

Even though the topic of database to ontology mapping is still very active, it 

seems that no recent work addressed the semantic issues of ER schema, in detail. 

In contrast, more focus is given to use the ontologies (actually, semantic queries) 

to gain access to the large volume of data residing in the (often, distributed) 

database systems [34, 35, 36, 37, 38, 39] or to enable the exposure of the 
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relational databases in the Linked Data environment [40] and discovery of links 

between open data sources [41]. In this context, the performance of reasoning 

becomes one of the dominant issues [42]; it is even addressed by scaling the 

reasoning capability from inference engines to database systems [43]. Other issues 

are related to making this large data more accessible, by increasing the 

expressivity [44] and robustness [45] of query languages or even to extending the 

representation languages (OWL) to support the integrity constraints from the 

relational databases [46]. The above trends correspond to the dominance of so-

called lightweight semantics in meeting the promises of Semantic Web paradigm, 

especially driven by the recent success of linking open data initiatives [47]. 

We consider that most of the existing database-to-ontology methods are not 

suitable for generating the local ontology, which can then be used in the 

application framework for collaborative enterprises, for at least three reasons. 

First, and most important, they do not interpret the semantics of all ER constructs 

and patterns. Similarly, a remark can be made that the existing approaches do not 

use the full expressivity of the OWL language. The above statements are argued 

in this section, above. Second, approaches to instance population are not fully 

appropriate for use in the collaborative enterprise settings. This is elaborated in 

more detail in Section 3.2. Third, some of the authors claim that they provide a 

method for translating semantics to SQL queries, but no detailed information 

about this method is presented in their papers. 

In our approach, we address the above-mentioned gaps by developing the 

presented explication and semantic querying methods. The major feature of this 

approach, in contrast to the existing research is the increased level of 

conceptualization. This is considered as vital for the outcomes of the semantic 

analysis, enactment and matching process, in which the local ontologies are 

typically semi-automatically related to a domain of interest. 

3.   Our approach to database-to-ontology mapping 

Database-to-ontology mapping is a process in which the implicit semantics of a 

database schema is correlated to the explicit and formal knowledge structure of 

the ontology. In our approach, we use the database schema to generate this formal 

structure in section 3.1, while the logical mappings between the ER meta-model 
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and generated local ontology are preserved. These mappings will enable the 

translation of semantic to database queries, as detailed in section 3.2. 

3.1.   Generating local ontologies 

One of the objectives of the work presented in this paper was to increase the level 

of conceptualization detail of the resulting ontology, namely, to restrict possible 

use of concepts used in the description of the system, assumingly hidden in the 

database schema. Thus, this description would become more explicit and 

consequently, computable, in contrast to implicit meaning, which is expressed 

indirectly and needs additional inference (including additional facts to facilitate 

this inference). Our approach considers the existential constraints and cardinality 

of relationships to unhide some semantic features of the assumed local ontology, 

such as necessary conditions for a class, functionality of properties and 

uniqueness. 

Existential constraints from the ER-model (“not-null”) posed on the source of the 

foreign key reflects the intention of the database developer to enrich the 

description of the source with some destination concept or concepts. In other 

words, the former cannot exist without the latter. Thus, the relationship described 

by the foreign key can be considered as a necessary condition for a given concept. 

More important, the meaning of the source concepts can be attributed to these 

necessary conditions. This approach to a conceptualization is referred to as 

intensional, and is considered as equivalent to human thinking [48], in contrast to 

extensional approach, which implies that the elements of the mental image of the 

specific domain are simply enumerated or listed. A special case of a necessary 

condition may be defined by using functional or single-valued properties. A 

functional property is a property that can have only one (unique) value y for each 

instance x. The functional properties are established between two concepts when 

two corresponding tables are related with source and destination cardinality which 

equals 1. 

The uniqueness attribute of the database fields is used to improve the performance 

of the inferences on the corresponding local ontologies. One of the consequences 

of Open World Assumption [49] of the description logics based languages, such 

as OWL, is the inability to assume the difference of two individuals, unless it is 

explicitly stated by using owl:differentFrom relation. Imposing such a relation 
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between all the individuals that correspond to the database rows may significantly 

decrease the reasoning performance. In our approach, this problem is addressed by 

assigning owl:hasKey properties to the concepts, whose corresponding tables have 

“unique” constraint posed on their fields and thus, making those explicitly 

different. 

The generation process consists of 4 phases: a) data import and classification of 

ER entities; b) classification (inference) of OWL types and properties; c) lexical 

refinement; d) generation of local ontology. 

Before the generation of local ontology, it is necessary to deliver two intermediary 

models. The first model is OWL replica of a database schema, a database ER 

model. Its primary role is to store the references to the actual database artifacts 

which will be exploited later to execute the semantic queries. It can also be 

considered as an input to other explication or discovery tools (for example, in 

lightweight semantics’ Linked Data environment), because it uses OWL to 

represent all the artifacts of the database schema, similar to Relational.OWL 

approach, presented above. The second model – a meta-model, which classifies 

OWL types and properties is used as a subject of lexical refinement, if necessary. 

The process of local ontology generation is supported by a web application which 

consists of modules for data import/assertion of ER meta-model instances, lexical 

refinement and transformation of classified OWL types and properties to a local 

ontology. The web application requires input of the database connection 

parameters. First, two intermediary models are created, where the generation of 

the meta-model is facilitated by firing the conversion rules (classification of the 

meta-model concepts is done by inference engine, based on these rules). Then, 

user can download both of the models and/or choose to proceed to a lexical 

refinement (phase 3) module or to finalize the process by initializing the local 

ontology generation (phase 4). Different phases of the local ontology generation 

are illustrated on Figure 1. The details of the process are presented below. 
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Figure 1: Approach to database-to-ontology mapping 

First, the database schema is investigated and OWL representation of the ER-

model is constructed. In this step, a web application connects to the database, uses 

introspection queries for discovering its structure and asserting the relations 

between the artifacts by using the proposed ER formalization (namely, er.owl). 

The following assertions are made for each field of the corresponding table: 

hasAttribute (entity, attribute), hasType(attribute, type) and 

hasConstraint(attribute,’not-null’) and/or hasConstraint(attribute,’unique’) (if 

applicable). The following assertions are made for each relation: 

hasDestinationAttribute (relation, attribute), hasSourceAttribute(relation, 

attribute). 

Second, the resulting (serialized) OWL representation of the database ER-model 

is imported into the meta-model (s-er.owl), which classifies future OWL concepts 

(conversion rule R1, below) and domains and ranges of the object and data 

properties, according to the defined conversion rules (rules R2 and R4, below). 

Although the specifications of object and data properties may impose the 

unnecessary restrictions on the resulting ontology, we consider those as important 

for improving the efficiency of mapping or alignment process, which is critical for 
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the semantic interoperability. Another reason for the assertion of object properties 

in OWL representation of database ER-model is that the object properties of the 

resulting local ontology will be annotated with the URI’s (Uniform Resource 

Identifiers) of the respective relations, in order to enable the correspondence 

between the ontology and database representation, for the benefit of query 

transformation.  

According to the above constraints, the rules for intensional conceptualization 

(inherited anonymous classes) for a particular entity are identified by inferring 

ranges of hasDefiningProperty(concept, concept) and 

hasDefiningDataProperty(concept, data-concept) relations (rules R2.2 and R4.2, 

below). Finally, the approach takes into account the functionality of the properties 

(owl:FunctionalProperty). Functional properties are classified when a one-to-one 

relation is identified between two concepts (rule R2.3, below). 

The classification of future OWL concepts is then inferred by exploiting the 

following conversion rules: 

R1. Concepts are all entities of the ER model’s OWL representation, except the 

entities whose all attributes are relation sources (corresponding to intermediary 

tables, connecting two tables with many-to-many relationship). 

er:entity(x) ∧ not (er:hasAttribute only (er:attribute ∧ (er:isSourceAttributeOf 

some er:relation))) ⇒ s-er:concept(x) 

R2.1. Domains and ranges of the object properties are inferred by using the rule 

below. 

er:entity(x) ∧ er:entity(y) ∧ er:relation(r) ∧ er:hasAttribute(x, a1) ∧ 

er:hasAttribute(y, a2) ∧ er:isDestinationAttributeOf(a2, r) ∧ 

er:isSourceAttributeOf(a1, r) ⇒ s-er:hasObjectProperty(x, y) 

R2.2. Domains and ranges of the defining properties (necessary conditions of the 

concept) are inferred by using the rule below. The defining property is a sub-

property (rdfs:subPropertyOf) of the object property (hence, simplified 

representation of the rule below). 

s-er:hasObjectProperty(x, y) ∧ er:hasConstraint(a1,'not-null') ⇒ s-

er:hasDefiningProperty(x, y) 

R2.3. Domains and ranges of the functional properties are inferred by using the 

rule below. The functional property is a sub-property (rdfs:subPropertyOf) of the 

defining property (hence, simplified representation of the rule below). 
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s-er:hasObjectProperty(x, y) ∧ er:hasConstraint(a1,'not-null') ⇒ s-

er:hasDefiningProperty(x, y) 

R3. Data concepts are all attributes of the ER model’s OWL representation which 

are not at the source of any relation. 

er:attribute and not (er:isSourceAttributeOf some er:relation) ⇒ s-er:data-concept 

R4.1. Domains and ranges of the data properties are inferred by using the rule 

below. Ranges of the data properties are data types, corresponding to the simple 

types from XML schema. 

er:type(x) ⇒ s-er:data-type(x) 

s-er:concept(c) ∧ er:attribute(a) ∧ er:type(t) ∧ er:hasAttribute(c, a) ∧ 

er:hasType(a, t) ⇒ s-er:hasDataProperty(c, t) 

R4.2. Domains and ranges of the defining data properties are inferred by using the 

rule below. The defining data property is a sub-property (rdfs:subPropertyOf) of 

the data property (hence, simplified representation of the rule below). 

s-er:hasDataProperty(c, t) ∧ er:hasConstraint(a,'not-null') ∧ 

er:hasConstraint(a,'unique') ⇒ s-er:hasDefiningDataProperty(c, t) 

The above conversion rules are specified in s-er.owl by using SWRL. SWRL 

(Semantic Web Rule Language) [50] is a proposal for a Semantic Web rules-

language, combining sub-languages of the OWL with those of the Rule Markup 

Language (RuleML). Below are some examples of SWRL representations of the 

conversion rules. 

(R1) entity(?e), hasAttribute max 0 attribute(?a), isSourceAttributeOf some 

relation(?r) -> concept(?e) 

(R2.1) entity(?e1), entity(?e2), relation(?r), attribute(?a1), attribute(?a2), 

hasAttribute(?e1,?a1), hasAttribute(?e2,?a2), isDestinationAttributeOf(?a2,?r), 

isSourceAttributeOf(?a1,?r)->hasObjectProperty(?e1,?e2) 

(R2.2) entity(?e1), entity(?e2), relation(?r), attribute(?a1), attribute(?a2), 

hasAttribute(?e1,?a1), hasAttribute(?e2,?a2), isDestinationAttributeOf(?a2,?r), 

isSourceAttributeOf(?a1,?r), hasConstraint(?a1,"not-null")-

>hasDefiningProperty(?e1,?e2) 

The rules are stored in the meta-model and once fired, they classify instances of 

the OWL representation of the database ER model (er.owl) into the concepts of 

meta-model (s-er.owl). Inferred triples in the meta-model can then be edited in a 
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simple web application (lexical refinement), which also launches the process of 

local ontology generation. In this process, meta-model entities are finally 

transformed into corresponding OWL, RDF and RDFS constructs – a resulting 

local ontology. Concepts of the generated local ontology are annotated with URI’s 

of the corresponding ER entities from er.owl model, so that the translation of 

semantic to SQL queries may become possible. 

The process of transformation is illustrated on Figure 2. It shows the fragment of 

the OpenERP database (a), its meta-model generated by firing the rules above (b) 

and corresponding concepts of the resulting local ontology (c). The database ER 

model is not illustrated, because it is only a replica of ER diagram (a). 

 

Figure 2: Illustration of the process of local ontology generation 

Based on the design of the illustrated fragment of the database (Figure 2a), entities 

and data entities of the database ER model are classified (Figure 2b) as concepts 

(Rule 1), data concepts (R3) and data types (R4.1); the focal concept of the 

fragment – “res_company” has two object properties (R2.1), data property (R4.1), 

defining data property (R4.2) and defining object property (R2.1 and R2.2). 
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On Figure 2c, the dashed lines represent the constraints posed by the defined 

domains and ranges of the introduced properties (“hasCompany” and 

“createdBy”). Solid lines represent necessary conditions for a class, namely the 

defining object (“hasCurrency”) or data properties (“hasName”, “createdOn”). 

In the phase of lexical refinement, the coding style, used by the database designer 

is handled (e.g. “res_company” is renamed to “company”). Also, at this point, the 

meaning of some relationships can be associated to the concepts of local ontology 

by using proper lexical terms. For example, the meaning of the relationship 

between “res_company” and “res_users” concepts of the meta-model is implied 

only by the name of the relation between two corresponding tables: 

“res_company_create_id_fkey”. Thus, in the manual intervention during the 

lexical refinement, the automatically proposed title of the relationship between 

company and user concepts – “hasRes_users” is replaced with “createdBy”. 

Another challenge for the development of local ontologies is related to instance 

population, namely, to how and when database data is represented in the local 

ontology. As it is mentioned before, two types of approaches are applied in the 

reported work. Massive export assumes that all data is represented as individuals 

in the process of ontology generation (or mapping of existing ontology with a 

database schema). Besides obvious maintenance related difficulties, this type of 

approach is unacceptable mainly because of the size of the resulting ontology and 

the mapping document and, consequently, performance issues related to reasoning 

processes. Query-driven population approach assumes that individuals are 

asserted to ontology during exploitation, upon execution of a semantic query. 

Here, some kind of query rewriting mechanism is involved to transform the 

semantics to SQL query or queries which are executed in the database; result-sets 

are then represented as logical statements which are finally asserted to local 

ontology. For many purposes, the existing query-driven approaches to population 

seem good candidates. However, when semantic interoperability between diverse 

and heterogeneous EISs is discussed, we believe that there are some concerns, 

mostly related to the complexity of inferences when modular ontological 

framework is queried and handling of data access rights. Those concerns are 

elaborated in Section 3.2. 
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3.2.   Reasoning with local ontologies and translation of semantic to 

SQL queries 

Semantic interoperability of systems enables a single point of access to the overall 

knowledge of the “interoperable world”. Not only that it makes possible to use a 

single semantic query to extract and combine relevant information from the 

multiple sources of implicit data, but it also enables the usage of different 

dictionaries for writing this query. 

 

Figure 3: Extraction of data from heterogeneous sources 

Figure 3 illustrates how the data is extracted from heterogeneous sources by using 

three different approaches: 1) simple use of EISs; 2) merging the relevant result-

sets from the databases; and 3) executing semantic queries. In the first case, one 

can use (USEi) the EISs’ data exchange facilities to export data files (Fi) and then 

transform each of the files to a common format and merge. In the second case, the 

SQL queries (SQLQi) are executed against EISs’ databases to get relevant result-

sets (RSi) and then merge. In the case of semantic queries data extraction, and if 

the assumption that logical mappings between local and domain ontologies are 

consistent and complete holds true, a single DL query (DLQi) can be constructed 

by using any dictionary, formalized by the domain ontologies, to extract the same 

data, but represented in different ways, depending on the used formalisms. Thus, 

no matter which dictionary is used to build the query, the result of its execution 

will be the union of semantically equivalent sets of triples (STi). 
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In this section, we describe the method for instance assertions to a local ontology 

on the basis of semantic query results. The method consists of the following steps: 

1) decomposition and analysis of the semantic query; 2) data extraction and 

instance assertions and; 3) reasoning. The method is illustrated in Figure 4. 

A semantic query can be considered as a pair (O, C), where O is a set of concepts 

which need to be inferred and C is a set of restrictions to be applied to their 

properties, namely, value (owl:hasValue and qualified cardinality restrictions, 

owl:allValuesFrom, owl:someValuesFrom) and cardinality constraints 

(owl:cardinality, owl:minCardinality, owl:maxCardinality). This consideration 

corresponds to a simplified representation of a SQL query which includes tables 

(and fields) and comparison predicate, that is, restrictions posed on the rows 

returned by a query. In addition, different types of property restrictions 

correspond to different cases (or patterns, where complex semantic query is 

mapped) of SQL queries. 

Since relevant entailments can be reasoned only by the property domain and range 

inferences, a set C may be considered as necessary and sufficient for representing 

the semantic query. For example, in the local ontology that is generated from the 

database schema of OpenERP EIS (see Section 4), a DL query 

“hasAccountAccountType some (hasCode value 3)” returns all instances of 

account_account concept whose type code is exactly 3. This kind of query 

representation (only by using properties restrictions) may produce unpredictable 

and misleading results when the restrictions are posed on the common lexical 

notions of different concepts, such as “name”, “type”, “id”, etc. The ambiguity of 

the corresponding properties is reflected on the relevant ontology in the sense that 

their domains are typically represented as a union of large number of concepts. 

For example, in OpenERP ontology, the domain of the “hasName” data property 

is the union of 170 concepts. 

However, this ambiguity may be considered as an advantage in some cases. Value 

restrictions on ambiguous data properties may produce relevant inferences, thus 

facilitating semantic querying without a need to have extensive knowledge of the 

underlying ontology structure. This kind of query is mapped to a SQL UNION 

query which combines SELECT sub-queries made on each element of the 

property domain, with the WHERE statement corresponding to the relevant rows 

restrictions. For example, in a mapping process, DL query “hasName value 
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‘Derek Porter’” is first used to infer all 170 possible entailments (property 

domains) in OpenERP ontology, which are, then, used to assemble qualified 

(O,C) pairs, e.g. “res_users and hasName value ‘Derek Porter’”. When the 

corresponding element of the UNION query is assembled, a static field with 

appropriate label (a reference to the concept) is added to each of the elements, so 

as to become possible to decide on the entailments. In other words, we need this 

to determine which sub-query actually returns the results. 

 

Figure 4: Execution of the example semantic query in local ontology 

In the first step of the method, decomposition and semantics analysis of the input 

query is performed. The 4-tuples in forms of (subject predicate some|only|min 

n|max m|exactly o bNode) and (subject predicate value {type}) are extracted from 

the input query. In the case of the DL query which returns all concepts which are 

related to a company whose primary currency is EURO (“hasCompany some 

(hasCurrency some (hasName value "EUR"))”), the following 4-tuplets are 

identified: 

X hasCompany some bNode1 

bNode1 hasCurrency some bNode2 

bNode2 hasName value "EUR" 

In some cases, more complex queries may be needed to define the requirements of 

the user. This occurs when multiple restrictions on a desired object are given, so 
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that the intersection of two or more sets, corresponding to these restrictions, is 

taken into account. For example, all payable accounts for companies whose 

primary currency is EURO are inferred by using DL query: hasAccountType 

value "Payable" and hasCompany some (hasCurrency some (hasName value 

"EUR")). In this case, the following 4-tuples are identified: 

X hasAccountType value "Payable" 

X hasCompany some bNode1 

bNode1 hasCurrency some bNode2 

bNode2 hasName value "EUR" 

In the next step of semantic query execution, a database connection is established 

and sets of SQL queries are constructed and executed for each element of a 4-

tuple, in reverse order, as a result of analysis described above. Each query returns 

data which is used to generate OWL statements which are asserted to a temporary 

model. Each set of the OWL statements corresponds to a sub-graph whose focal 

individual is an instance of the concept, inferred on basis of the property domain 

or returned result (label) of a 4-tuple. Other individuals or values correspond to 

the defining properties of this concept (inherited anonymous classes). In the case 

of ambiguity, the resulting blank nodes are represented as sets, which are filtered 

as a result of range inference of the parent 4-tuple, in the final stage of the 

method. 

As it is shown in Figure 4, the output of the process of semantic querying of local 

ontology is a set of OWL triples which formalizes the parts of the local ontology, 

asserted with individuals whose properties match the restrictions, defined by the 

DL query. 

Obviously, a query-driven population is applied in this case. As it is mentioned 

before, this approach separates data from the meta-model and, hence, it enables 

better performance of the reasoning processes. However, at this moment, a query-

driven population cannot be applied in a more complex environment of 

interrelated ontologies, such as the scenario of semantic interoperability of EISs. 

In the remainder of this section, we discuss the two main arguments for this 

statement. 

Almost all of the work on semantic reasoning still assumes a centralized approach 

where all inferences are carried out on a single system. The consequence of this 

approach is that all ontologies that need to interoperate (typically interrelated by 
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“imports” relations) have to be loaded by the reasoner software before the 

inference is even started. In a semantic interoperability scenario, the reasoner uses 

asserted logical correspondences between the local ontologies and the domain 

ontology to infer about the individuals of the local ontologies by using the 

language of the domain ontology. Since all ontologies need to be loaded into the 

memory space of the reasoner, it is not possible to apply a query-driven approach 

because the database is not accessible. This issue may be resolved by enabling 

more flexible and dynamic imports, where, for example, imported local ontologies 

are populated by dynamic services, capable of processing restrictions from the 

semantic query executed in the parent ontology. At this moment, we are not aware 

of any efforts of the scientific community to tackle this problem. A possible 

workaround for resolution of this problem may be the usage of formally-defined 

interfaces which allow that different ontology modules are developed completely 

independent of each other’s signature and even a language [51]. 

Another issue of the query-driven population of local ontologies in inter-

organizational settings is data security, namely, access authorization. In a massive 

export population approach, specific export and synchronization rules may be 

implemented to publish only some parts of the EIS’s database to a local ontology. 

However, a query-driven population, as explained above is done at the runtime, 

when the query itself is executed. Hence, it is very difficult to implement and 

manage access rules. Even, a more complex, but realistic scenario can be 

imagined, where an enterprise wants to manage the access to particular 

information per request in the process of a query execution. It is important to note 

that, in this case, the process of semantic querying will become asynchronous. 

Again, it seems that no relevant work on this topic has been done so far. 

Despite the fact that the above concerns are serious, we still believe that the 

query-driven population is a better candidate approach for application in 

semantically interoperable EISs than the massive export. The problems of static 

and restricted imports are mainly related to technical challenges, which are 

expected to be faced more likely than performance issues of DL-based reasoners. 

The problems of access rights may be resolved by considering a middleware 

which will be used for implementing the cross-organizational processes with 

strictly defined information access policy. For example, the cross-organizational 
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process may combine customized views on internal business processes that hide 

their private internal details [52]. 

4.   Explication and semantic querying of OpenERP 

Enterprise Information System 

Our approach for generating a local ontology and semantic querying is 

implemented on the case of extracting the semantic information from the 

OpenERP enterprise information system. This example is a part of the greater 

case study which demonstrates the benefits of the semantic interoperability of 

systems for a lifecycle management of the virtual enterprise for manufacturing of 

the custom orthopedic implants [53]. These, engineered-to-order, highly 

customized products are vital for the effectiveness and efficiency of the clinical 

practice. Today, they are rarely produced because of extremely long lead time, 

even up to three months, and corresponding high costs. The above cited case 

study shows how the uptake of the relationship management in the cost and lead 

time can be reduced by enabling the efficient communication between partners in 

the dynamic supply chain. 

In this example, we show how the enterprise with a customer role in a virtual 

enterprise for custom orthopedic implants manufacturing (or any other 

engineered-to-order product) could gain a transparent access to the information 

needed for production planning. In specific, we demonstrate how the presented 

methods for explication and semantic querying could be used to by the customer 

to achieve access to the production schedules of its supplier for a given part, and 

hence, to increase the efficiency of its production planning processes.. 

First, it is demonstrated how the supplier is represented into the “interoperable 

world”, namely, how our database-to-ontology method is used to generate a local 

ontology for OpenERP enterprise information system. Then, it is shown how the 

semantic query for extracting the production schedule for a given part is executed 

in this local ontology. 

4.1.   Generation of OpenERP local ontology 

With all modules installed, OpenERP database counts 238 tables. The database is 

transformed to an OpenERP local ontology by the software prototype that 

implements the approach, described in Section 3.1. In the first step of database 
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import into er.owl model, namely, instantiation of the OWL representation of the 

ER model, 3806 individuals are created (2633 of “attribute” type, 238 of “entity” 

type and 934 of “relation” type) and 7999 object property assertions are made. 

These individuals and their asserted properties directly correspond to the structure 

of OpenERP database schema and they are their literal OWL representation. 

In the second step of the transformation process, the classification of OWL 

concepts and properties is done and s-er.owl model is generated. 193 concepts, 

493 data-concepts and 2779 properties are inferred, on the basis of the SWRL 

rules, presented in Section 3.1, executed on the literal OWL representation 

produced in the former step. All inferences are stored in a separate OWL file, 

which is considered as the meta-model of the OpenERP database schema, in order 

to reduce the processing requirements for the final step. 

In the final step of the local ontology generation, the software transforms the 

classified instances of the meta-model of the OpenERP database to the 

corresponding OWL concepts and properties (see Figure 5). 

 

Figure 5: OpenERP local ontology in Protégé 

The resulting OWL file is considered as the output of the described database-to-

ontology transformation process. In the case of OpenERP, additional work on 

lexical refinement is not vital because the database developers use natural 

language to describe the entities and their attributes. 

The resulting conceptualization, that is, the generated local ontology corresponds 

to the user perspective of OpenERP system. This is demonstrated below, in the 
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description of the manufacturing module of OpenERP system. The lexical 

refinement is intentionally skipped in order to better illustrate the process of 

semantic querying (by preserving the similarity of the database tables and 

concepts’ and relationships’ names). 

The manufacturing module of OpenERP EIS facilitates the management of master 

data about products, master Bill of Materials, work centers and routings; it 

automates procurement management, manufacturing and purchase scheduling; it 

facilitates the management of manufacturing and delivery orders and after-sales 

services. Figure 6 displays the fragment of the UML representation of OWL 

concepts and relations (from the generated local ontology) that describe the 

manufacturing module of OpenERP EIS. 

The basis for manufacturing management in OpenERP is the management of 

master data, namely, bills of materials, work centers and routings. Bills of 

materials (mrp_bom concept in Figure 6) describe the single or multi-level 

structure of the product (product_product concept) to be manufactured – sub-

assemblies or raw material, each of which can be moved from stock or 

manufactured or purchased (determined by hasType functional property of 

mrp_bom concept). Work centers (mrp_work_center) represent units of 

production (machines or human resources, determined by hasType functional 

property), capable of doing material transformation operations, with a certain 

production capacity, expressed in cycles (for machines) or hours (for human 

resources). Routings (mrp_routing) define the manufacturing operations to be 

done in work centers to produce a certain product. They are associated to bills of 

materials. 

Once the master data is defined, the system can automatically generate the 

production schedule (schedule of generation of production – mrp_production, and 

procurement – mrp_procurement orders) by using make-to-order rules, minimum 

stock (for make-to-stock production) rules or production plan (based on 

forecasts). For make-to-order production, orders are computed on the basis of 

quantity of the ordered product, bill of material and delivery date. For each of the 

product’s elements which are supplied, a procurement order is generated. Planned 

dates (hasDatePlanned property) for the orders are calculated on the basis of a 

delivery date and manufacturing and purchase lead times for the product elements. 

For make-to-stock production, instead of the delivery date, minimum stock rules 



27 

are used for production scheduling. In this case, orders are launched when 

minimum stock thresholds are reached. 

The logistics of production is managed on the basis of stock moves 

(mrp_stock_move concept). OpenERP supports three types of stock locations: 

physical stock locations (warehouses), partner locations (customers’ and 

suppliers’ stocks) and virtual locations. The notion of stock location is used to 

define pull and push flows and to manage all types of storage places, including 

internal, supplier, customer, production and others. It is used to manage 

manufacturing logistics, since each of the manufacturing operations (described by 

mrp_routing concept) can be associated to a single stock location. 

 

Figure 6: Fragment of UML representation of OpenERP local ontology 

The cardinalities of the properties on the UML representation of OpenERP 

ontology highlight the specific semantic features of the illustrated concepts, which 

are not clearly obvious when the ER model of the database is considered. For 

example, the bill of material cannot exist without an associated product or 

products; thus, (hasProduct product_product) is a necessary condition for the 

mrp_bom concept. The bill of material must have a type assigned (hasType 

functional property). It may (or may not) be associated with a parent bill of 
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material element (hasMrpBom property). Similar reasoning can be applied for the 

other concepts of OpenERP ontology. 

The above description of how OpenERP system works with manufacturing 

management corresponds to the conceptual model of this domain, illustrated in 

Figure 6. However, although the principles above are used to manage the 

production in many other (if not all) ERP systems, they are all realized by the 

different database schemas. The differences in conceptualization approaches of 

the ERP systems designers have a negative effect on the capabilities of these 

systems to cooperate. This problem is typically addressed by making two 

conceptual models correlated. However, the reconciliation of different semantic 

models, such as different explicit representations of the implicit realities of two 

EIS, namely, local ontologies and conceptual models of a specific domain, are 

beyond the scope of this paper. 

4.2.   Execution of semantic queries 

Once the local ontology of OpenERP system is generated, our method for 

semantic querying of the local ontologies can be applied to facilitate the extraction 

of the relevant information. In order to demonstrate this, we consider a case in 

which a manufacturing enterprise queries the local ontologies of its suppliers in 

order to extract the information about a production schedule for a specific part of 

the custom orthopedic implant – an inner fixture.  

In the query-driven population approach, two types of query re-writing 

mechanisms are needed. The first query needs to transpose the semantic query, 

written by using the language of domain ontology, into another semantic query, 

which can be then executed on the local ontology. The second type of query 

rewrite mechanism is needed to transform the semantic query to SQL query or 

queries which are executed in the database; result-sets are then represented as 

logical statements which are finally asserted to local ontology. 

The DL query which returns the production schedule for the product (part) with 

name "Custom fixture F12" from the local ontology of OpenERP system is: 

mrp_production and hasProductProduct some (hasProductTemplate some 

(hasName value "Custom inner fixture F12")) 

According to the method, in the first step of semantic query execution, the query 

is decomposed to the following 4-tuplets: 



29 

X hasProductProduct some bNode1 

bNode1 hasProductTemplate some bNode2 

bNode2 hasName value "Custom fixture F12" 

In the next step, SQL queries are generated for each of the 4-tuplets, from the 

bottom up. The domain of “hasName” property of OpenERP ontology is the union 

of 170 sets – concepts, each of which corresponds to a data table. Hence, the 

resulting SQL query is an array of 170 SELECT queries. 

The SQL queries, generated by the module for semantic query execution for the 

last 4-tuplet, are as follows: 

(1) SELECT * FROM account_account_template WHERE name='Custom fixture 

F12' 

(2) SELECT * FROM account_account_consol_rel WHERE name='Custom 

fixture F12' 

.... 

.... 

(65) SELECT * FROM product_template WHERE name='Custom fixture F12' 

.... 

.... 

(170) SELECT * FROM wkf_workitem WHERE name='Custom fix-ture F12' 

The queries are executed and resulting datasets are transformed into logical 

statements which are, then, asserted to a temporary model. The query (65) returns 

the product template description that matches the given criteria. The result-set is 

then transformed into the logical statements that describe an instance of 

“product_template” concept and its necessary conditions. 

custom-fixture_f12 type product_template 

custom-fixture_f12 hasCostMethod 'Average price' 

custom-fixture_f12 hasId 1332 

custom-fixture_f12 hasMesType 'Measure type' 

custom-fixture_f12 hasName 'Custom fixture F12' 

custom-fixture_f12 hasProcureMethod 'Make to Order' 

Inner-Fixtures type product_category 

Inner-Fixtures hasName 'InnerFixtures' 

Inner-Fixtures hasId 12 

custom-fixture_f12 hasProductCategory Inner-Fixtures 
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custom-fixture_f12 hasStandardPrice 540.00 

custom-fixture_f12 hasSupplyMethod 'Produce' 

custom-fixture_f12 hasType 'Product type' 

These logical statements are then asserted into a temporary model (stored in the 

memory space of the semantic querying engine). 

It is important to emphasize that a query execution procedure is recursive. The 

query is expected to extract from the database and to assert all necessary 

conditions for a given concept. When the result-set includes a field which is at the 

destination of one-to-many schema relationship, the algorithm raises the 

occurrence of another concept (not a basic data type) as a necessary condition. In 

this case, another SQL query is executed to extract the result set which 

corresponds to this concept. In the above example, for the definition of necessary 

conditions of “product_template” concept, the instance of the “product_category” 

concept needs to be constructed and asserted to a temporary model. 

In the next iteration of the query execution, the next 4-tuplet is transformed into a 

set of SQL queries. As it is shown above, value restrictions are transformed to 

SQL queries in a simple way, where basic data-types (in this case, strings) are 

used as criteria. In this iteration, the criterion is defined with an instance(s) of the 

ontology (in this case, bNode2 array). In the example above, only one instance is 

asserted into local ontology, as a result of the first iteration. Thus, in the second 

iteration, the following statement is transposed to SQL queries: 

bNode1 hasProductTemplate custom-fixture-f12 

When existential restrictions are used, SQL WHERE statements are interpreted as 

the values of the functional data properties of this instance: 

custom-fixture_f12 hasId 1332 

Given the fact that the domain of “hasProductTemplate” property is a union of 

three concepts (“product_pricelist_item”, “product_product” and 

“product_supplierinfo”) in OpenERP local ontology, the following set of SQL 

queries is generated: 

(1) SELECT product_pricelist_item.* FROM prod-uct_pricelist_item, 

product_template WHERE 

product_pricelist_item.product_template_id=product_template.id AND 

product_template.id='1332' 



31 

(2) SELECT product_product.* FROM product_ product, product_template 

WHERE product_ product.product_template_id=product_template.id AND 

product_template.id='1332' 

(3) SELECT product_ supplierinfo.* FROM product_ supplierinfo, 

product_template WHERE product_ 

supplierinfo.product_template_id=product_template.id AND 

product_template.id='1332' 

In this example, only the second SELECT query returns a value, because the 

custom fixture product is engineered to order, so no pricelist or supplier 

information is relevant for its description. Similarly as in the case of the first 

iteration, a result set is transformed into a set of logical statements, which describe 

the instance of “product_product” concept of OpenERP local ontology, by using 

its necessary conditions: 

custom-fixture_f12_p type product_product 

custom-fixture_f12_p hasId 67 

custom-fixture_f12_p hasProductTemplate custom-fixture_f12 

These logical statements are also asserted into the temporary model. In the last 

iteration, a domain of “hasProductProduct” property is determined for a given 

range (“custom-fixture_f12_p” instance). Then, the value of the functional 

property of a criterion instance is used to generate SQL query. This set has 22 

SELECT queries because the domain of the “hasProductProduct” property is the 

union of 22 classes: 

(1) SELECT account_analytic_line.* FROM account_analytic_line, 

product_product WHERE account_analytic_line.product_id=product.id AND 

prod-uct.id='67' 

... 

(7) SELECT mrp_production.* FROM mrp_production, product_product 

WHERE mrp_production.product_id=product.id AND product.id='67' 

... 

(22) SELECT stock_warehouse_orderpoint.* FROM 

stock_warehouse_orderpoint, product_product WHERE 

stock_warehouse_orderpoint.product_id=product.id AND product.id='67' 

In contrast to the previous iteration, in this step, the instances of more than one 

concept of OpenERP local ontology are returned – all instances to which the 
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custom fixture product is associated (the domain of “hasProductProduct” 

property), such as account_invoice_line, delivery_carrier, mrp_bom, and others. 

Then, the result-sets are transformed into logical statements that are asserted to a 

temporary model. Some relevant statements are: 

custom-fixture_f12_prod_sched type mrp_production 

custom-fixture_f12_prod_sched hasDatePlanned '2012-02-15 23:59:59' 

custom-fixture_f12_prod_sched hasId 67 

custom-fixture_f12_prod_sched hasName 'Production schedule for Custom fixture 

F12' 

custom-fixture_f12_prod_sched hasProductProduct custom-fixture_f12_p 

custom-fixture_f12_prod_sched hasProductQuantity 3.0 

custom-fixture_f12_prod_sched hasDateFinished '2012-02-17 23:59:59' 

stock_location_w2 type stock_location 

stock_location_w2 hasAllocationMethod '' 

stock_location_w2 hasChainedAutoPacking '' 

stock_location_w2 hasChainedLocationType '' 

stock_location_w2 hasId 8 

stock_location_w2 hasName '' 

stock_location_w2 hasUsage 'Warehouse 2' 

custom-fixture_f12_prod_sched hasStockLocation stock_location_w2 

At this time, all instances required for the semantic representation of the query 

result are stored in the temporary model, in the memory of the inference engine. 

The second step of the semantic query execution method – query execution and 

assertions can be considered as completed. 

In the third and last step of the method; a semantic DL query is executed on the 

temporary model, in order to filter only relevant instances. Namely, as it is shown 

in the description of the third iteration of the query execution step, the property 

domain inferences may result in some excessive information which is not relevant 

for the case. Also, in the case where the complex semantic queries (with multiple 

restrictions on the desired instance) are executed, the intersection of the resulting 

sets of instances, each corresponding to individual restrictions, need to be 

inferred. Finally, this filtered model is returned as an end outcome of the semantic 

query execution. The representation of the outcome of the production schedule 
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querying for the product “Custom fixture F12” is illustrated in Figure 7 (data 

properties are not displayed). 

 

Figure 7: Visual representation of the production schedule for example product “Custom fixture 

F12” 

The resulting graph is a semantic representation of the production schedule 

concept and is delivered after the semantic query is transformed to a set of SQL 

queries which are executed in the database of OpenERP system. Now, its concepts 

and instances can be mapped to the domain models and, hence, more advanced 

reasoning may be enabled. More importantly, a production schedule concept of 

OpenERP local ontology may become logically equivalent to the corresponding 

concepts of local ontologies of other systems. Thus, these systems will become 

capable of interpreting messages which encapsulate different production 

schedules. The main implication of this capability in a federated enterprise 

network is that any two systems may become semantically interoperable [54]. 

5.   Conclusions and future work 

The work presented in this paper is a part of the research of semantic 

interoperability in supply chain networks. In this paper, we focus on introducing 

the partial realities of the enterprises, that is, data representations of their 

information systems, into the heterogeneous environment of a supply chain 

network. In the presented approach, enterprise data models are used to generate 

local ontologies, by applying a set of rules for interpreting the semantics of an ER 
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model, namely a database schema. Although “database-to-ontology mapping” is 

not a novel concept, we showed that existing approaches are characterized by 

weaknesses, most of which are related to the lack of completeness of properties’ 

semantics. Our approach and corresponding tools aim at overcoming these 

weaknesses, thus enabling the complete (in aspects of ER patterns’ semantics and 

OWL expressivity) interpretation (explication) of the implicit semantics of the ER 

models, as well as the full correspondence between semantic and database queries. 

As we have shown, the precondition for this correspondence is the resolution of 

some technical problems, related to the lack of more expressive formalisms (or 

technical approaches) for correlating two ontologies and the lack of methods for 

enabling the management of access rights. 

The generated local ontologies should be considered only as intermediary results 

of the process of conceptualization of one EIS. The main argument for the need of 

a human intervention is that a weak assumption is made that the ER schema of the 

EISs represents the semantics of their data models. There are obvious limitations 

introduced by this assumption, related to semantics coverage and even correctness 

(because it is more correct to say that ER schemas are conceptual models of the 

developers’ intents rather than databases of actual systems). However, the case 

study of generating a local ontology from the OpenERP system shows that the 

method provides an exhaustive semantic landscape by fully interpreting the 

semantics of ER underlying schema, by using full OWL/DL expressivity, 

automatically. As such, this landscape can be improved in the following human 

intervention by considering business rules, ambiguous types and more 

sophisticated semantic relations. 

In the context of the semantic interoperability, the resulting local ontologies may 

be considered as enterprise message models. As such, they aim at enabling the 

semantic interoperability of corresponding enterprise information systems, not the 

enterprises themselves. Still, significant research efforts are needed for the 

representation and the exposition of the enterprise business logic, which is hard-

coded in the systems, as well as the semantics of the instances, namely, 

information which are stored in the database. Hence, some of the identified future 

research topics aimed at improving the resulting conceptual model are: analysis of 

data patterns with the goal of discovering the semantics of the ambiguous notions 

of the local ontologies (e.g. type or status); and semi-automatic classification of 



35 

the concepts of local ontologies by analyzing necessary conditions for different 

concepts. There are other topics which relate to improving the application 

framework that uses the local ontologies, such as: developing a universal method 

for semantic query rewriting, where source and destination queries use the 

concepts of two ontologies, logically interrelated by using SWRL rules; and 

developing a method and tools for execution of “Tell” semantic queries. Finally, 

developments in some specific areas of Semantic Web tools and languages will 

certainly contribute to the improved performance and functionality of the 

application framework for semantic interoperability in supply chain networks. 

Some expected developments are related to: distributed reasoning capabilities for 

modular ontologies with dynamic imports, security and access control levels to 

the parts of ontologies in distributed ontological frameworks, and performance 

and quality of ontology matching tools. 

We consider these research topics as important for increasing collaboration in a 

supply chain network, as its fulfillment will enable logic driven, automatic and 

transparent decision making, thus contributing to the transition from traditional 

supply chains to virtual enterprise and related paradigms. 
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